PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :"

Transkripsi

1 PROGRAM LINEAR Bukti : + = a + b = a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan suatu tujuan ang dapat digunakan untuk mencari keuntungan maksimum seperti dalam bidang perdagangan, penjualan dsb Daerah Penelesaian:. Dalam penelesaian persoalan program linear adalah pemahaman dalam pembuatan grafik pertidaksamaan linear aitu penentuan daerah himpunan penelesaian dari suatu sstem pertidaksamaan linear. Yang perlu diingat dalam pembuatan grafik pertidaksamaan linear ini aitu mengenai persamaan garis.. Persamaan garis melalui suatu titik (, dengan gradien m adalah: ( - = m ( - p (, Gunakan persamaan 2 di atas : 2 = 2 Persamaan garis melalui (b,0 (, dan (0, a ( 2, 2 0 a 0 = b 0 b b = a b - b = a(-b - b = a ab ab = a + b a + b = ab terbukti 4. Dua gradien sama apabila dua garis saling sejajar. m = m 2 2. Persamaan garis melalui titik (, dan ( 2, 2 adalah: h h 2 2 = 2 ( 2, 2 (, p 3. Persamaan garis lurus ang memotong sumbu (=0 di titik (b,0 dan memotong sumbu (=0 di titik (0, a adalah: + = a + b = a.b b a 5. Hasil perkalian dua gradien adalah apabila dua garis saling tegak lurus m. m 2 = - h (0,a a + b = a.b h 2 (b,0 -

2 Menentukan Sistem Pertidaksamaan Linear: Contoh: Tentukan persamaan garis dari gambar di bawah ini : Untuk menentukan daerah himpunan penelesaian pertidaksamaan linear dapat dilakukan dengan menggunakan metoda grafik dan uji titik. Langkah-langkahna ( a + b c aitu : garis h melalui (3,0 dan (0,2 ; garis h h2 dan melalui (,0.. Gambar garis a + b = c 2. Lakukan uji titik dengan menentukan titik sembarang (, ang terletak di luar garis a + b= c, kemudian substitusikan ke dalam persamaan a + b c. a. Jika benar, maka himpunan penelesaianna adalah daerah ang memuat titik tersebut dengan batas garis a + b = c b. Jika salah, titik tersebut bukan himpunan penelesaianna persamaan garis h (gunakan rumus b + a = + = persamaan garis h = 6 3 = = Tanpa melakukan uji titik himpunan penelesaian pertidaksamaan dapat dilihat dari gambar berikut dimana garis membagi bidang menjadi 2 bagian : untuk a >0 dan b>0 (0,a a + b ab persamaan garis h2 : h h2 sehingga m. m 2 = - m = maka m 2 = 2 3 melalui (,0 a + b ab untuk a > 0 dan b <0 (b,0 a + b =c ( - = m 2 ( - 0 = 2 3 ( a - b -ab (0,a = 2 3 ( 2 = 3 3 persamaan garis h2 adalah 3-2 = 3 (-b,0 a - b -ab - 2

3 Untuk a < 0 dan b > 0 -a + b -ab (b,0 Buat garis 4 +2 = 8 titik potong dengan sb jika =0 4 = 8 = 2 titik potong dengan sb jika = 0 2 = 8 = 4 didapat koordinat (2,0 dan (0,4 (0,-a -a + b -ab 4 4+2=8 Untuk a < 0 dan b <0 (-b,0 -a b ab (0,-a 2 titik potong 2+3=6 2 3 Untuk menentukan daerah himpunan penelesaian, ujilah titik (0,0. Titik(0,0 memenuhi pertidaksamaan ; ; 0 ; 0, maka (0,0 merupakan anggota himpunan penelesaian. Contoh: -a b ab Tentukan daerah himpunan penelesaian dari sstem pertidaksamaan : ; ; 0 ; 0 untuk dan R jawab: Daerah ang diarsir menunjukkan himpunan penelesaian dari sstem pertidaksamaan linear. Tambahan: Titik potong dua persamaan adalah: Substitusikan persamaan dan 2 : = = = = 6-8 = 8 = = = 6 = 2 Langkah : gambar persamaan Buat garis 2 +3 = 6 titik potong dengan sb jika =0 2 = 6 = 3 titik potong dengan sb jika = 0 3 = 6 =2 didapat koordinat (3,0 dan (0,2 Langkah 2 : gambar persamaan titik potongna adalah ( 2, Nilai Optimum (Maksimum dan Minimum dalam daerah penelesaian Untuk menentukan nilai optimum dalam daerah penelesaian, dapat ditentukan dengan menggunakan metode titik pojok (titik ekstrim atau garis selidik. Contoh: Jika diketahui sstem pertidaksamaan ; ; 0 ; 0 untuk dan R, - 3

4 Tentukan nilai optimum untuk A = +3 dan B= nilai maksimum dari A adalah 6, minimum adalah nilai maksimum dari B adalah 0, minimum adalah 0 dimana, R Model Matematika Jawab: Model matematika adalah penerjemahan dari situasi ang disajikan dalam bahasa sehari-hari menjadi bahasa matematika (pertidaksamaan linear Contoh: Q (0,2 P= ( 2, O R(2,0 (3,0 titik P merupakan titik potong garis = = = = 6-8 = 8 = Tempat parkir di suatu gedung mempunai luas 800m 2, untuk memarkir sebuah mobil diperlukan tempat seluas 0m 2 dan untuk suatu bus atau truk diperlukan tempat seluas 20m 2. Tempat parkir tersebut maksimal hana dapat menampung tidak lebih dari 50 mobil dan bus. Jika ongkos parkir untuk mobil adalah Rp.2000,- dan untuk bus/truk Rp.4000,- berapa ongkos maksimal parkir ang didapat?. Jawab: langkah : buat model matematika dalam bentuk table = = 6 = 2 titik potongna adalah titik P ( 2, Daerah ang diarsir merupakan himpunan penelesaian dari sstem pertidaksamaan. Titik-titik ekstrimna adalah P( 2,, Q(0,2, R(2,0 dan O(0,0. Tabel. Jenis Luas Banak Mobil 0 X Bus 20 Y Tersedia Diperoleh model matematika: fungsi tujuanna adalah f(,= dengan saratsarat di atas. Langkah 2: menggambar daerah penelesaian Titik O P Q R X Y A= B= dari tabel dapat disimpulkan bahwa : Daerah + 2 = X 0 80 Y 40 0 Titik (0,40 80,0 daerah 2 + = 50 X 0 50 Y 50 0

5 Titik (0,50 (50,0 Titik potong garis + 2 = 80 dan + = = 80 + = 50 - = 30 titik potongna (30,20 + = 50 = = 20 (0,50 titik potong (20,30 (0,40 (0,0 (50,0 (80,0 Daerah ang diarsir adalah daerah penelesaiana Langkah 3 : Menentukan nilai optimum fungsi tujuanna Dengan menggunakan metoda titik-titk sudut : Terdapat 4 titik sudut aitu (0,0, (50,0, (20,30 dan (0,40 Titik (0,0 (50,0 (20,30 (0,40 X Y Jadi ongkos maksimal ang didapat adalah Rp dengan jumlah parkir untuk mobil sebanak 20 mobil dan untuk bus/truk sebanak 30 bus/truk catatan: nilai untuk titik (0,40 jumlahna sama dengan untuk (20,30 tetapi tidak mungkin satu lahan parkir hana digunakan untuk bus/truk saja sehingga nilai tersebut diabaikan

6 buat grafikna: Contoh Soal: Soal UN200 UN202 UN200. Suatu perusahaan memproduksi barang dengan 2 model ang dikerjakan dengan dua mesin aitu mesin A dan mesin B. Produk model I dikerjakan dengan mesin A selama 2 jam dan mesin B selama jam. Produk model II dikerjakan dengan mesin A selama jam dan mesin B selama 5 jam. Waktu kerja mesin A dan B berturut turut adalah 2 jam perhari dan 5 jam perhari. Keuntungan penjualan produk model I sebesar Rp ,00 perunit dan model II Rp 0.000,00 per unit. Keuntungan maksimum ang dapat diperoleh perusahaan tersebut adalah. A. Rp ,00 D. Rp ,00 B. Rp ,00 E. Rp ,00 C. Rp ,00 2+ = 2 titik potong dengan sb jika =0 2 = 2 = 6; didapat titik (6,0 titik potong dengan sb jika =0 = 2 didapat titik (0,2 Tarik garis dari titik (6,0 ke titik (0,2 + 5 = 5 titik potong dengan sb jika =0 = 5; didapat titik (5,0 titik potong dengan sb jika =0 5 = 5 =3 ; didapat titik (0, 3 Tarik garis dari titik (5,0 ke titik (0,3 Jawab: Misal produk model I = produk model II = produk model I 2 produk model II 5 waktu kerja 2 5 A ditana keuntungan maksimum : =? Dibuat model matematikana: 0 ; 0 ; ; B titik potong 2 garis tersebut adalah: substitusikan 2 persamaan tsb: eliminasi 2+ = 2 2+ = = = = = 2 2 = = = = -8 =

7 titik potongna adalah (5,2 dibuat tabel dengan titik-titik pojok: titik pojok (0, 0 0 (0, (5, = (6, Perpotongan antara ( dan (2 didapat dengan substitusi dengan eliminasi ( dan (2: = = = = = 50 = 2 3+ = 5 3 = 5 = Terlihat bahwa nilai maksimumna adalah di titik (6, 0 Jawabanna adalah C UN20 2. Seorang anak diharuskan minum dua jenis tablet setiap hari. Tablet jenis I mengandung 5 unit vitamin A dan 3 unit vitamin B. Tablet jenis II mengandung 0 unit vitamin A dan unit vitamin B. Dalam hari anak tersebut memerlukan 25 unit vitamin A dan 5 unit vitamin B. Jika harga tablet I Rp ,00 per biji dan tablet II Rp ,00 per biji, pengeluaran minimum untuk pembelian tablet per hari adalah... A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp ,00 Jawab: Misal: tablet jenis I = ; tablet jenis II = Vitamin A = 5 vitamin A (tablet jenis I + 0 Vitamin A (tablet jenis II = 25 keperluan vitamin A perhari = = 25...( Vitamin B = 3 vitamin B (tablet jenis I + Vitamin A (tablet jenis II = 5 keperluan vitamin A perhari = 3 + = 5...(2 f(, = dari gambar terlihat 3 titik ji coba aitu (, 0, (,2 dan (0, f(, = ang berlaku adalah ang meliputi adana dan Y (tablet I dan II aitu titik (,2 sehingga pengeluaran minimum untuk pembelian tablet per hari adalah Rp ,- Jawabanna adalah E - 7

8 - 8

BAB XVII. PROGRAM LINEAR

BAB XVII. PROGRAM LINEAR BAB XVII. PROGRAM LINEAR Bukti : + a + b a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

17. SOAL-SOAL PROGRAM LINEAR

17. SOAL-SOAL PROGRAM LINEAR 17. SOAL-SOAL PROGRAM LINEAR EBTANAS2000 1. Himpunan penelesaian sistem pertidaksamaan 5x + 10 2x + 8 2 x = 2 titik (2,0 titk potong dengan sumbu jika x = 0 = 10 titik (0,10 daerah 5x + 10 berada pada

Lebih terperinci

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel PROGRAM LINIER A. Pengertian Program Linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS 1 Penusun Editor : Rifan Nadhifi, S.Si. ; Imam Indra Gunawan, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. A. Sistem Pertidaksamaan Linear Pertidaksamaan linear

Lebih terperinci

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 08 Sesi N MENCARI MAKSIMUM DAN MINIMUM FUNGSI Kita sudah belajar bagaimana menggambar daerah dari batas pertidaksamaan ang diketahui atau pun sebalikna. Suatu

Lebih terperinci

BAB II PROGRAM LINEAR

BAB II PROGRAM LINEAR BAB II PROGRAM LINEAR A RINGKASAN MATERI. Pengertian Program linear adalah suatu permasalahan dalam matematika dengan tujuan untuk mengoptimalkan fungsi obektif ang berbentuk linear dengan kendala/batasan

Lebih terperinci

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y PROGRAM LINIER A. Pengertian Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimalisi linier (nilai maksimal atau nilai minimal). B. Model Matematika

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

Menentukan Nilai Optimum dengan Garis Selidik

Menentukan Nilai Optimum dengan Garis Selidik D Menentukan Nilai ptimum dengan Garis Selidik Selain dengan menggunakan uji titik pojok, nilai optimum juga dapat ditentukan dengan menggunakan garis selidik. Persamaan garis selidik dibentuk dari fungsi

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian.

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian. PROGRAM LINIER ). Pengertian program linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

Program Linear - IPA

Program Linear - IPA Program Linear - IPA Tahun 2005 1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak

Lebih terperinci

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN 29-21 MATEMATIKA XII BAHASA Hari / tanggal :... Desember 29 Waktu : 12 menit Pilih salah satu jawaban ang benar dengan memberi tanda silang

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas : X / 2 Pertemuan ke - : ---- Alokasi Waktu : 10 jam @ 45 menit Standar Kompetensi : Menelesaikan masalah program linier. Kompetensi Dasar

Lebih terperinci

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif Program Linear Program Linear B A B 2 A. Sistem Pertidaksamaan Linear Dua Variabel B. Model Matematika C. Nilai Optimum Suatu Fungsi Objektif Sumber: http://blontankpoer.blogsome.com Dalam dunia usaha,

Lebih terperinci

PETA STANDAR KOPETENSI

PETA STANDAR KOPETENSI Program Linear PETA STANDAR KOPETENSI MATEMATIKA NON TEKNIK II TINGKAT II SEMESTES SEMESTER STANDAR KOPETENSI G STANDAR KOPETENSI I STANDAR KOPETENSI H STANDAR KOPETENSI J KETERANGAN : SEMESTER Standar

Lebih terperinci

MATEMATIKA. Sesi PROGRAM LINEAR CONTOH SOAL A. BENTUK UMUM PERTIDAKSAMAAN LINEAR B. MENGGAMBAR DAERAH PERTIDAKSAMAAN. ax + by c

MATEMATIKA. Sesi PROGRAM LINEAR CONTOH SOAL A. BENTUK UMUM PERTIDAKSAMAAN LINEAR B. MENGGAMBAR DAERAH PERTIDAKSAMAAN. ax + by c MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 07 Sesi N PROGRAM LINEAR A. BENTUK UMUM PERTIDAKSAMAAN LINEAR a + b c CONTOH SOAL 1. Ubahlah 4-4 kedalam bentuk umumna 4 - -4 B. MENGGAMBAR DAERAH PERTIDAKSAMAAN

Lebih terperinci

PERTIDAKSAMAAN LINEAR DUA VARIABEL

PERTIDAKSAMAAN LINEAR DUA VARIABEL PRGRAM LINEAR Intisari Teori A. PERTIDAKSAMAAN LINEAR DUA VARIABEL (PtLDV) Suatu pernyataan yang berbentuk a by c 0 (tanda ketidaksamaan dapat diganti dengan, >, atau < ) dengan a dan b tidak semuanya

Lebih terperinci

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8 2. Program Linier a. Defenisi Program linier adalah metode untuk mendapatkan penyelesaian optimum dari suatu fungsi sasaran yang mengandung kendala atau batasan yang dapat dibuat dalam bentuk sistem pertidaksamaan

Lebih terperinci

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

SOAL DAN PEMBAHASAN UN SMK 2011 teknologi

SOAL DAN PEMBAHASAN UN SMK 2011 teknologi 1. Himpunan penelesaian pertidaksamaan adalah. A. * * * D. * E. * x = 0 ( x ( x 2. Persamaan grafik fungsi kuadrat ang memotong sumbu X di titik (-2,0 dan (2,0 serta melalui titik (0,-4 A. D. E. ( x =

Lebih terperinci

A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

Soal dan Pembahasannya.

Soal dan Pembahasannya. Soal dan Pembahasanna Perhatikan tabel di bawah ini! p q p q ~ q B B B S S B S S Nilai kebenaran dari pernataan majemuk p q ~ q pada tabel di atas adalah p q p q ~ q p q ~ q B B B S B B S S B B S B B S

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1 PROGRAM LINEAR A. Persamaan Garis Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) a (0, a) 0 x 1 x 1 0 x 2 (b, 0) 0 b a. Persamaan garis yang bergradien m dan melalui titik (x 1, y 1 ) adalah: y

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR LEMBAR AKTIVITAS SISWA PROGRAM LINEAR c) Subtitusikan titik (0,0) kedalam pertidaksamaan. Nama Siswa : Jika hasil benar, maka penyelesaiaannya adalah daerah Kelas : yang memuat titik tersebut. Jika hasil

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

Bab. Persamaan Garis Lurus. Pengertian Persamaan Garis Lurus Gradien Menentukan Persamaan Garis lurus

Bab. Persamaan Garis Lurus. Pengertian Persamaan Garis Lurus Gradien Menentukan Persamaan Garis lurus Bab Sumb er: Scien ce Enclopedia, 997 Persamaan Garis Lurus Dalam suatu perlombaan balap sepeda, seorang pembalap mengauh sepedana dengan kecepatan tetap. Setiap 5 detik, pembalap tersebut menempuh jarak

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

SOAL-SOAL LATIHAN UN A35

SOAL-SOAL LATIHAN UN A35 SAL-SAL LATIHAN 1. UN A5 01 Penjahit Hidah Pantes akan membuat pakaian wanita dan pria. Untuk membuat pakaian wanita diperlukan bahan bergaris m dan bahan polos 1 m. Untuk membuat pakaian pria diperlukan

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR E. Kegiatan Belajar 2 PENERAPAN PROGRAM LINEAR 1. K A. Nilai Optimum Fungsi Obyektif Fungsi objektif merupakan fungsi yang menjelaskan tujuan (meminimumkan atau memaksimumkan)

Lebih terperinci

Bab 1. Program Linear. Program Linear. Sumber: dianekawhy.blogspot.com

Bab 1. Program Linear. Program Linear. Sumber: dianekawhy.blogspot.com Bab 1 Pada bab ini, Anda diajak menelesaikan masalah program linear dengan cara membuat grafik himpunan penelesaian sistem pertidaksamaan linear, menentukan model matematika dari soal cerita, menentukan

Lebih terperinci

Berdasarkan definisi di atas, maka pertidaksamaan linear dua variabel dapat dinyatakan dalam bentuk:

Berdasarkan definisi di atas, maka pertidaksamaan linear dua variabel dapat dinyatakan dalam bentuk: BAHAN AJAR A. Kompetensi Inti KI 1 : Menghayati dan mengamalkan ajaran agama yang dianutnya. KI 2: Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama,

Lebih terperinci

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m 1. Dalam permasalahan program linear dikenal dua istilah, yaitu : a. Fungsi Kendala/ pembatas, berupa pertidaksamaan pertidaksamaan linear ax by 0; ax by p; ax by 0; ax by 0 b. Fungsi/ bentuk objektif,

Lebih terperinci

TRIGONOMETRI. 5. tan (A + B) = tan A.tan. Pengertian Sinus, Cosinus dan Tangen. 6. tan (A - B) = Sin α = r. Rumus-rumus Sudut Rangkap :

TRIGONOMETRI. 5. tan (A + B) = tan A.tan. Pengertian Sinus, Cosinus dan Tangen. 6. tan (A - B) = Sin α = r. Rumus-rumus Sudut Rangkap : TRIGONOMETRI 5. tan (A + B) tan A + tan B tan A.tan B Pengertian Sinus, Cosinus dan Tangen r Hubungan Fungsi Trigonometri :. sin +. tan. sec 4. cosec 5. cotan 6. 7. cos sin cos cos sin cos sin tan + cot

Lebih terperinci

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL SAL-SAL LATIHAN PRGRAM LINEAR UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik program linear. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR

DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR DINAS PENDIDIKAN DAN TENAGA KERJA MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMA KABUPATEN TANAH DATAR NASKAH SOAL ULANGAN UMUM SEMESTER I Tahun Pelajaran / Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto

Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto Geri Achmadi Dwi Gustanti Dani Wildan Hakim Willi Sutanto Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Mahir Matematika untuk Kelas XII SMA/MA Program Bahasa Penulis : Geri Achmadi

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPS TAHUN PELAJARAN 2011/2012 1. Ingkaran pernyataan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal B. Petani panen

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

Ujian Nasional 2008 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian

Ujian Nasional 2008 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian Ujian Nasional 8 MATEMATIKA Kelompok : Teknologi, Kesehatan dan Pertanian. Seorang pedagang membeli ½ lusin gelas seharga Rp 5., dan pedagang tesebut telah menjual 5 gelas seharga Rp.,. Jika semua gelas

Lebih terperinci

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab II Program Linear 51 Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan kalian dapat 1. menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; 2. menentukan fungsi tujuan

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada f =, maka fungsi f naik + 1 pada selang (A), 0 (D), 1. Jika ( ) (B) 0, (E) (C),,. Persamaan garis singgung kurva lurus + = 0 adalah (A) + = 0 (B) + = 0 (C) + + = 0 (D) + = 0 (E) + + = 0 = ang sejajar dengasn

Lebih terperinci

Siswa dapat menggambar grafik himpunan penyelesaikan sistim pertidaksamaan linier dengan 2 varabel

Siswa dapat menggambar grafik himpunan penyelesaikan sistim pertidaksamaan linier dengan 2 varabel RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas/Semester : XI/3 Pertemuan ke : 1,2, dan 3 Alokasi Waktu : 6 x 45 menit Standar Kompetensi : Menyelesaikan program

Lebih terperinci

Rencana Pelaksanaan Pembelajaran

Rencana Pelaksanaan Pembelajaran Rencana Pelaksanaan Pembelajaran I. Identitas Nama Sekolah : SMK N 1 Bonjol Mata Pelajaran : Matematika Kelas / Semester : x /2 Standar Kompetensi : 5. Memecahkan masalah program linear Kompetensi Dasar

Lebih terperinci

PROGRAM LINEAR. Dasar Matematis

PROGRAM LINEAR. Dasar Matematis PROGRAM LINEAR Dasar Matematis PROGRAM LINIER adalah suatu teknik optimalisasi dimana variabel-variabelnya linier. Metode ini dipakai pada saat kita dihadapkan pada beberapa pilihan dengan batasan-batasan

Lebih terperinci

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8 1. Sebuah baju setelah dikenakan potongan harga dijual dengan harga Rp 0.000,00. Diskon baju tersebut 0 %. Maka harga baju sebelum didiskon adalah Rp 1.000,00 Rp 15.000,00 Rp.000,00 Rp 7.000,00 e. Rp 75.000,00.

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier.

Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier. LEMBAR KEGIATAN SISWA 4 Materi : Menghitung nilai optimum (maksimum / minimum) dari sistem pertidaksamaan linier. Kelas Kelompok : :.. Nama Anggota : Kalian telah mempelajari cara membuat grafik dari sisem

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN OAL DAN PEMBAHAAN UJIAN NAIONAL TAHUN PELAJARAN / MA/MA PROGRAM TUDI IP MATEMATIKA PAKET B Disusun KHAIRUL BAARI khairulfaiq.wordpress.com e-mail :muh_abas@ahoo.com OAL DAN PEMBAHAAN UN BIDANG TUDI MATEMATIKA

Lebih terperinci

AB = AB = ( ) 2 + ( ) 2

AB = AB = ( ) 2 + ( ) 2 Nama Siswa Kelas LEMBAR AKTIVITAS SISWA HUBUNGAN ANTAR GARIS Titik Tengah Sebuah Segmen Garis : : Kompetensi Dasar (KURIKULUM 2013): 3.10 Menganalisis sifat dua garis sejajar dan saling tegak lurus dan

Lebih terperinci

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi Bab 4 Sistem Persamaan Linier dan Variabel Standar Kompetensi Memahami sistem persamaan linear dua variabel, dan menggunakanna dalam pemecahan masalah Kompetensi Dasar.1 Menelesaikan sistem persamaan linear

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal D0 Doc. Version : 0-06 halaman 0. Ingkaran dari pernataan "Ada bilangan prima adalah bilangan genap." Semua bilangan prima adalah bilangan genap. Semua bilangan prima

Lebih terperinci

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut.

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut. Setelah mempelajari materi pada kompetensi dasar ini, kalian diharapkan dapat: menjelaskan pengertian program linier, menggambar grafik himpunan penyelesaian pertidaksamaan linier, dan menggambar grafik

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si.. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Dalam ilmu ekonomi, kita selalu berhadapan dengan variabel-variabel ekonomi seperti harga, pendapatan nasional, tingkat bunga, dan lainlain. Hubungan kait-mengkait

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani

Lebih terperinci

BAB 4 PERSAMAAN LINGKARAN

BAB 4 PERSAMAAN LINGKARAN STANDAR KOMPETENSI: BAB 4 PERSAMAAN LINGKARAN Menusun persamaan lingkaran dan garis singgungna. KOMPETENSI DASAR Menusun persamaan lingkaran ang memenuhi persaratan ang ditentukan Menentukan persamaan

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP Nama Sekolah : SMP Negeri 3 Singaraja Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Alokasi Waktu : 2 40 menit A. Standar Kompetensi Memahami Sistem

Lebih terperinci

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan Pilihlah satu jawaban yang tepat.. (x x 4 ) dx.. ULANGAN AKHIR SEMESTER TAHUN PELAJARAN 007/008 Mata Pelajaran : Matematika Kelas / Program : XII / Ilmu Alam Hari, Tanggal : Waktu : 90 menit ( ) ` a. x

Lebih terperinci

Modul Matrikulasi, SMA Labschool Kebayoran 2017 Page 1

Modul Matrikulasi, SMA Labschool Kebayoran 2017 Page 1 Modul : Grafik Fungsi Kuadrat Teori: Bagian bagian grafik fungsi kuadrat = a + b + c, a 0 Grafik fungsi kuadrat Titik ekstrim fungsi kuadrat = f () = a + b + c D = 0 Memiliki dua akar kembar Grafik fungsi

Lebih terperinci

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x

Lebih terperinci

Bagian 2 Turunan Parsial

Bagian 2 Turunan Parsial Bagian Turunan Parsial Bagian Turunan Parsial mempelajari bagaimana teknik dierensiasi diterapkan untuk ungsi dengan dua variabel atau lebih. Teknik dierensiasi ini tidak hana akan diterapkan untuk ungsi-ungsi

Lebih terperinci

diunduh dari

diunduh dari diunduh dari http://www.pustakasoal.com Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Hak Cipta Buku ini dibeli oleh Departemen Pendidikan Nasional dari Penerbit PT Visindo Media

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Siswa Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

CONTOH SOAL UAN PROGRAM LINIER

CONTOH SOAL UAN PROGRAM LINIER 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam.

Lebih terperinci

B B S S B S S B S S B B S S S B B S B S S S S B B S B B

B B S S B S S B S S B B S S S B B S B S S S S B B S B B 1. Ingkaran pertanyaan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal. B. Petani panen beras dan harga beras murah. C. Petani tidak panen beras dan harga beras

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

BAB XI PERSAMAAN GARIS LURUS

BAB XI PERSAMAAN GARIS LURUS BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini

Lebih terperinci

BAB I PENDAHULUAN. Pengembangan kurikulum yang sedang berlangsung sekarang merupakan salah satu

BAB I PENDAHULUAN. Pengembangan kurikulum yang sedang berlangsung sekarang merupakan salah satu BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pendidikan merupakan objek yang paling dominan dalam menjalani kehidupan manusia dari waktu ke waktu, sebab pendidikan adalah kunci keberhasilan dari suatu

Lebih terperinci

A. Sistem Persamaan Linier dengan dua Variabel

A. Sistem Persamaan Linier dengan dua Variabel Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir MateriA SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Variabel Tiga Variabel Sistem Pertidaksamaan linier

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui remis remis : () Jika Badu rajin belajar dan atuh ada orang tua, maka Aah membelikan bola basket () Aah tidak membelikan bola

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

matematika K-13 PERSAMAAN GARIS LURUS K e l a s

matematika K-13 PERSAMAAN GARIS LURUS K e l a s K- matematika K e l a s XI PERSAMAAN GARIS LURUS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami pengertian garis, garis pada koordinat Cartesius,

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co.

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co. Penerapan Turunan A. PENDAHULUAN Turunan dapat digunakan untuk: 1) Perhitungan nilai limit dengan dalil l Hôpital 2) Menentukan persamaan fungsi kecepatan dan percepatan dari persamaan fungsi posisi )

Lebih terperinci

E. Grafik Fungsi Kuadrat

E. Grafik Fungsi Kuadrat /9/05 Jurnal Materi Umum Persamaan Kuadrat Peta Konsep Fungsi Kuadrat Peta Konsep Daftar Hadir MateriE SoalLatihan5 PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester E. Grafik Fungsi Kuadrat Menelesaikan

Lebih terperinci

Mr.alex Hu Method Halaman 1

Mr.alex Hu Method Halaman 1 . EBTANAS 00/P-/No. Nilai minimum fungsi objektif +y yang memenuhi pertidaaksamaan +y, +y 8, +y 8, 0 adalah. A. 8 B. 9 C. D. 8 E. Objektif Z = AX +By Misal berat ke y B > A) Maka Z min = AX Z maks = By

Lebih terperinci

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp. 1.000,00/jam dan mobil besar Rp.

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

BAB I PRA KALKULUS. Nol. Gambar 1.1

BAB I PRA KALKULUS. Nol. Gambar 1.1 BAB I PRA KALKULUS. Sistem bilangan ril.. Bilangan ril Sistem bilangan ril adalah himpunan bilangan ril dan operasi aljabar aitu operasi penjumlahan, pengurangan, perkalian dan pembagian. Biasana bilangan

Lebih terperinci

CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS

CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS 1. Diketahui titik-titik pada bidang koordinat Cartesius sebagai berikut. a. (10, 5) c. ( 7, 3) e. ( 4, 9) b. (2, 8) d. (6, 1) Tentukan absis dan ordinat

Lebih terperinci

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA <<

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA << >> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER SMA KELAS XII IPA

Lebih terperinci

x X dapat dipetakan ke setiap y Y. hanya jika (jikka) satu x X dapat dipetakan ke satu y Y. RELASI : F: X Y menghasilkan himpunan pasangan berurut:

x X dapat dipetakan ke setiap y Y. hanya jika (jikka) satu x X dapat dipetakan ke satu y Y. RELASI : F: X Y menghasilkan himpunan pasangan berurut: RELASI DAN FUNGSI Dalam matematika modern, Relasi dan Fungsi digunakan untuk menunjukkan hubungan setiap elemen Domain dengan setiap elemenrange ang membentuk pasangan bilangan berurut. Hubungan himpunan

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengaaan Matematika Edisi Januari Pekan Ke-, 006 Nomor Soal: 1-0 1. Melalui (0, 0) buatlah garis-garis ang memotong lingkaran 0 pada dua titik. Carilah tempat kedudukan pertengahan ke dua titik.

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017 TRY OUT UNBK KODE SOAL : TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN / KERJASAMA BINTANG PELAJAR Bidang Studi Hari, Tanggal Waktu LEMBAR SOAL : MATEMATIKA IPA : Oktober M / Muharram H : Menit PETUNJUK UMUM.

Lebih terperinci

BAB 2. PROGRAM LINEAR

BAB 2. PROGRAM LINEAR BAB 2. PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci