matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran"

Transkripsi

1 KTSP & K-3 matematika K e l a s XI GARIS SINGGUNG LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi garis singgung lingkaran.. Dapat menentukan persamaan garis singgung yang melalui suatu titik pada lingkaran. 3. Dapat menentukan persamaan garis singgung yang melalui suatu titik di luar lingkaran. 4. Dapat menentukan persamaan garis singgung lingkaran yang diketahui gradien garisnya. A. Definisi Garis Singgung Lingkaran Garis singgung lingkaran adalah garis yang menyinggung suatu lingkaran. Sementara itu, titik potong antara garis singgung lingkaran dan lingkaran disebut titik singgung. Titik singgung terletak pada lingkaran sehingga jarak antara titik singgung dan titik pusat lingkaran sama dengan jari-jari lingkaran. Perhatikan gambar berikut. P r A l

2 Garis l adalah garis singgung lingkaran P. Sementara A adalah titik singgung garis l terhadap lingkaran P. Jarak titik pusat lingkaran P ke titik A sama dengan jari-jari (r). B. Persamaan Garis Singgung yang Melalui Suatu Titik pada Lingkaran Sebelum kamu belajar tentang persamaan garis singgung yang melalui suatu titik pada lingkaran, mari ingat kembali tentang bentuk persamaan lingkaran berikut. Persamaan lingkaran berpusat di P (0, 0) adalah x + y = r. Persamaan lingkaran berpusat di P (a, b) adalah (x a) + (y b) = r atau x + y + Ax + By + C = 0. Setelah kamu mengingat kembali bentuk persamaan tersebut, mari perhatikan lingkaran berikut. y P(0, 0) r A(x, y ) x l Misalkan garis l menyinggung lingkaran x + y = r di titik A(x, y ). Jarak dari titik P ke A adalah jari-jari lingkaran yang dapat dirumuskan sebagai berikut. ( ) ( ) PA = r = 0 x + 0 y Gradien garis PA dapat dinyatakan dengan m berlaku: m PA m = y ml = x x ml = y x ml = y l PA y =. Oleh karena garis PA garis l, maka x

3 Dengan demikian, persamaan garis l dapat ditentukan sebagai berikut. y y = m x x l x y y = ( x x) y y y y = x x x yy y = xx + x ( ) ( ) ( ) xx + yy = x + y Substitusikan r = x + y ke persamaan tersebut sehingga diperoleh: xx + yy = r Jadi, persamaan garis singgung yang melalui titik A(x, y ) pada lingkaran x + y = r adalah sebagai berikut. xx + yy = r Dengan cara yang sama, persamaan garis singgung yang melalui titik A(x, y ) pada lingkaran (x a) + (y b) = r adalah sebagai berikut. (x a) (x a) + (y b) (y b) = r Dengan menguraikan bentuk (x a) (x a) + (y b) (y b) = r, persamaan garis singgung yang melalui titik A(x, y ) pada lingkaran x + y + Ax + By + C = 0 adalah sebagai berikut. xx yy A x + x B y y C = 0 3

4 SUPER, Solusi Quipper Cara mudah mengingat rumus persamaan garis singgung lingkaran x + y = r. Pahami bahwa x + y = r ekuivalen dengan xx + yy = r. Untuk menentukan persamaan garis singgungnya, kamu cukup mengganti salah satu x menjadi x dan y menjadi y. Dengan demikian, diperoleh rumus persamaan garis singgung berikut. xx + yy = r Begitu juga dengan persamaan garis singgung lingkaran (x a) + (y b) = r. Pahami bahwa (x a) + (y b) = r ekuivalen dengan (x a) (x a) + (y b) (y b) = r. Untuk menentukan persamaan garis singgungnya, kamu cukup mengganti salah satu x menjadi x dan y menjadi y. Dengan demikian, diperoleh rumus persamaan garis singgung berikut. (x a) (x a) + (y b) (y b) = r Rumus ini dinamakan rumus bagi adil. Secara umum, aturan pada rumus ini adalah sebagai berikut. x y diubah menjadi x x diubah menjadi y y x + x x diubah menjadi y + y y diubah menjadi ( x a) diubah menjadi ( x a) x a ( y b) diubah menjadi ( y b)( y b) ( ) Contoh Soal Tentukan persamaan garis singgung yang melalui titik H(, ) pada lingkaran (x + ) + (y 6) = 5! Pembahasan: Tentukan dahulu letak titik terhadap lingkaran. Dengan mensubstitusikan titik H(, ) ke persamaan lingkaran, diperoleh: ( + ) + ( 6) = = 5 5 = 5 4

5 Oleh karena persamaan benar, maka titik H(, ) terletak pada lingkaran. Persamaan garis singgung lingkaran (x + ) + (y 6) = 5 yang melalui titik (x, y ) = (, ) adalah sebagai berikut. ( )( ) ( )( ) ( )( ) ( )( ) x + x + + y 6 y 6 =5 + x y 6 =5 3 ( x +) 4( y 6 ) =5 3 x +6 4y+4 =5 3x 4 y +5=0 Jadi, persamaan garis singgung yang melalui titik H(, ) pada lingkaran (x + ) + (y 6) = 5 adalah 3x 4y + 5 = 0. Untuk lebih jelasnya, perhatikan gambar berikut. Y Persamaan : (x + ) + (y 6) = 5 Persamaan : 3x 4y + 5 = X 5

6 Contoh Soal Tentukan persamaan garis singgung yang melalui titik G(, ) pada lingkaran dengan pusat ( 5, ) dan jari-jari 0! Pembahasan: Diketahui: P(a, b) ( 5, ) r = 0 Tentukan dahulu persamaan lingkarannya. (x a) + (y b) = r (x + 5) + (y ) = 0 Selanjutnya, tentukan letak titik terhadap lingkaran. Dengan mensubstitusikan titik G(, ) ke persamaan lingkaran, diperoleh: ( + 5) + ( ) = ( ) = 0 0 = 0 Oleh karena persamaan benar, maka titik G(, ) terletak pada lingkaran. Persamaan garis singgung yang melalui titik (x, y ) = (, ) pada lingkaran (x + 5) + (y ) = 0 adalah sebagai berikut. ( )( ) ( )( ) ( )( ) ( )( ) x +5 x +5 + y y =0 +5 x +5 + y =0 3 ( x +5) ( y ) =0 3 x y +7=0 Jadi, persamaan garis singgung yang melalui titik G(, ) pada lingkaran dengan pusat ( 5, ) dan jari-jari 0 adalah 3x y + 7 = 0 Untuk lebih jelasnya, perhatikan gambar berikut. 6

7 y x 3 Persamaan : (x + 5) + (y ) = 0 Persamaan : 3x y + 7 = 0 C. Persamaan Garis Singgung yang Melalui Suatu Titik di Luar Lingkaran Persamaan garis singgung juga dapat ditentukan melalui suatu titik di luar lingkaran. Perhatikan lingkaran berikut. A(x, y ) B P Misalkan titik A(x, y ) terletak di luar lingkaran x + y = r. Jarak dari titik A ke titik pusat lingkaran lebih panjang daripada jari-jari lingkaran. Dengan demikian, berlaku x + y > r. Lalu, bagaimana cara menentukan persamaan garis singgungnya? Untuk mengetahuinya, perhatikan langkah-langkah berikut. 7

8 . Tentukan persamaan garis kutub dari titik A(x, y ) yang terletak di luar lingkaran. Persamaan garis kutub diperoleh dengan cara mensubstitusikan koordinat titik A(x, y ) ke rumus persamaan garis singgung yang melalui titik pada lingkaran.. Substitusikan persamaan garis kutub ke persamaan lingkaran sehingga diperoleh persamaan kuadrat. 3. Tentukan akar-akar dari persamaan kuadrat. 4. Substitusikan akar-akar persamaan kuadrat ke persamaan garis kutub sehingga diperoleh koordinat titik potong garis kutub pada lingkaran. 5. Substitusikan koordinat titik potong garis kutub ke rumus persamaan garis singgung yang melalui titik pada lingkaran. Dengan demikian, didapatlah persamaan garis singgung lingkaran yang dimaksud. Agar lebih memahaminya, perhatikan contoh soal berikut. Contoh Soal 3 Tentukan persamaan garis singgung lingkaran x + y = 0 yang melalui titik E( 0,0)! Pembahasan: Tentukan dahulu letak titik terhadap lingkaran. Dengan mensubstitusikan titik E( 0,0) ke persamaan lingkaran, diperoleh: x + y = ( 0) + 0 = = 00 > 0 Oleh karena x + y > r, maka titik E terletak di luar lingkaran. Selanjutnya, tentukan persamaan garis kutub dari titik E( 0,0). xx + yy = r 0x + 0y = 0 y = x + Substitusikan y = x + ke persamaan lingkaran x + y = 0. x + y = 0 x + (x + ) = 0 x + x + 4x + 4 = 0 x + 4x 6 = 0 8

9 x + x 8 = 0 (x ) (x + 4) =0 x = atau x = 4 Substitusikan x = dan x = 4 ke persamaan garis kutub. Untuk x = : y = x + y = + y = 4 Koordinat titik potong garis kutub: (, 4) Untuk x = 4: y = x + y = ( 4) + y = Koordinat titik potong garis kutub: ( 4, ) Substitusikan koordinat titik potong tersebut ke rumus xx + yy = 0, sehinga diperoleh: Untuk (, 4): x + 4y = 0 x + y = 0 Untuk ( 4, ): 4x y = 0 x + y = 0 Jadi, persamaan garis singgung lingkaran x + y = 0 yang melalui titik E( 0,0) adalah x + y = 0 dan x + y = 0. 9

10 Untuk lebih jelasnya, perhatikan gambar berikut. Y X Persamaan : x + y = 0 Persamaan : x + y = 0 Persamaan 3: x + y = 0 5 Contoh Soal 4 Salah satu persamaan garis singgung lingkaran x + y + 4x y 3 = 0 yang melalui titik (3, 0) adalah... A. x y = 3 D. x + y = 3 B. x + y = 3 E. 3x y = 9 C. x + y = 6 Pembahasan: Tentukan dahulu letak titik terhadap lingkaran. Jawaban: B 0

11 Dengan mensubstitusikan titik (3, 0) ke persamaan lingkaran, diperoleh: x + y + 4x y 3 = (3) + (0) + 4(3) (0) 3 = = 8 > 0 Oleh karena 8 > 0, maka titik (3, 0) terletak di luar lingkaran. Selanjutnya, tentukan persamaan garis kutub dari titik (x, y ) = (3, 0). x+ x y+ y xx + yy +4 3=0 3 x + 3+ x 0+ y 3=0 ( ) ( ) 3 x +6+x y 3=0 5 x y +3=0 y =5 x +3 Substitusikan y = 5x + 3 ke persamaan lingkaran x + y + 4x y 3 = 0. ( ) ( ) x + 5 x +3 +4x 5 x +3 3=0 x +5 x +30 x +9+4x 0x 6 3=0 6 x + 4 x =0 x 6 x +4 = 0 x ( ) =0 atau x = Substitusikan x = 0 ke persamaan garis kutub. y = 5x + 3 y = 5(0) + 3 y = 3 Koordinat titik potong garis kutub: (0, 3) Substitusikan koordinat titik potong tersebut ke rumus x x + y y + (x + x) (y + y) 3 = 0 sehingga diperoleh: x x + y y + (x + x) (y + y) 3 = y + (0 + x) (3 + y) 3 = 0 3y + x 3 y 3 = 0 x + y 6 = 0 x + y = 6 x + y = 3

12 Jadi, salah satu persamaan garis singgung lingkaran x + y + 4x y 3 = 0 yang melalui titik (3, 0) adalah x + y = 3. D. Persamaan Garis Singgung Lingkaran dengan Gradien Tertentu Misalkan y = mx + n dengan m sebagai gradien adalah garis singgung lingkaran x + y = r. Substitusikan y = mx + n ke persamaan x + y = r sehingga diperoleh: x + y = r x + (mx + n) = r x + m x + mnx + n = r ( + m )x + mnx + (n r ) = 0 Syarat garis memotong pada satu titik atau menyinggung lingkaran adalah nilai D = 0. D =0 b 4 ac = 0 mn 4 + m n r =0 ( ) ( )( ) 4m n 4 n +4r 4 mn +4mr 4 n +4 r +4 mr = 0 n + r + mr =0 n = + m r ( ) ( ) n= r + m n= ± r + m =0 Substitusikan n= ± r + m ke persamaan garis y = mx + n sehingga diperoleh: y = mx + n y = mx ± r + m Jadi, persamaan garis singgung pada lingkaran x + y = r dengan gradien m adalah sebagai berikut. y = mx ± r + m Dengan cara yang sama, persamaan garis singgung pada lingkaran (x a) + (y b) = r dengan graiden m adalah sebagai berikut. ( ) ( ) y b = m x a ± r + m

13 Contoh Soal 5 Tentukan persamaan garis singgung lingkaran (x + ) + (y 5) = 0 yang tegak lurus dengan garis x 3y + 6 = 0! Pembahasan: Misalkan gradien garis x 3y + 6 = 0 adalah m dan gradien garis singgung lingkaran (x + ) + (y 5) = 0 adalah m. Dengan demikian, diperoleh: x 3 y +6=0 3 y = x +6 y = x m 3 + = 3 Oleh karena kedua garis, maka berlaku: m m = m = 3 m = 3 m = 3 Persamaan garis singgung lingkaran (x + ) + (y 5) = 0 dengan a =, b = 5, r = 0, dan m = 3 adalah sebagai berikut. ( y b) = m( x a) ± r + m ( y 5 ) = 3 ( x +) ± 0 + ( 3) ( y 5 ) = 3x 3± 0 +9 y +3 x =5 3± 0 0 y +3 x =± 0 y +3 x =+0dan y +3 x = 0 y +3 x =dan y +3 x = 8 Jadi, persamaan garis singgung lingkaran (x + ) + (y 5) = 0 yang tegak lurus dengan garis x 3y + 6 = 0 adalah y + 3x = dan y + 3x = 8. 3

14 Untuk lebih jelasnya, perhatikan gambar berikut. Y Persamaan : (x +) + (y 5) = 0 Persamaan : y + 3x = Persamaan 3: y + 3x = X Contoh Soal 6 Tentukan persamaan garis singgung lingkaran x + y 4x + 6y + 0 = 0 yang sejajar dengan garis p: y = x +! Pembahasan: Misalkan gradien garis p: y = x + adalah m p dan gradien garis singgung lingkaran x + y 4x + 6y + 0 = 0 adalah m gs. Dengan demikian, diperoleh: y = x + m p = 4

15 Oleh karena kedua garis sejajar, maka berlaku: m p = m gs = Selanjutnya, tentukan titik pusat dan jari-jari lingkaran x + y 4x + 6y + 0 = 0. Pusat lingkaran (a, b): a = A = ( 4 ) = b = B = ( 6 ) = 3 Jari-jari lingkaran (r): r = a + b C ( ) ( ) = = = 3 Dengan demikian, persamaan garis singgungnya adalah sebagai berikut. ( y b) = m( x a) ± r + m ( y +3 ) = ( x ) ± 3 + ( ) y +3=x 4± 5 y =x 7 ± 5 Jadi, persamaan garis singgung lingkaran x + y 4x + 6y + 0 = 0 yang sejajar dengan garis p: y = x + adalah y =x 7 ± 5. E. Persamaan Garis Singgung Lingkaran yang Membentuk Sudut Tertentu terhadap Suatu Garis Rumus persamaan garis singgung lingkaran yang membentuk sudut tertentu terhadap suatu garis sama dengan sebelumnya. Akan tetapi, gradien garis singgungnya ditentukan dengan persamaan berikut. m = tan θ 5

16 Contoh Soal 7 Persamaan garis singgung lingkaran x + y = 36 yang membentuk sudut 60 o terhadap sumbu-x positif adalah... Pembahasan: Tentukan dahulu gradien garis singgungnya. m gs =tan 60 = 3 o Selanjutnya, tentukan persamaan garis singgung lingkaran x + y = 36 dengan pusat (0, 0), jari-jari 6, dan m gs = 3. ( ) ( ) y b = m x a ± r + m ( ) ( ) ( ) y 0 = 3 x 0 ± y = 3x ± 6 4 y = 3x ± Jadi, persamaan garis singgung lingkaran x + y = 36 yang membentuk sudut 60 o terhadap sumbu-x positif adalah y = 3 x + dan y = 3x. Contoh Soal 8 Persamaan garis singgung lingkaran (x ) + (y 3) = 4 yang membentuk sudut arctan dengan garis y = 3x + 0 adalah... Pembahasan: Garis y = 3x + 0 memiliki gradien m = 3. Gradien garis singgung lingkaran yang membentuk sudut arctan dapat ditentukan melalui ilustrasi berikut. dengan garis y = 3x + 0 6

17 y = 3x + 0 m = 3 arctan = θ m = x arctan = θ tan θ = m m = + mm 3 x + 3 = x + 3x = 6 x 5x = 5 x = Dengan demikian, nilai m =. Persamaan garis singgung lingkaran (x ) + (y 3) = 4 dengan pusat (, 3), jari-jari, dan m = adalah sebagai berikut. ( y b) = m( x a) ± r + m ( y 3 ) =( x ) ± + () y 3= x ± y = x +± Jadi, persamaan garis singgung lingkaran (x ) + (y 3) = 4 yang membentuk sudut arctan dengan garis y = 3x + 0 adalah y = x ++ dan y = x +. 7

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

MODUL 8 FUNGSI LINGKARAN & ELLIPS

MODUL 8 FUNGSI LINGKARAN & ELLIPS MODUL 8 FUNGSI LINGKARAN & ELLIPS 8.1. LINGKARAN A. PERSAMAAN LINGKARAN DENGAN PUSAT PADA TITIK ASAL DAN JARI-JARI R Persamaan lingkaran dengan pusat (0,0) dan jari jari R adalah : x 2 + y 2 = R 2 B. PERSAMAAN

Lebih terperinci

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran.

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran. /8/205 Peta Konsep Jurnal Materi MIPA Peta Konsep Lingkaran Daftar Hadir MateriA LINGKARAN 2 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Kedudukan Titik dan Garis Terhadap Lingkaran

Lebih terperinci

c. 2 d Jika suatu garis mempunyai persamaan 2x + y + 4 = 0, maka gradiennya adalah a. 2 b. ½ c. 2 d. ½

c. 2 d Jika suatu garis mempunyai persamaan 2x + y + 4 = 0, maka gradiennya adalah a. 2 b. ½ c. 2 d. ½ 1 SOAL LATIHAN UH MATEMATIKA PERSAMAAN GARIS LURUS KELAS 8 SMP I. Pilihan Ganda GRADIEN (m) 1. Persamaan garis y = x, maka gradiennya adalah a. b. 4 c. d.. Persamaan garis y = x, maka gradiennya adalah

Lebih terperinci

PERSAMAAN LINGKARAN. Tujuan Pembelajaran

PERSAMAAN LINGKARAN. Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI PERSAMAAN LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mempunyai kemampuan sebagai berikut.. Memahami definisi lingkaran.. Memahami persamaan

Lebih terperinci

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran 2. 5. Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran Persamaan Lingkaran () () Bentuk Umum 0 dibagi (2) Pusat Jari-jari Pusat (,), Jumlah kuadrat pusat dikurangi Jari-jari

Lebih terperinci

Pertemuan 2 KOORDINAT CARTESIUS

Pertemuan 2 KOORDINAT CARTESIUS Kalkulus Pertemuan 2 KOORDINAT CARTESIUS Koordinat Cartesius 1 2 3 Jarak y Hitunglah jarak dari A(3,-5) ke B(4,2) A(3,-5) maka x 1 = 3 dan y 1 = -5 B(4,9) maka x 2 = 4 dan y 2 = 2 sehingga d(a, B) = (x

Lebih terperinci

GEOMETRI ANALITIK BIDANG & RUANG

GEOMETRI ANALITIK BIDANG & RUANG HANDOUT (BAHAN AJAR) GEOMETRI ANALITIK BIDANG & RUANG Sofyan Mahfudy IAIN Mataram KATA PENGANTAR Alhamdulillah puji syukur kepada Alloh Ta ala yang dengan rahmat dan karunia-nya penulis dapat menyelesaikan

Lebih terperinci

BAB XI PERSAMAAN GARIS LURUS

BAB XI PERSAMAAN GARIS LURUS BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini

Lebih terperinci

1. Salah satu persamaan garis singgung lingkaran ( x 2 )² + ( y + 1 )² =13 di titik yang berabsis 1 adalah. a. 3x 2y 3 = 0 b. 3x 2y 5 = 0 c.

1. Salah satu persamaan garis singgung lingkaran ( x 2 )² + ( y + 1 )² =13 di titik yang berabsis 1 adalah. a. 3x 2y 3 = 0 b. 3x 2y 5 = 0 c. . Salah satu persamaan garis singgung lingkaran ( x )² + ( y + )² =3 di titik yang berabsis adalah. a. 3x y 3 = 0 b. 3x y 5 = 0 c. 3x + y 9 = 0 d. 3x + y + 9 = 0 e. 3x + y + 5 = 0 Soal Ujian Nasional tahun

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smart Solution UJIAN NASIONAL TAHUN PELAJARAN 2012/2013 Disusun Sesuai Indikator Kisi-Kisi UN 2013 Matematika SMA (Program Studi IPA) Disusun oleh : Pak Anang 2. 5. Menentukan persamaan lingkaran atau

Lebih terperinci

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r. PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari

Lebih terperinci

4. Persamaan garis lingkaran yang berpusat di ( 1,4 ) dan menyinggung garis 3x 4y 2 = 0 adalah.

4. Persamaan garis lingkaran yang berpusat di ( 1,4 ) dan menyinggung garis 3x 4y 2 = 0 adalah. . Salah satu persamaan garis singgung lingkaran ( x )² + ( y + )² =3 di titik yang berabsis adalah. a. 3x y 3 = 0 b. 3x y 5 = 0 c. 3x + y 9 = 0 d. 3x + y + 9 = 0 e. 3x + y + 5 = 0 Langkah : Substitusi

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN

LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN 4 ia nc o3 D.c om Bab r: w be Su m. pa ww ne b Lingkaran Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 483

Pembahasan Matematika IPA SNMPTN 2012 Kode 483 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode 8 Oleh Tutur Widodo. Di dalam kotak terdapat bola biru, 6 bola merah dan bola putih. Jika diambil 8 bola tanpa pengembalian,

Lebih terperinci

LINGKARAN. Bab. Di unduh dari : Bukupaket.com

LINGKARAN. Bab. Di unduh dari : Bukupaket.com Bab 9 LINGKARAN A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran lingkaran siswa mampu: 1. Mendeskripsikan konsep persamaan lingkaran dan menganalisis sifat garis

Lebih terperinci

LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut.

LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. LINGKARAN Lingkaran merupakan tempat kedudukan titik-titik ang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. r P Titik P disebut pusat, sedangkan Jarak P ke lingkaran dinamakan jari-jari.

Lebih terperinci

Modul Matematika XI IPA Semester 1 Lingkaran

Modul Matematika XI IPA Semester 1 Lingkaran Modul Matematika XI IPA Semester 1 Lingkaran Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 015 016 SMA Santa Angela Jl. Merdeka No. 4 Bandung Lingkaran XI IPA Sem 1/014-015 4 Peta Konsep Persamaan Lingkaran

Lebih terperinci

PERSAMAAN GARIS SINGGUNG HIPERBOLA

PERSAMAAN GARIS SINGGUNG HIPERBOLA 1 KEGIATAN BELAJAR 15 PERSAMAAN GARIS SINGGUNG HIPERBOLA Setelah mempelajari kegiatan belajar 15 ini, mahasiswa diharapkan mampu: 1. Menemukan Persamaan Garis Singgung Hiperbola, Titik Singung dan Garis

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 132

Pembahasan Matematika IPA SNMPTN 2012 Kode 132 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,

Lebih terperinci

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT K-13 Kelas X matematika PEMINATAN SISTEM PERSAMAAN LINEAR KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum sistem

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

Bab 1. Irisan Kerucut

Bab 1. Irisan Kerucut Tahun Ajaran 01 01-013/Genap Bab 1. Irisan Kerucut e=0 e 1 A. Lingkaran Persamaan Lingkaran yang berpusat di titik (0,0) Pada segitiga siku-siku, siku, menurut dalil phytagoras berlaku : c =

Lebih terperinci

Kelas XI MIA Peminatan

Kelas XI MIA Peminatan Kelas Disusun : Markus Yuniarto, S.Si Tahun Pelajaran 017 018 Peta Konsep Glosarium Istilah Keterangan Lingkaran Himpunan titik-titik (pada bidang datar) yang memiliki jarak tetap terhadap suatu titik

Lebih terperinci

CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS

CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS 1. Diketahui titik-titik pada bidang koordinat Cartesius sebagai berikut. a. (10, 5) c. ( 7, 3) e. ( 4, 9) b. (2, 8) d. (6, 1) Tentukan absis dan ordinat

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

K13 Antiremed Kelas 11 Matematika Peminatan

K13 Antiremed Kelas 11 Matematika Peminatan K13 Antiremed Kelas 11 Matematika Peminatan Persiapan UAS 1 Doc. Name: K13AR11MATPMT01UAS Version : 015-11 halaman 1 01. Sukubanyak f() = 3 + + 3- dapat ditulis sebagai. f() = [( + ) - 3] + f() = [( -

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan

Lebih terperinci

PERSAMAAN GARIS SINGGUNG PARABOLA

PERSAMAAN GARIS SINGGUNG PARABOLA 1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

BEBERAPA FUNGSI KHUSUS

BEBERAPA FUNGSI KHUSUS BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp. 8400005,

Lebih terperinci

FUNGSI. Riri Irawati, M.Kom 3 sks

FUNGSI. Riri Irawati, M.Kom 3 sks FUNGSI Riri Irawati, M.Kom 3 sks Agenda 1. Sistem Koordinat Kartesius. Garis Lurus 3. Grafik persamaan Tujuan Agar mahasiswa dapat : Menggunakan sistem koordinat untuk menentukan titik-titik dan kurva-kurva.

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

IRISAN DUA LINGKARAN. Tujuan Pembelajaran. ). Segmen garis dari P ke Q disebut sebagai tali busur. Tali busur ini memotong tegak lurus garis C 1

IRISAN DUA LINGKARAN. Tujuan Pembelajaran. ). Segmen garis dari P ke Q disebut sebagai tali busur. Tali busur ini memotong tegak lurus garis C 1 K- matematika K e l a s I IRISAN DUA LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan persamaan dan panjang tali busur dua lingkaran

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

Bank Soal dan Pembahasan Persamaan Garis Lurus

Bank Soal dan Pembahasan Persamaan Garis Lurus Bank Soal dan Pembahasan Persamaan Garis Lurus 1. Garis m mempunyai persamaan y = -3x + 2. Garis tersebut memotong sumbu Y dititik... a. (0, -3) b. (0, 2) c. (0, 3) d. (0, -2) e. (0, 4) Pembahasan : Persamaan

Lebih terperinci

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2 Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDY IPA PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 010 1. Perhatikan

Lebih terperinci

PERSAMAAN BAKU PARABOLA DAN PERSAMAAN GARIS SINGGUNG PARABOLA MAKALAH

PERSAMAAN BAKU PARABOLA DAN PERSAMAAN GARIS SINGGUNG PARABOLA MAKALAH PERSAMAAN BAKU PARABOLA DAN PERSAMAAN GARIS SINGGUNG PARABOLA MAKALAH Dibuat untuk Memenuhi Tugas Mata Kuliah Geometri Analitik Ruang yang diampu oleh M. Khoridatul Huda, S. Pd., M. Si. Oleh: TMT 5E Kelompok

Lebih terperinci

King s Learning Be Smart Without Limits

King s Learning Be Smart Without Limits Nama Siswa : LEMBAR AKTIVITAS SISWA PERSAMAAN LINGKARAN Jadi dapat disimpulkan bahwa persamaan lingkaran dengan pusat O(0,0) dan jari-jari = r adalah Kelas : Persamaan lingkaran: Kompetensi Dasar (KURIKULUM

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 BB XI. LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) = 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengaaan Matematika Edisi Januari Pekan Ke-, 006 Nomor Soal: 1-0 1. Melalui (0, 0) buatlah garis-garis ang memotong lingkaran 0 pada dua titik. Carilah tempat kedudukan pertengahan ke dua titik.

Lebih terperinci

Pembelajaran Lingkaran SMA dengan Geometri Analitik

Pembelajaran Lingkaran SMA dengan Geometri Analitik PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajaran Lingkaran SMA dengan Geometri Analitik Penulis Drs. M. Danuri, M.Pd. Penilai Drs. Sukardjono, M.Pd. Editor Titik Sutanti, S.Pd.Si. Ilustrator

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

Modul Matematika XI MIA Semester 1 Lingkaran

Modul Matematika XI MIA Semester 1 Lingkaran Lingkaran XI MIA 017/018 Modul Matematika XI MIA Semester 1 Lingkaran Oleh : Markus Yuniarto, S.Si 1 Tahun Pelajaran 017/018 SMA Santa Angela Jl. Merdeka No. Bandung Lingkaran XI MIA 017/018 Peta Konsep

Lebih terperinci

SMAN Bone-Bone, Luwu Utara, Sul-Sel Dan bahwa setiap pengalaman mestilah dimasukkan ke dalam kehidupan, guna memperkaya kehidupan itu sendiri. Karena tiada kata akhir untuk belajar seperti juga tiada kata

Lebih terperinci

HOME PETA KONSEP MATERI CONTOH SOAL LATIHAN SOAL PROFIL STANDAR KOMPETENSI

HOME PETA KONSEP MATERI CONTOH SOAL LATIHAN SOAL PROFIL STANDAR KOMPETENSI HOME STANDAR KOMPETENSI PETA KONSEP MATERI CONTOH SOAL LATIHAN SOAL PROFIL STANDAR KOMPETENSI Menentukan persamaan lingkaran Menentukan persamaan garis singgung lingkaran Peta konsep lingkaran persamaan

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2005 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2005 Nomor Soal: 21-30 Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 005 Nomor Soal: -30. Garis 5y 60 memotong sumbu X dan sumbu Y masing-masing di titik A dan B, sehingga OAB membentuk segitiga siku-siku. Sebuah lingkaran

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

A. PERSAMAAN GARIS LURUS

A. PERSAMAAN GARIS LURUS A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam

Lebih terperinci

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D]

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D] UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. SBMPTN MADAS 4 Jika fungsi f x a x x c menyinggung sumbu x di x, maka a A. B. C. D. 5 E. 7 Solusi: [D] 6 f x a x x c f ' x

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2. Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

A. Persamaan-Persamaan Lingkaran

A. Persamaan-Persamaan Lingkaran Peta Konsep Jurnal Materi Umum Peta Konsep Lingkaran Daftar Hadir Materi A LINGKARAN 1 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Persamaan-Persamaan Lingkaran Kedudukan Titik dan

Lebih terperinci

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) = 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu itu

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

PERSAMAAN GARIS SINGGUNG ELLIPS

PERSAMAAN GARIS SINGGUNG ELLIPS 1 KEGIATAN BELAJAR 13 PERSAMAAN GARIS SINGGUNG ELLIPS Setelah mempelajari kegiatan belajar 13 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Elips, Titik Singung dan Garis Pada kegiatan

Lebih terperinci

http://meetabied.wordpress.com SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel Kebahagiaan tertinggi dalam kehidupan adalah kepastian bahwa Anda dicintai apa adanya, atau lebih tepatnya dicintai walaupun Anda seperti

Lebih terperinci

C. Ø D. S. Gambar di atas adalah kubus ABCD.EFGH dan salah satu jaring-jaringnya, maka titik E menempati nomor... A.(I) C.(III) B.

C. Ø D. S. Gambar di atas adalah kubus ABCD.EFGH dan salah satu jaring-jaringnya, maka titik E menempati nomor... A.(I) C.(III) B. 1. Amir, Adi, dan Budi selalu berbelanja ke Toko "Anda", Amir tiap 3 hari sekali. Adi tiap 4 hari sekali, Budi tiap 6 hari sekali. Bila ketiganya mulai berbelanja sama-sama pertama kali tanggal 20 Mei

Lebih terperinci

Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius

Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius Pengertian Persamaan Garis Lurus Sebelum memahami pengertian persamaan garis lurus, ada baiknya kamu mengingat kembali materi tentang koordinat Cartesius persamaan garis lurus selalu digambarkan dalam

Lebih terperinci

BAB 4 PERSAMAAN LINGKARAN

BAB 4 PERSAMAAN LINGKARAN STANDAR KOMPETENSI: BAB 4 PERSAMAAN LINGKARAN Menusun persamaan lingkaran dan garis singgungna. KOMPETENSI DASAR Menusun persamaan lingkaran ang memenuhi persaratan ang ditentukan Menentukan persamaan

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

Garis Singgung Lingkaran

Garis Singgung Lingkaran 1 KEGIATAN BELAJAR 8 Garis Singgung Lingkaran Setelah mempelajari kegiatan belajar 8 ini, mahasiswa diharapkan mampu menentukan persamaan garis singgung lingkaran dan kuasa lingkaran. Pernahkah Anda memperhatikan

Lebih terperinci

Solusi: [Jawaban E] Solusi: [Jawaban D]

Solusi: [Jawaban E] Solusi: [Jawaban D] SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 BB XI. LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu

Lebih terperinci

Solusi dan Penyelesaian. Persamaan Lingkaran. Solusi 6. (a) m = 8 (b) m = ±2 (c*) m = 1 (d*) m > 10. (b) di luar lingkaran (c) di dalam lingkaran

Solusi dan Penyelesaian. Persamaan Lingkaran. Solusi 6. (a) m = 8 (b) m = ±2 (c*) m = 1 (d*) m > 10. (b) di luar lingkaran (c) di dalam lingkaran Solusi dan Penyelesaian Persamaan Lingkaran # Ralat Soal --- tidak ada --- Bagian A Solusi Solusi 1. (a) x 2 + y 2 = 13 (b) x 2 + y 2 = 1 5 Solusi 2. (a) (x + 1) 2 + (y 2) 2 = 9 (b*) tidak ada persamaan

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Dalam ilmu ekonomi, kita selalu berhadapan dengan variabel-variabel ekonomi seperti harga, pendapatan nasional, tingkat bunga, dan lainlain. Hubungan kait-mengkait

Lebih terperinci

IRISAN KERUCUT: PARABOLA

IRISAN KERUCUT: PARABOLA K-3 matematika K e l a s XI IRISAN KERUCUT: ARABOLA Tujuan embelajaran Setelah memelajari materi ini, kamu diharakan memiliki kemamuan berikut.. Memahami definisi arabola dan unsur-unsurna.. Memahami konse

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1 PERSIAPAN TES SKL X, MATEMATIKA 1. Pangkat, Akar dan Logaritma Menentukan hasil operasi bentuk pangkat (1 6) Menentukan hasil operasi bentuk akar (7 11) Menentukan hasil operasi bentuk logarithma (12 15)

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1

GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1 GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT sofyan mahfudy-iain Mataram 1 Sasaran kuliah hari ini 1. Mahasiwa dapat menjelaskan konsep kemiringan garis/gradien 2. Mahasiswa dapat menentukan

Lebih terperinci

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat pada Bidang Datar Disusun dengan pasangan angka urut (ordered pair) (a,b) : a dan b berturut- turut adalah

Lebih terperinci

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah PERSAMAAN GARIS. SIMAK UI Matematika Dasar 9, 9 Diketahui adalah garis l yang dinyatakan oleh det( A) dimana A x y, persamaan garis yang sejajar l dan melalui titik (,4) adalah... A. x y 7 C. x y E. x

Lebih terperinci

F U N G S I A R U M H A N D I N I P R I M A N D A R I

F U N G S I A R U M H A N D I N I P R I M A N D A R I F U N G S I A R U M H A N D I N I P R I M A N D A R I DEFINISI Fungsi adalah suatu aturan yang memetakan setiap anggota himpunan A pada tepat satu anggota himpunan B. Dimana: Himpunan A disebut domain

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada f =, maka fungsi f naik + 1 pada selang (A), 0 (D), 1. Jika ( ) (B) 0, (E) (C),,. Persamaan garis singgung kurva lurus + = 0 adalah (A) + = 0 (B) + = 0 (C) + + = 0 (D) + = 0 (E) + + = 0 = ang sejajar dengasn

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XI MIA SEMESTER : (DUA) SMA Santa Angela Bandung Tahun Pelajaran 06-07 XI MIA Semester Tahun Pelajaran 06 07 PENGANTAR : TURUNAN FUNGSI Modul

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu.

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu. Silabus Jenjang : SMP dan MTs Mata Pelajaran : Matematika Kelas : VIII Semester : 1 Standar Kompetensi : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan garis lurus. Kompetensi Dasar Materi Ajar

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Matematika15.wordpress.com NAMA: KELAS: RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut

Lebih terperinci

Bola dan bidang Rata

Bola dan bidang Rata 1 KEGIATAN BELAJAR 9 Bola dan Bidang Rata Setelah mempelajari kegiatan belajar 9 ini, mahasiswa diharapkan mampu menentukan persamaan bidang singgung bola dan titik kuasa bola. Pernahkah Anda memperhatikan

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci