PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ"

Transkripsi

1 PENGGUNAAN TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

2 Pada materi sebelumnya telah dijelaskan bahwa Teorema Nilai Rata-Rata (TNR dierensial) memegang peranan penting dalam kalkulus. Pembuktian TNR membutuhkan Teorema ROLLE (kalkulus dierensial) yang selanjutnya akan dipakai pada Penggunaan Turunan, Kalkulus Integral dan Analisis Numerik.

3 Penggunaan Turunan yang akan dibahas adalah 1. Penggambaran graik ungsi 2. Penarian nilai optimum Pada materi tersebut dibutuhkan beberapa teorema dan beberapa konsep yang akan saling menunjang satu sama lain.

4 Pada materi turunan dijelaskan bahwa kemiringan garis singgung merupakan tasiran geometris dari TURUNAN ungsi, sehingga turunan dapat digunakan sebagai alat bantu menggambar graik ungsi. Bantuan tersebut dalam hal penentuan titik-titik garis singgung atau penentuan interval dimana graik terletak di atas garis singgung atau dibawahnya dst.

5 ILUSTRASI GRAFIK ekung kebawah maks lokal B, y 2 2 y ekung keatas H maks lokal turun D 4, y 4 G F E 5, y 5 min lokal 7, y 7 6, y 6 8, y 8 maks mutlak ekung kebawah titik belok min mutlak A naik 1, y 1 C 3, y 3 min lokal naik ekung keatas

6 ekstrim relati/ekstrim lokal (i) F punya nilai maksimum relati di jika ada selang terbuka I memuat dimana terdeinisi, sehingga () (), I a b a b (ii) F punya nilai minimum relati di jika ada selang terbuka I memuat dimana terdeinisi, sehingga () (), I

7 TEOREMA 1 Jika () ada untuk semua nilai dalam selang terbuka (a,b) dan jika mempunyai ekstrim relati di dimana a<<b maka () ada dan () =. Jika ungsi mempunyai nilai maksimum relati atau nilai minimum relati di, maka dikatakan mempunyai ekstrim relati di.

8 B U K T I (i) punya maksimum relati di. Jika () ada maka ( ) - () '() lim menurut deinisi (i) > sehingga jika ( )- () (ii) punya minimum relati di. Jika () ada maka ( ) - () '() lim menurut deinisi (ii) > sehingga jika ( )- ()

9 lim kasus (i) -Jika mendekati dari kanan > & jika () berdasar teorema tambahan limit jika limitnya ada maka () lim '() -Jika mendekati dari kiri < & jika () berdasar teorema tambahan limit jika limitnya ada maka () '() Karena () ada dan '() serta '() maka '()

10 -Jika mendekati dari kanan > & jika () berdasar teorema tambahan limit jika limitnya ada maka () lim '() -Jika mendekati dari kiri < & jika () berdasar teorema tambahan limit jika limitnya ada maka lim kasus (ii) () '() Karena () ada dan '() serta '() maka '()

11 Bila ungsi dideinisikan di suatu bilangan maka syarat perlu (bukan syarat ukup) agar mempunyai ekstrim relati di adalah ()= atau () tidak ada. Bila bilangan dalam daerah asal dan bila ()= atau () tidak ada maka dikatakan bilangan kritis dari.

12 TEOREMA 2 Andaikan dideinisikan pada suatu selang yang memuat, misalkan I. Jika () adalah titik ekstrim maka haruslah suatu titik kritis, yakni berupa salah satu : 1. Titik ujung dari selang 2. Titik stasioner dari [ ()=] 3. Titik singular dari [ () tidak ada]

13 B U K T I (1) () nilai maksimum relati pada I Andaikan bukan titik ujung dan bukan titik singular maka titik stasioner. Karena () maksimum dari deinisi (i), () (), I ()-(). (2) () nilai minimum relati pada I Andaikan bukan titik ujung dan bukan titik singular maka titik stasioner. Karena () minimum dari deinisi (ii), ()(), I ()-().

14 kasus (1) jika,maka () karena bukan titik singular '()ada, shg () karena bukan titik singular '()ada, shg,sehingga () '() lim '() - jika, maka,sehingga () '() lim '() Karena '()ada dan '() serta '() maka '()

15 . '() maka '() serta '() '()ada dan karena '() () ) ( lim '() ada,shg '() bukan titik singular maka karena () ) ( sehingga maka jika '() () ) ( lim '() ada,shg '() bukan titik singular maka karena () ) ( sehingga maka jika kasus (2)

16 ekstrim mutlak/ekstrim global 1. () dikatakan nilai maksimum mutlak ungsi jika di daerah asal dan () () untuk semua nilai dalam daerah asal. 2. () dikatakan nilai minimum mutlak ungsi jika di daerah asal dan () () untuk semua nilai dalam daerah asal.

17 Ekstrim mutlak suatu ungsi adalah nilai maksimum mutlak atau nilai minimum mutlak ungsi didaerah asal. Daerah asal disini bisa berupa suatu selang ataupun himpunan dst.

18 Misalkan ungsi yg dideinisikan pd [-4,3] ( ) ontoh Cari titik-titik kritisnya dan nilai ekstrim nya! Jawab titik-titik ujungnya adalah -4 dan 3 titik stasionernya =-3 dan =2 [jika ()= titik singularnya tidak ada. titik-titik kritisnya adalah -4, -3, 2 dan 3

19 Nilai () pada titik-titik kritisnya adalah = -4 (-4) = 18,67; = -3 (-3) = 21,5; = 2 (2) =,67; = 3 (3) = 3,5 Jadi pada selang [-4,3] punyai nilai maksimum mutlak 21,5 punya nilai minimum mutlak,67

20 ( )

21 TEOREMA 3 Bila ungsi kontinu pada selang tertutup [a,b] maka ungsi mempunyai nilai maksimum dan nilai minimum mutlak (nilai ekstrim) pada [a,b] (syarat ukup bukan syarat perlu) Bukti dapat dilihat pada buku teks kalkulus lanjut, pada kuliah ini teorema ini hanya akan dipakai tanpa dibuktikan.

22 nilai maksimum & nilai minimum ungsi kontinu pada selang tertutup I ujung Cari titik kritis ungsi pd I stasioner singular Hitung ungsi pd titik kritis Terbesar Maksimum Terkeil Minimum

23 ontoh 2 Cari nilai maksimum dan minimum dari ungsi berikut pada [-½,2] Jawab ungsi polinomial kontinu pada [-½,2] sehingga teorema-teorema nilai ekstrim dapat digunakan

24 I.Diari titik kritis - Titik ujung adalah -½ dan 2 - Titik stasioner ()=6 2 +6=-6(-1)= diperoleh = dan =1 - Titik singular tidak ada Jadi titik kritis -½,,1,2 II. (-½)=1, ()=, (1)=1, (2)=-4 - Nilai maksimum 1 pada =1 dan = -½ - Nilai minimum 4 pada =2

25 y

26 kemonotonan Andaikan terdeinisi pada suatu selang I, (i) naik pada I jika untuk setiap pasangan bilangan 1 dan 2 dalam I 1 2 ( 1 )( 2 ) (ii) turun pada I jika untuk setiap pasangan bilangan 1 dan 2 dalam I 1 2 ( 1 )( 2 ) (iii) monoton pada I jika naik atau turun pada suatu selang I.

27 TEOREMA 4 Misalkan kontinu pada selang [a,b], dan terdierensiasi pada (a,b): (i) Jika () untuk setiap pada (a,b) maka naik pada [a,b] (ii) Jika () untuk setiap pada (a,b) maka turun pada [a,b]

28 B U K T I i Misalkan 1, 2 [a,b] dgn 1 2. Karena kontinu pada [ 1, 2 ] dan terdierensial pada ( 1, 2 ), dari teorema TNR bilangan pada [ 1, 2 ] sehingga '() Dari & (), sehingga ( 2 ) ( 1 ) ( 1 )( 2 ) naik pada [a,b] ( ) ( )

29 B U K T I ii Misalkan 1, 2 [a,b] dgn 1 2. Karena kontinu pada [ 1, 2 ] dan terdierensial pada ( 1, 2 ), dari teorema TNR bilangan pada [ 1, 2 ] sehingga '() ( 2 ) ( 1 ) 2 Dari dan ()<, sehingga ( 2 ) ( 1 )< ( 1 )>( 2 ) turun pd [a,b] 1

30 ontoh 3 Diberikan ungsi () = Dengan menggunakan teorema kemonotonan, ari dimana ungsi yang diberikan naik dan dimana turun. Jawab ( ) '( )

31 ) (1, dan 4), naik pada ( Jadi 4) -1)( ( ) '( naik jika (i) 2 2 4,1) pada ( turun Jadi 4) -1)( ( ) '( turun jika (ii) 2 2

32 () = y

33 keekungan ungsi Andaikan terdeinisi pada (a,b) yang memuat sehingga (a,b), titik (,()) pada graik terletak 1. Diatas garis singgung pada graik dititik (,()) maka graik ungsi ekung keatas dititik (,()). 2. Dibawah garis singgung pada graik dititik (,()) maka graik ungsi ekung kebawah dititik (,()). ekung keatas (,()) (,()) ekung kebawah

34 TEOREMA 5 Misalkan ungsi terdierensial pada selang terbuka yang memuat, maka : (i) ()>, ekung keatas di (,()). (ii) ()<, ekung kebawah di (,()). y y ekung keatas ekung kebawah

35 , '() ) '( eoremalimit berdasar t '() ) '( lim "() karena '() ) '( lim "() B U K T I i

36 () Q(, ()) (, ()) T Tinjau garis singgung pada graik dititik (,()). Persamaan garisnya : y ( ) '()( )

37 Misalkan : bilangan pada selang terbuka sehingga. Q titik pada graik dengan titik (, ()). T titik perpotongan garis singgung dan garis sejajar sumbu y melalui Q. Untuk membuktikan ekung keatas dititik (,()) akan ditunjukkan TQ diselang terbuka tersebut. TQ ( ) [ () '()( )] TQ [ ( ) ()] '()( )

38 Menurut TNR terdapat bilangan d antara dan sehingga Jadi '(d) TQ ( ) () '(d)( ) ( ) () '()( '(d)( ) ) TQ ( )[ '(d) '()] karena d antara dan, dan d pada selang terbuka yang sama sehingga dengan mengambil = d. Diperoleh '(d) d '()

39 Diketahui TQ ( )[ '(d) '()] jika - d '(d) '() jika - d '(d) '() sehingga ( - )dan [ '(d)- '()] punya tanda yang sama TQ bilangan positip TQ Jadi ekungkeatas di (, ()).

40 , '() ) '( eoremalimit berdasar t '() ) '( lim "() karena '() ) '( lim "() B U K T I ii

41 Tinjau garis singgung pada graik dititik (,()). Persamaan garisnya : y ( ) '()( )

42 Misalkan : bilangan pada selang terbuka sehingga. Q titik pada graik dengan titik (, ()). T titik perpotongan garis singgung dan garis sejajar sumbu y melalui Q. Untuk membuktikan ekung kebawah dititik (,()) akan ditunjukkan TQ diselang terbuka tersebut. TQ ( ) [ () '()( )] TQ [ ( ) ()] '()( )

43 Menurut TNR terdapat bilangan d antara dan sehingga Jadi '(d) TQ ( ) () '(d)( ) ( ) () '()( '(d)( ) ) TQ ( )[ '(d) '()] karena d antara dan, dan d pada selang terbuka yang sama sehingga dengan mengambil = d. Diperoleh '(d) d '()

44 ()). (, di ekungkebawah Jadi bilangan negati punya tanda yang beda '()] '(d)- [ - )dan ( sehingga '() '(d) d - jika '() '(d) d - jika '()] '(d) )[ ( Diketahui TQ TQ TQ

45 titik belok Titik (,()) titik belok (balik) dari ungsi jika mempunyai garis singgung di titik (,()) dan terdapat selang buka yang memuat sehingga untuk diselang tersebut berlaku : (i) () < jika < dan () > jika >. (ii) () > jika < dan () < jika >.

46 TEOREMA 6 Bila ungsi terdierensial pada interval terbuka yang memuat dan (,()) suatu titik belok (balik) dari graik ungsi maka () ada dan () =.

47 B U K T I Misalkan g()= () g ()= (). Karena (,()) titik belok graik menurut keekungan ungsi maka () berganti tanda di akibatnya g () berganti tanda di. Berdasar teorema uji turunan pertama maka g mempunyai ekstrim relati di dan bilangan kritis dari g. Karena: g () = () dan () ada g () ada Sehingga berdasarkan teorema g () = sehingga () =.

48 ontoh 4 Diberikan ungsi ()=1/ Tentukan titik belok, graik ekung keatas dan ekung kebawah, sketsa graik dan segmen garis singgung pembelokan graik? Jawab () = 1/ () = = ( 3)( + 1) () = 2 2 = 2( 1)

49 () =( 3)( + 1) = titik kritis = 3 dan = -1 titik stasioner (-1) = 17/3 (maksimum relati) (3) = -5 (minimum relati) () = 2( 1) = 2( 1) > ( 1) > > 1 maka () > jika > 1 ekung keatas 2( 1) < ( 1) < < 1 maka () < jika < 1 ekung kebawah titik belok = 1 (1) = 1/3

50 () '( ) ''( ) Keterangan < naik, ekung kebawah 17 3 = -1-4 Maksimum relati -1< < turun, ekung kebawah 1 3 = 1-4 Titik belok 1< < turun, ekung keatas = Minimum relati > naik, ekung keatas

51

52 ontoh 5 Diberikan ungsi ()=(1 2) 3. Tentukan titik belok, titik dimana graik ekung keatas dan ekung kebawah, sketsa graik graik? Jawab () = (1 2) 3 () = -6(1 2) 2 () = 24(1 2)

53 ()= -6(1 2) 2 = titik kritis = ½ (titik stasioner) (½) = () = 24(1 2) = (1 2) > < ½ maka () > jika < ½ ekung keatas (1 2) < > ½ maka () < jika > ½ ekung kebawah titik belok = ½ (½) =.

54 () '( ) ''( ) Keterangan < ½ - + turun, ekung keatas = ½ Titik belok > ½ - - turun, ekung kebawah

TEOREMA UJI TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

TEOREMA UJI TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ TEOREMA UJI TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id UJI TURUNAN I-ekstrim relati Andaikan kontinu pada selang (a,b), yang memuat titik kritis c : (i)

Lebih terperinci

5. Aplikasi Turunan 1

5. Aplikasi Turunan 1 5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.

Lebih terperinci

BAB 5 PENGGUNAAN TURUNAN

BAB 5 PENGGUNAAN TURUNAN Diktat Kuliah TK Matematika BAB 5 PENGGUNAAN TURUNAN 5. Nilai Ekstrim Fungsi Nilai ekstrim fungsi adalah nilai yang berkaitan dengan maksimum atau minimum fungsi tersebut. Ada dua jenis nilai ekstrim,

Lebih terperinci

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN MENGGAMBAR GRAFIK FUNGSI A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi : Asimtot ungsi

Lebih terperinci

TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM

TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM Fungsi f dikatakan mencapai maksimum mutlak di c jika f c f x untuk setiap x I. Di sini f c dinamakan nilai maksimum mutlak. Dan c, f c dinamakan titik maksimum

Lebih terperinci

Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc

Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc Aplikasi Turunan Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc 1 Menggambar Grafik Fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi

Lebih terperinci

PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ PENGGUNAAN TURUNAN Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id ungsi genap & ungsi ganjil Fungsi yang berbentuk (-)=() disebut ungsi genap yang graiknya simetri

Lebih terperinci

TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61

TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61 TERAPAN TURUNAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 61 Topik Bahasan 1 Nilai Maksimum dan Minimum 2 Teorema Nilai Rataan (TNR) 3 Turunan

Lebih terperinci

5.1 Menggambar grafik fungsi

5.1 Menggambar grafik fungsi 5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

PENGGUNAAN TURUNAN. Maksimum dan Minimum. Definisi. Andaikan S, daerah asal f, memuat titik c. Kita katakan bahwa:

PENGGUNAAN TURUNAN. Maksimum dan Minimum. Definisi. Andaikan S, daerah asal f, memuat titik c. Kita katakan bahwa: PENGGUNAAN TURUNAN Maksimum dan Minimum Andaikan S, daerah asal f, memuat titik c. Kita katakan bahwa: 1. f c adalah nilai maksimum f pada S jika f c f x untuk semua x di S;. f c adalah nilai minimum f

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7 Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan

Lebih terperinci

(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I..

(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I.. 3. Aplikasi Turunan a. Nilai ekstrim Bagian ini dimulai dengan pengertian nilai ekstrim suatu fungsi yang mencakup nilai ekstrim maksimum dan nilai ekstrim minimum. Definisi 3. Diberikan fungsi f: I R,

Lebih terperinci

BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia

BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia BAB IV. PENGGUNAAN TURUNAN Departemen Teknik Kimia Universitas Indonesia BAB IV. PENGGUNAAN TURUNAN Maksimum dan Minimum Kemonotonan dan Kecekungan Maksimum dan Minimum Lokal Masalah Maksimum dan Minimum

Lebih terperinci

5. Aplikasi Turunan MA1114 KALKULUS I 1

5. Aplikasi Turunan MA1114 KALKULUS I 1 5. Aplikasi Turunan MA4 KALKULUS I 5. Menggambar grafik fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi C. Kemonotonan Fungsi D. Ekstrim Fungsi E. Kecekungan

Lebih terperinci

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (subtitusi parsial) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRAL TAK TENTU subtitusi parsial Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id DEFINISI Untuk ungsi yang terdeinisi pada selang terbuka I, dpt ditentukan ungsi

Lebih terperinci

KED PENGGUNAAN TURUNAN

KED PENGGUNAAN TURUNAN 6 PENGGUNAAN TURUNAN JUMLAH PERTEMUAN : 1 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Menerapkan konsep dasar turunan fungsi dalam menentukan karakteristik grafik fungsi dan menggambarkan grafik Materi : 6.1

Lebih terperinci

Menggambar Grafik Fungsi 0. Daerah asal 1. Simetri

Menggambar Grafik Fungsi 0. Daerah asal 1. Simetri APLIKASI TURUNAN Menggambar Grafik Fungsi 0. Daerah asal. Simetri Fungsi genap dan fungsi ganjil. Titik potong sumbu Sumbu-(y 0 dan sumbu-y 0. 3. Asimtot fungsi Definisi : Asimtot fungsi adalah garis lurus

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2 a home base to eellene Mata Kuliah : Kalkulus Kode : TSP 0 SKS : 3 SKS Limit Fungsi Pertemuan - a home base to eellene TIU : Mahasiswa dapat memahami it ungsi TIK : Mahasiswa mampu menyelesaikan it ungsi

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

Hendra Gunawan. 2 Oktober 2013

Hendra Gunawan. 2 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 2 Oktober 2013 Apa yang Telah Dipelajari pada Bab 2 2.1 Dua Masalah Satu Tema 2.2 Turunan 2.3 Aturan Turunan 2.4 Turunan Fungsi Trigonometri 2.5Aturan

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan

Lebih terperinci

SATUAN ACARA PERKULIAHAN PROGRAM KOMPETENSI GANDA DEPAG S1 KEDUA PROGRAM STUDI PENDIDIKAN MATEMATIKA

SATUAN ACARA PERKULIAHAN PROGRAM KOMPETENSI GANDA DEPAG S1 KEDUA PROGRAM STUDI PENDIDIKAN MATEMATIKA SATUAN ACARA PERKULIAHAN PROGRAM GANDA DEPAG S1 DUA PROGRAM STUDI PENDIDIKAN MATEMATIKA 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/SEMESTER : Kalkulus/2 3. PRASYARAT : -- 4. JENJANG / SKS

Lebih terperinci

Turunan Fungsi. h asalkan limit ini ada.

Turunan Fungsi. h asalkan limit ini ada. Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-... Matematika Dasar: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co.

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co. Penerapan Turunan A. PENDAHULUAN Turunan dapat digunakan untuk: 1) Perhitungan nilai limit dengan dalil l Hôpital 2) Menentukan persamaan fungsi kecepatan dan percepatan dari persamaan fungsi posisi )

Lebih terperinci

Rencana Pembelajaran

Rencana Pembelajaran Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-301 Matematika: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika dan

Lebih terperinci

TURUNAN FUNGSI TRIGONOMETRI

TURUNAN FUNGSI TRIGONOMETRI SOAL-JAWAB MATEMATIKA PEMINATAN TURUNAN FUNGSI TRIGONOMETRI Soal Jika f ( ) sin cos tan maka f ( 0) Ingatlah rumus-rumus turunan trigonometri: y sin y cos y cos y sin y tan y sec Karena maka f ( ) sin

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

Bab 2. Penggambaran Grafik Canggih

Bab 2. Penggambaran Grafik Canggih Bab Penggambaran Graik Canggih 1. Graik Fungsi Naik/Turun Syarat graik ungsi naik pada sub interval bila pada sub interval tersebut y' Syarat graik ungsi turun pada sub interval bila pada sub interval

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika diberikan suatu fungsi f dan daerah asal S seperti gambar di samping.

Lebih terperinci

CATATAN KULIAH Pertemuan VIII: Optimasi Tanpa Kendala dan Aplikasinya (Fungsi dengan Satu Variabel)

CATATAN KULIAH Pertemuan VIII: Optimasi Tanpa Kendala dan Aplikasinya (Fungsi dengan Satu Variabel) CATATAN KULIAH Pertemuan VIII: Optimasi Tanpa Kendala dan Aplikasinya (Fungsi dengan Satu Variabel) A. Nilai Optimum dan Nilai Ekstrem Ekuilibrium Tujuan vs. Ekuilibrium Non-Tujuan:. Ekuilibrium Non-Tujuan:

Lebih terperinci

Open Source. Not For Commercial Use

Open Source. Not For Commercial Use Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Limit dan Kekontinuan Misalkan z = f(, y) fungsi dua peubah dan (a, b) R 2. Seperti pada limit fungsi satu peubah, limit fungsi dua peubah bertujuan untuk mengamati

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN 1. PROGRAM STUDI : Pendidikan Matematika 2. MATA KULIAH/KODE/SEMESTER : Kalkulus I 3. PRASYARAT : -- 4. JENJANG / SKS : S1/3 SKS 5. LOMPOK MATA KULIAH : MPK / MPB / MKK/ MKB/ MBB

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4 a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 4 a home base to excellence TIU : Mahasiswa dapat memahami turunan fungsi dan aplikasinya TIK : Mahasiswa

Lebih terperinci

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY IV. TURUNAN Turunan di satu titik Pendahuluan dua masalah dalam satu tema KONSEP TURUNAN a. Garis Singgung Kemiringan tali busur

Lebih terperinci

Silabus. Sekolah : : 2. Menentukan Komposisi Dua Fungsi Dan Invers Suatu Fungsi. Kegiatan Pembelajaran. Kompetensi Dasar.

Silabus. Sekolah : : 2. Menentukan Komposisi Dua Fungsi Dan Invers Suatu Fungsi. Kegiatan Pembelajaran. Kompetensi Dasar. Silabus Sekolah : Mata Pelajaran : Matematika Kelas/Program : XI/ Ilmu Sosial Semester : II (Genap) Standar Kompetensi : 2. Menentukan Komposisi Dua Fungsi Dan Invers Suatu Fungsi : 35 x 45 Menit Kompetensi

Lebih terperinci

Kalkulus 1 MA1104 TURUNAN. Dr. I W. Sudarsana. Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako

Kalkulus 1 MA1104 TURUNAN. Dr. I W. Sudarsana. Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako Kalkulus MA04 TURUNAN Dr. I W. Sudarsana Program Studi Matematika Fakultas Matematika dan Ilmu Pengetauan Alam Universitas Tadulako 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam

Lebih terperinci

Turunan Fungsi dan Aplikasinya

Turunan Fungsi dan Aplikasinya Bab 8 Sumber: www.duniacyber.com Turunan Fungsi dan Aplikasinya Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, siat, dan aturan dalam perhitungan turunan ungsi; menggunakan turunan untuk

Lebih terperinci

Matematika Dasar NILAI EKSTRIM

Matematika Dasar NILAI EKSTRIM NILAI EKSTRIM Misal diberikan kurva f( ) dan titik ( a,b ) merupakan titik puncak ( titik maksimum atau minimum ). Maka garis singgung kurva di titik ( a,b ) akan sejajar sumbu X atau [ ] mempunyai gradien

Lebih terperinci

4. TURUNAN. MA1114 Kalkulus I 1

4. TURUNAN. MA1114 Kalkulus I 1 4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 6, 2007 Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan

Lebih terperinci

Definisi. Fungsi f(x) dikatakan monoton naik pada interval I jika untuk ( ) ( ) x < x f x > f x, x, x I. monoton turun pada interval I jika untuk

Definisi. Fungsi f(x) dikatakan monoton naik pada interval I jika untuk ( ) ( ) x < x f x > f x, x, x I. monoton turun pada interval I jika untuk Definisi. Fungsi f(x) dikatakan monoton naik pada interval I jika untuk x < x f x < f x, x, x I ( ) ( ) 1 1 1 monoton turun pada interval I jika untuk x < x f x > f x, x, x I. ( ) ( ) 1 1 1 Fungsi monoton

Lebih terperinci

Pertemuan 6 APLIKASI TURUNAN

Pertemuan 6 APLIKASI TURUNAN Kalkulus Pertemuan 6 APLIKASI TURUNAN Menggambar Grafik Fungsi : Gambarlah grafik dari fungsi berikut! 4 f ( ) Beberapa informasi yang diperlukan untuk mengambar grafik dari fungsi tersebut adalah sebagai

Lebih terperinci

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22

TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22 TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika

Lebih terperinci

AFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... 2 PEMBAHASAN... 19

AFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... 2 PEMBAHASAN... 19 DAFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... UTS Genap 009/00... UTS Ganjil 009/00... UTS Genap 008/009... 5 UTS Pendek 008/009... 6 UTS 007/008... 8 UTS 006/007... 9 UTS 005/006...

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1

UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1 Jurusan Matematika FMIPA IPB UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1 Sabtu, 4 Maret 003 Waktu : jam SETIAP NOMOR MEMPUNYAI BOBOT 10 1. Tentukan: (a) (b) x sin x x + 1 ; x (cos (x 1)) :. Diberikan fungsi

Lebih terperinci

BAB I SISTEM BILANGAN REAL

BAB I SISTEM BILANGAN REAL BAB I SISTEM BILANGAN REAL A. Sistem Bilangan Real Sistem bilangan real sangat erat kaitannya dengan kalkulus. Sebagian dari kalkulus berdasar pada sifat-sifat sistem bilangan real, sehingga sistem bilangan

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II 016/017 4 Maret 017 Kulia ang Lalu 1.1 Fungsi dua atau lebi peuba 1. Turunan Parsial 1.3 Limit dan Kekontinuan 1.4 Turunan ungsi dua peuba 1.5 Turunan berara

Lebih terperinci

Analisis Instruksional (AI) dan Silabus. MAT113 Kalkulus IA. Program Studi S-1 Matematika Departemen Matematika Institut Pertanian Bogor

Analisis Instruksional (AI) dan Silabus. MAT113 Kalkulus IA. Program Studi S-1 Matematika Departemen Matematika Institut Pertanian Bogor Analisis Instruksional (AI) dan Silabus MAT113 Kalkulus IA Program Studi S-1 Matematika Departemen Matematika Institut Pertanian Bogor ANALISIS INSTRUKSIONAL (AI) DAN SILABUS MATA KULIAH MAT113 KALKULUS

Lebih terperinci

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah :

4.1 Konsep Turunan. lim Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) a. Garis Singgung Kemiringan tali busur PQ adalah : 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendahuluan dua masalah dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adalah : m PQ c c Q -c Jika c, maka tali busur PQ akan berubah

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 999 Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT 0. Misalkan diketahui fungsi f dengan ; 0 f() = ; < 0 Gunakan de nisi turunan untuk memeriksa aakah f 0 (0)

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/ Alokasi Waktu: jam Pelajaran (3 Pertemuan) A. Standar Kompetensi Menggunakan konsep limit ungsi dan turunan

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

UJIAN PERTAMA KALKULUS/KALKULUS I SEMESTER PENDEK 2004 SABTU, 17 JULI (2 JAM)

UJIAN PERTAMA KALKULUS/KALKULUS I SEMESTER PENDEK 2004 SABTU, 17 JULI (2 JAM) Tentukan (jika ada) UJIAN PERTAMA KALKULUS/KALKULUS I SEMESTER PENDEK 2004 SABTU, 17 JULI (2 JAM) 1. Dengan menggunakan de nisi turunan, tentukan f 0 () bila f() = 2 + 4. 2. Tentukan: (a) d d (p + sin

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I

UJIAN TENGAH SEMESTER KALKULUS I UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)

Lebih terperinci

BAB III TURUNAN DALAM RUANG DIMENSI-n

BAB III TURUNAN DALAM RUANG DIMENSI-n BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

BAB II TEOREMA NILAI RATA-RATA (TNR)

BAB II TEOREMA NILAI RATA-RATA (TNR) BAB II TEOREMA NILAI RATA-RATA (TNR) Teorema nilai rata-rata menghubungkan nilai suatu fungsi dengan nilai derivatifnya (turunannya), dimana TNR merupakan salah satu bagian penting dalam kuliah analisis

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH: KALKULUS 1 ; 3 SKS OLEH: FIRDAUS-0716 TUJUAN INSTRUKSIONAL KHUSUS Sistem Bilangan Real

SATUAN ACARA PERKULIAHAN MATA KULIAH: KALKULUS 1 ; 3 SKS OLEH: FIRDAUS-0716 TUJUAN INSTRUKSIONAL KHUSUS Sistem Bilangan Real JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UPI BANDUNG SESI POKOK DAN SUB POKOK BAHASAN TUJUAN INSTRUKSIONAL UMUM SATUAN ACARA PERKULIAHAN MATA KULIAH: KALKULUS 1 ; 3 SKS OLEH: FIRDAUS-0716 TUJUAN INSTRUKSIONAL

Lebih terperinci

k adalah kurva pada bidang singgung dan dt garis singgungnya di suatu titik, maka F dt x y z

k adalah kurva pada bidang singgung dan dt garis singgungnya di suatu titik, maka F dt x y z Bidang Singgung, Aproksimasi Misal F(x,y,z)=k menentukan suatu permukaan dan misal F dapat dideferensialkan di P( x, y, z ) dari permukaan dengan F( x0, y0, z0) 0. sebuat titik 0 0 0 Bidang singgung permukaan

Lebih terperinci

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( )

Fungsi. Pengertian Fungsi. Pengertian Fungsi ( ) ( ) Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan/ mengkaitkan/ menugaskan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam

Lebih terperinci

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2 Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

Kalkulus 1 MA1104. Fungsi. Dr. I W. Sudarsana. Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako

Kalkulus 1 MA1104. Fungsi. Dr. I W. Sudarsana. Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako Kalkulus 1 MA1104 Fungsi Dr. I W. Sudarsana Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako Pengertian Fungsi Jika adalah ungsi dari A ke B kita menuliskan :

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

KALKULUS LANJUT. Turunan Fungsi Dua Variabel atau Lebih. Resmawan. Universitas Negeri Gorontalo. 27 Agustus 2018

KALKULUS LANJUT. Turunan Fungsi Dua Variabel atau Lebih. Resmawan. Universitas Negeri Gorontalo. 27 Agustus 2018 KALKULUS LANJUT Turunan Fungsi Dua Variabel atau Lebih Resmawan Universitas Negeri Gorontalo 27 Agustus 2018 Resmawan (Math UNG) Turunan Fungsi Dua Variabel atau Lebih 27 Agustus 2018 1 / 24 7. Maksimum

Lebih terperinci

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI Diktat Kuliah TK Matematika BAB LIMIT DAN KEKONTINUAN FUNGSI Limit Fungsi Pengantar Limit Tinjau fungsi yang didefinisikan oleh f ( ) Perhatikan bahwa fungsi ini tidak terdefinisi pada = karena memiliki

Lebih terperinci

10. TEOREMA NILAI RATA-RATA

10. TEOREMA NILAI RATA-RATA 10. TEOREMA NILAI RATA-RATA 10.1 Maksimum dan Minimum Lokal Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan bahwa f mencapai nilai maksimum lokal di c apabila f(x)

Lebih terperinci

Nilai Ekstrim. (Extreme Values)

Nilai Ekstrim. (Extreme Values) TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika terdapat suatu hasil pengukuran seperti pada Gambar 1, dimana pengukuran

Lebih terperinci

PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.

PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78. PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.CO MAT 4 materi78.co.nr Penerapan Turunan A. PENDAHULUAN

Lebih terperinci

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel.

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. Definisi. (i) Suatu fungsi f(x, y) memiliki minimum lokal pada titik

Lebih terperinci

Bagian 2 Turunan Parsial

Bagian 2 Turunan Parsial Bagian Turunan Parsial Bagian Turunan Parsial mempelajari bagaimana teknik dierensiasi diterapkan untuk ungsi dengan dua variabel atau lebih. Teknik dierensiasi ini tidak hana akan diterapkan untuk ungsi-ungsi

Lebih terperinci

PENGGUNAAN TURUNAN IKA ARFIANI, S.T.

PENGGUNAAN TURUNAN IKA ARFIANI, S.T. PENGGUNAAN TURUNAN IKA ARFIANI, S.T. MASALAH MAKSIMUM DAN MINIMUM Misalkan f fungsi dua variable maka f dikatakan mencapai maksimum relatif di titik (a,b) jika terdapat kitaran dari (a,b) demikian sehingga

Lebih terperinci

4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema )

4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba menjadi garis ggung

Lebih terperinci

SATUAN ACARA PEMBELAJARAN (SAP)

SATUAN ACARA PEMBELAJARAN (SAP) SATUAN ACARA PEMBELAJARAN (SAP) Mata Kuliah Kode Mata Kuliah SKS Durasi Pertemuan Pertemuan ke : Kalkulus : TSP-102 : 3 (tiga) : 150 menit : 1 (Satu) A. Kompetensi: a. Umum : Mahasiswa dapat menggunakan

Lebih terperinci

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks

Lebih terperinci

LIMIT & KONTINUITAS. Oleh. Nuryanto, ST., MT

LIMIT & KONTINUITAS. Oleh. Nuryanto, ST., MT LIMIT & KONTINUITAS Oleh Nuryanto, ST., MT 3.1 Limit Fungsi di Satu Titik Pengertian it secara intuisi Perhatikan ungsi ( ) 1 1 Fungsi diatas tidak terdeinisi di =1, karena di titik tersebut () berbentuk

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4.2 Sifat-Sifat Fungsi Kontinu Diberikan f dan g, keduanya terdefinisi pada himpunan A, kita definisikan f + g, f g, fg, f/g secara

Lebih terperinci

Hendra Gunawan. 4 April 2014

Hendra Gunawan. 4 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 4 April 2014 Kuliah yang Lalu 12.1 Fungsi dua (atau lebih) peubah 12.2 Turunan Parsial 12.3 Limit dan Kekontinuan 12.4 Turunan fungsi dua peubah

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

Chapter 3. Aplikasi Turunan

Chapter 3. Aplikasi Turunan Chapter 3 Aplikasi Turunan 1 3.1 Fungsi Naik dan Turun 2 Fungsi Naik dan Turun Misalkan f fungsi yang terdefinisi di a < x < b. Misalkan pula x 1 dan x 2 dua bilangan dalam selang tersebut. Maka f dikatakan

Lebih terperinci

Bahan Diskusi/Tugas Kelompok Topik: Turunan Fungsi

Bahan Diskusi/Tugas Kelompok Topik: Turunan Fungsi Jurusan Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia Bahan Diskusi/Tugas Kelompok Topik: Turunan Fungsi Definisi 1: Misalkan I R suatu interval, c I dan f : I R. Fungsi f disebut diferensiabel

Lebih terperinci

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz

Lebih terperinci

ANALISIS VARIABEL REAL 2

ANALISIS VARIABEL REAL 2 2012 ANALISIS VARIABEL REAL 2 www.alfirosyadi.wordpress.com UNIVERSITAS MUHAMMADIYAH MALANG 1/1/2012 IDENTITAS MAHASISWA NAMA : NIM : KELAS : KELOMPOK : 2 PENDAHULUAN Modul ini disusun untuk membantu mahasiswa

Lebih terperinci

Hendra Gunawan. 11 Oktober 2013

Hendra Gunawan. 11 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 11 Oktober 2013 Latihan (Kuliah yang Lalu) Dengan memperhatikan: daerah asal dan daerahhasilnya, titik titik potong dengan sumbu koordinat, asimtot

Lebih terperinci

SRI REDJEKI KALKULUS I

SRI REDJEKI KALKULUS I SRI REDJEKI KALKULUS I KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH ANALISIS REAL II (MT410) / 3 SKS

SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH ANALISIS REAL II (MT410) / 3 SKS SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH ANALISIS REAL II (MT410) / 3 SKS JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 2009 0 A. Identitas Mata

Lebih terperinci

BAB III LIMIT DAN KEKONTINUAN FUNGSI

BAB III LIMIT DAN KEKONTINUAN FUNGSI BAB III LIMIT DAN KEKONTINUAN FUNGSI Pembahasan pada bab ini dibagi dalam dua bagian. Pada bagian pertama dibahas it fungsi yang meliputi pengertian, sifat, dan penghitungan nilai it suatu fungsi. Pada

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : KALKULUS I (3 SKS) KODE : MT301

SATUAN ACARA PERKULIAHAN MATA KULIAH : KALKULUS I (3 SKS) KODE : MT301 PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA-UNIVERSITAS PENDIDIKAN INDONESIA MING- GU KE POKOK DAN SUB POKOK BAHASAN B.Fungsi Satu Peubah 1. Fungsi dan grafiknya 2. Operasi pada Fungsi 3. Fungsi Trigonometri

Lebih terperinci

Pengertian Fungsi. MA 1114 Kalkulus I 2

Pengertian Fungsi. MA 1114 Kalkulus I 2 Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat

Lebih terperinci

Matematika

Matematika Fungsi dan Kekontinuan D3 Analis Kimia FMIPA Universitas Islam Indonesia Ilustrasi 1 Nol mutlak, yaitu temperatur T C di mana semua aktivitas molekular berhenti, dapat didekati namun tidak pernah dapat

Lebih terperinci