Atau dengan menginverse S = S(U), menjadi U=U(S), kemudian menghitung:

Ukuran: px
Mulai penontonan dengan halaman:

Download "Atau dengan menginverse S = S(U), menjadi U=U(S), kemudian menghitung:"

Transkripsi

1 ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA UJIA TEGAH SEMESTER - FI-5 Mekanika Statistik SEMESTER/ Sem. - 6/7 Hari/Tgl. : Senin 3 Maret 7 Waktu :.-3. Sifat : Closed Book.A (i) Jika, S: entropi, T:suhu, U: energi dalam, P: tekanan, : volume dan jumlah partikel, tuliskan hukum I thermodinamika untuk sistem terbuka yang memungkinkan pertukaran partikel dengan potensial kimia μ. Gunakan variabel-variabel di atas. (bobot:3) (ii). Memakai fungsi energi bebas Helmhotz (A), turunkan ungkapan (derivative) untuk mendapatkan : tekanan, entropi dan potensial kimia. (bobot:3).b (i) Dalam ensembel mikrokanonik, jika Ω(, E) adalah banyaknya keadaan terkait dengan energi sistem E dan volume, tuliskan ungkapan untuk mendapatkan tekanan P. (bobot:3) (ii) Jika H(q,p) menyatakan hamiltonian sistem partikel dalam volum dan suhu T, tuliskan ungkapan bagi fungsi partisi Kanonik Q ()sistem tersebut. (bobot:3) (iii) Untuk ensembel kanonik tsb turunkan ungkapan cara mendapatkan energi rata-rata sistem (U=<H>) dari Q dan tekanan P dengan menggunakan hubungan energi bebas Helmhotz A dan Q (). (bobot:6) A. (i) TdS = du + Pd μd (ii) A = U TS da = du T ds S dt Substitusi dari (i), da = P d μd S dt Maka P = ( A ),T T = ( A S ) U,T B. (i) S = k ln Ω Tekanan dapat diperoleh melalui hukum I di (i) : P T = ( S ) U, μ = ( A ) U, Atau dengan menginverse S = S(U), menjadi U=U(S), kemudian menghitung: P = ( U ) S, (ii) Fungsi partisi kanonik Dengan β = kt (iii) Energi rata-rata sistem : Dengan Q β = h 3! Q (, T) = h 3! d3 qd 3 p exp( β H(q, p) U =< H > = d3 qd 3 p H(q, p)exp( β H(q, p) d 3 qd 3 p exp( β H(q, p) ( ) d3 qd 3 p H(q, p) exp( β H(q, p), maka (*) menjadi: U = Q β Q = ln Q β

2 Tekanan dapat diperoleh melalui fungsi energi bebas Helmhotz: A = kt ln Q maka P = ( A ) T. Misalkan gas ideal terdiri dari partikel tak bermassa dalam volume yang bergerak dengan kecepatan cahaya c (kasus relativistik ekstrem), sehingga hubungan antara energi dan momentumnya adalah E = pc, dengan E: energi dan p:momentum. Hamiltonian sistem dengan partikel diberikan oleh : H(p, q) = n= E n dengan E n = p n c. a. Turunkanlah fungsi partisi kanonik klasik dari sistem ini. (bobot:) b. Turunkanlah persamaan keadaannya (bobot:5) c. Hitunglah kapasitas kalornya pada volume constant. (bobot:5) a. Fungsi partisi kanoniknya : Dengan Maka : Q (, T) = h 3! d3 pd 3 q exp( βh) = Q (, T) = h 3! d3 p d 3 p exp( βp n c) n= Q (, T) = h 3! [ dp 4πp exp( βpc) ] Q (, T) = x e αx dx = α 3 h 3! d3 p exp( β p n c) h 3! ( 8π β 3 c 3) = T 3 h 3! (8πk3 c 3 ) n= = h 3! [ d3 p exp( βpc)] b. Fungsi energi bebas Helmhotz : A = kt ln Q = kt ln { T 3 h 3! (8πk3 c 3 ) } Persamaan keadaan diperoleh dari : P = ( A ) = + kt P = kt c. Energi rata-ratanya : U = β ln Q = β ln ( h 3! ( 8π β 3 c 3) ) = 3 β = 3kT Dibandingkan dengan kasus non relativistik (U = 3/ kt) maka nilainya kali lipat lebih besar. Kapasitas kalornya C v = U T = 3k 3. Sebuah sistem terdiri dari partikel bebas. Energi tiap partikel hanya bisa memiliki status keadaan sebutlah a dan b dengan masing-masing memiliki tingkat energi Ea = dan Eb=. Misalkan sebanyak n partikel tsb di status a dan n di status b serta total energi sistem U. Partikel tak terbedakan. a. Turunkan Ω(U, ) yaitu banyaknya seluruh keadaan yang mungkin terkait jika energi total sistem U dengan jumlah partikel. (point:5) b. Tuliskan ungkapan entropi sistem ini S = S(U, ) (point:5) c. Turunkan ungkapan bagi temperatur T = T(U,). (point:5)

3 d. Berdasarkan hasil (c), tunjukkan kondisi agar temperatur bernilai negatif! (point:5) a. Banyaknya keadaan Ω(U, ) adalah banyaknya kombinasi dari partikel dibagi menjadi dua macam yaitu n di status-a dan n=-n di status b. Maka U = n + ( n ) = ( n ) Sehingga n = U Banyak seluruh keadaan terkait ini adalah Ω(U, ) =! n! ( n )! =! ( U)!(U)! b. Entropi sistem! S(U, ) = k ln Ω(U, ) = k ln ( ( U)! U! ) Untuk besar dipergunakan aproksimasi Stirling: S(U, ) = ln! ln( U)! ln(u)! k S(U, ) ln ( U) ln( U) + ( U) (U) ln(u) + (U) k c. Temperatur Atau S(U, ) ln ( U) ln( U) (U) ln U k T = ( S ) = k{ln( U) ln(u)} U T = k {ln ( U ) } T(U, ) = k ln ( U ) d. Kondisi agar T < : yaitu jika < ( ) < atau < < atau > U > U U atau < U <. Ini berarti lebih banyak partikel berada di level E (upper level) dibandingkan yang di level! Hal ini juga dikenal sebagai population inversion. 4. Gas real terdiri dari partikel yang masing-masing bermassa m di dalam volum memiliki hamiltonian sistem sbb H = p i + U(r m ij ) i= Dengan p i : besar momentum partikel ke-i, dan U(r ij ) adalah fungsi potensial antara partikel ke-i dan ke-j. a. Anggap partikel tak terbedakan. Tuliskanlah fungsi partisi kanonik klasik untuk sistem ini, Q. Tunjukkanlah Q dapat dinyatakan sebagai : Q =! λ 3 Z Dengan Z adalah integral konfigurasi yang melibatkan Uij dan λ: panjang gelombang thermal (tuliskan definisi Z dan λ). b. Definisikan parameter kecil f ij = e βu ij, memakai definisi ini maka Z dapat dinyatakan sebagai ekspansi : Z = ( + α(t) + ) Dapatkan ungkapan bagi α(t) tersebut dinyatakan dalam f(r). i<j j

4 c. Turunkanlah ungkapan bagi a (T) berikut ini untuk kasus α kecil. P = nkt { + n a (T) + n a 3 (T) + } d. Jika potensial antara dua partikel diberikan oleh (potensial Sutherland): r < r U(r) = { ( r 6 r ) r r (i) Buatlah sketsa U(r) tsb. (ii) Hitunglah a (T) untuk kasus ini. (iii) Tunjukkanlah bahwa persamaan keadaannya bisa dinyatakan sbg: (P + a v) (v b) = kt Jadi turunkanlah ungkapan bagi a dan b dinyatakan dalam r. a. Fungsi partisi kanoniknya: Q = h 3! d3 q d 3 p exp( βh) Integral bagian momentum: Dengan Sehingga: x e αx dx = π 4 Defisikan : h = h 3! d3 p exp ( β m p i ) d 3 q exp ( β U ij ) d 3 p exp ( β m p i ) = [ dp 4πp exp ( β m p )] α 3/ Q = (πmkt)3/ h 3! i= i= dp 4πp exp ( β m p ) λ = dan Z πmkt = d 3 q exp( β U j= ij = 4π π 4 i<j j= ( m β ) 3/ = (πmkt) 3/ d 3 q exp ( β U ij ) = λ 3! Z i<j ) i<j j= b. Integral konfigurasinya : Z = d 3 q ( f ij ) i<j j = d 3 q { + f ij + f ij i<j j= i<j j= k<l l= f kl + } Z = + d 3 q.. d 3 q f ij + = + Z = + Z = + i<j j= ( ) d 3 q d 3 q f + = + ( ) ( ) 4π dr r f(r) + = [ + d 3 q.. d 3 q f +. ( ) d 3 rf(r) + ( ) π dr r f(r) + ]

5 Dengan : α(, T) = Z = ( + α(t) +. ) ( ) π dr r f(r) c. Fungsi energi bebas Helmhotz : A = kt ln Q = kt ln λ 3! Z = kt ln{ λ 3 ( + α)} = kt ln! λ 3 kt ln ( + α)! Untuk α kecil, ln( + α) α A kt ln λ 3 kt α(, T)! Selanjutnya dengan besar, ( ) P = ( A ) = kt + kt ( α,t ) + kt,t kt = nkt( + n a (T) + ) Dengan a (T) = π dr r f(r) d. (i) Sketsa U(r) U(r) π dr r f(r) r r d(ii). a (T) = π dr r f(r) r r f(r) = e βu(r) = { e β(r ) 6 r r > r r = π [ dr r a (T) = π [ 3 r 3 + dr r [e β(r r ) 6 ] + dr r [e β(r ) 6 r ] ] r r ] Untuk ( r ) kecil, eβ(r r )6 β ( r r Dan d(iii). r )6 sehingga: dr r [e β(r ) 6 r ] = β dr r r r 4 = β 3 r 3 a (T) = π ( 3 r 3 + β 3 r 3 ) = πr 3 ( β) 3 r 6

6 Trik : Sehingga: Atau: Jikalau: Maka : a = πr 3 3 dan b = πr 3 3 =a. P = nkt( + n a (T) = nkt ( + πn 3 r 3 [ β]) P + πr 3 3 n = nkt ( + πr 3 n 3 ) P + πr 3 3v = kt v ( + πr 3 3v ) v α = v ( α v ) v ( + α v ) P + πr 3 3v kt (v πr 3 3 ) (P + πr 3 3v ) (v πr 3 3 ) kt (P + a v) (v b) = kt &&&&&&&&& UTSMAR6 & &&&&&&&&&& Beberapa integral dan fungsi yg berguna e αx dx = π α x e αx dx = π α 3/ ln x! xlnx x, untuk x besar ln( + x) x x + x3. Untuk x kecil 3 d S d (r) = π r d :luas permukaan bola di ruang berdimensi d. Γ( d ) d (r) = π d r d :volume bola di ruang berdimensi d. Γ( d +)

FI-5002 Mekanika Statistik SEMESTER/ Sem /2017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan :

FI-5002 Mekanika Statistik SEMESTER/ Sem /2017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan : ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanika Statistik SEMESTER/ Sem. - 016/017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan :

Lebih terperinci

SOLUTION QUIZ 1 INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION QUIZ 1 INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA PR 1 - FI-52 Mekanika Statistik SEMESTER/ Sem. 2-216/217 Waktu : 9 menit (Closed Book) 1. Tinjau dipol identik yang

Lebih terperinci

Ensembel Kanonik Klasik

Ensembel Kanonik Klasik Ensembel Kanonik Klasik Menghitung Banyak Status Keadaan Sistem Misal ada dua sistem A dan B yang boleh bertukar energi (tapi tidak boleh tukar partikel). Misal status keadaan dan energi masing-masing

Lebih terperinci

Ensembel Grand Kanonik Klasik. Part-1

Ensembel Grand Kanonik Klasik. Part-1 Ensembel Grand Kanonik Klasik Part-1 Hubungan Thermodinamika Sistem Terbuka Model : Sistem terbuka bisa bertukar partikel dan energi dengan lingkungan. Hukum 1 Thermo: du = dq-pdv atau du= TdS-PdV Jika

Lebih terperinci

Chap. 8 Gas Bose Ideal

Chap. 8 Gas Bose Ideal Chap. 8 Gas Bose Ideal Model: Gas Foton Foton adalah Boson yg tunduk kepada distribusi BE. Model: Foton memiliki frekuensi ω, rest mass=0, spin 1ħ Energi E=ħω dan potensial kimia =0 Momentum p = ħ k, dengan

Lebih terperinci

2.7 Ensambel Makrokanonik

2.7 Ensambel Makrokanonik 22 BAB 2. TEORI ENSAMBEL 2.7 Ensambel Makrokanonik Dalam bagian ini kita akan menjabarkan rapat ruang fase untuk sistem terbuka, sistem yang berada dalam keadaan kesetimbangan termal dengan lingkungan

Lebih terperinci

Ensembel Grand Kanonik Klasik. Part-2

Ensembel Grand Kanonik Klasik. Part-2 Ensembel Grand Kanonik Klasik Part-2 Penerapan Ensembel Grand Kanonik Pada Gas Ideal Contoh: Gas ideal dalam volum V sejumlah N partikel dengan temperatur T. Partikel gas tidak saling berinteraksi, dan

Lebih terperinci

Ensembel Grand Kanonik Klasik. Part-2

Ensembel Grand Kanonik Klasik. Part-2 Ensembel Grand Kanonik Klasik Part-2 Penerapan Ensembel Grand Kanonik Pada Gas Ideal monoatomik Contoh: Gas ideal dalam volum V sejumlah N partikel dengan temperatur T. Partikel gas tidak saling berinteraksi,

Lebih terperinci

Chap 7. Gas Fermi Ideal

Chap 7. Gas Fermi Ideal Chap 7. Gas Fermi Ideal Gas Fermi pada Ground State Distribusi Fermi Dirac pada kondisi Ground State (T 0) memiliki perilaku: n p = e β ε p μ +1 1 ε p < μ 1 0 jika ε p > μ Hasil ini berarti: Seluruh level

Lebih terperinci

Chap 7a Aplikasi Distribusi. Fermi Dirac (part-1)

Chap 7a Aplikasi Distribusi. Fermi Dirac (part-1) Chap 7a Aplikasi Distribusi Fermi Dirac (part-1) Teori Bintang Katai Putih Apakah bintang Katai Putih Bintang yg warnanya pudar/pucat krn hanya memancarkan sedikit cahaya krn supply hidrogennya sudah tinggal

Lebih terperinci

Ensembel Grand Kanonik (Kuantum) Gas IDeal

Ensembel Grand Kanonik (Kuantum) Gas IDeal Ensembel Grand Kanonik (Kuantum) Gas IDeal Fungsi Partisi Grand Kanonik: Gas Ideal Seerti di Klasik fungsi artisi Grand Kanonik : ζ z, V, T = N=0 z N Q N (V, T) dengan Q N adalah fungsi artisi kanonik,

Lebih terperinci

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA FI-5002 Mekanika Statistik SEMESTER/ Sem. 2-2016/2017 QUIZ 2 Waktu : 120 menit (TUTUP BUKU) 1. Misalkan sebuah

Lebih terperinci

n i,n,v = N (1) i,n,v Kedua, untuk nilai termperatur tertentu, terdapat energi rerata n i,n,v E i = N < E i >= N U (2) V i,n,v n i,n,v N = N N (3)

n i,n,v = N (1) i,n,v Kedua, untuk nilai termperatur tertentu, terdapat energi rerata n i,n,v E i = N < E i >= N U (2) V i,n,v n i,n,v N = N N (3) HW week 4 solution. Setelah anda mempelajari empat jenis ensambel, cobalah untuk membuat ensambel baru yang terkait dengan suatu sistem, yang mana sistem dapat: bertukar energi dengan lingkungan dan berada

Lebih terperinci

2.11 Penghitungan Observabel Sebagai Rerata Ensambel

2.11 Penghitungan Observabel Sebagai Rerata Ensambel 2.11. PENGHITUNGAN OBSERVABEL SEBAGAI RERATA ENSAMBEL33 2.11 Penghitungan Observabel Sebagai Rerata Ensambel Dalam pendahuluan ke teori ensambel, kita mengasumsikan bahwa semua observabel dapat dituliskan

Lebih terperinci

Chap 6 Model-Gas Real dan Ekspansi Virial. 1. Ekspansi Virial 2. Gugus Mayer

Chap 6 Model-Gas Real dan Ekspansi Virial. 1. Ekspansi Virial 2. Gugus Mayer Chap 6 Model-Gas Real dan Ekspansi Viial. Ekspansi Viial. Gugus Maye Fungsi Patisi Kanonik Untuk Gas Dengan Inteaksi Lemah Misalkan tedapat inteaksi (potensial) anta patikel : u ij, sehingga Hamiltonian

Lebih terperinci

Perumusan Ensembel Mekanika Statistik Kuantum. Part-1

Perumusan Ensembel Mekanika Statistik Kuantum. Part-1 Perumusan Ensembel Mekanika Statistik Kuantum Part-1 Latar Belakang Untuk system yang distinguishable maka teori ensemble mekanika statistic klasik dapat dipergunakan. Tetapi bilamana system partikel bersifat

Lebih terperinci

IX. Aplikasi Mekanika Statistik

IX. Aplikasi Mekanika Statistik IX. Aplikasi Mekanika Statistik 9.1. Gas Ideal Monatomik Sebagai test case termodinamika statistik, kita coba terapkan untuk gas ideal monatomik. Mulai dengan fungsi partisi: ε j Z = g j exp j k B T Energi

Lebih terperinci

3. Termodinamika Statistik

3. Termodinamika Statistik 3. Termodinamika Statistik Pada bagian ini akan dibahas pemanfaatan postulat statistik yang berdasarkan sistem dalam keadaan keseimbangan untuk menjelaskan besaran makroskopis. Disiplin ini disebut Mekanika

Lebih terperinci

Teori Ensambel. Bab Rapat Ruang Fase

Teori Ensambel. Bab Rapat Ruang Fase Bab 2 Teori Ensambel 2. Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu

Lebih terperinci

peroleh. SEcara statistika entropi didefinisikan sebagai

peroleh. SEcara statistika entropi didefinisikan sebagai BAB 5 Entropi 5.1 Entropi (S) Pertama-tama mari kita definisikan sebuah besaran termodinamika yang bernama entropi secara statistika. Secara termodinamika, entropi telah didefinisikan melalui hubungan

Lebih terperinci

Pendahuluan. Bab Keadaan mikro dan keadaan makro. 1.2 Ruang Fase

Pendahuluan. Bab Keadaan mikro dan keadaan makro. 1.2 Ruang Fase Bab 1 Pendahuluan 1.1 Keadaan mikro dan keadaan makro Kuantitas makro keadaan fisis suatu sistem merupakan perwujudan rerata kuantitas mikro sistem tersebut. Sebagai contoh, tekanan dari suatu gas merupakan

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

VIII. Termodinamika Statistik

VIII. Termodinamika Statistik VIII. Termodinamika Statistik 8.1. Pendahuluan Mereka yang mengembangkan termodinamika statistik: - Boltzmann - Gibbs dan setelah kemauan teori kuantum: - Satyendra Bose - lbert Einstein - Enrico Fermi

Lebih terperinci

VI. Teori Kinetika Gas

VI. Teori Kinetika Gas VI. Teori Kinetika Gas 6.1. Pendahuluan dan Asumsi Dasar Subyek termodinamika berkaitan dengan kesimpulan yang dapat ditarik dari hukum-hukum eksperimen tertentu, dan memanfaatkan kesimpulan ini untuk

Lebih terperinci

Efek de Haas-Van Alphen

Efek de Haas-Van Alphen Efek de Haas-Van Alphen Diagmagnetisasi Landau pada suhu rendah menimbulkan efek osilasi dari susceptibilitas magnetik ketika medan magnet luar diturunkan, efek ini disebut efek de Haas-Van Alphen. Secara

Lebih terperinci

I. Beberapa Pengertian Dasar dan Konsep

I. Beberapa Pengertian Dasar dan Konsep BAB II ENERGETIKA I. Beberapa Pengertian Dasar dan Konsep Sistem : Bagian dari alam semesta yang menjadi pusat perhatian kita dengan batasbatas yang jelas Lingkungan : Bagian di luar sistem Antara sistem

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan:

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan: BAB II PEMBAHASAN A. Keadaa Makro da Keadaa Mikro Masalah utama yag dihadapi dalam mekaika statistik adalah meetuka sebara yag mugki dari partikel- partikel kedalam tigkat- tigkat eergi da keadaa- keadaa

Lebih terperinci

= = =

= = = = + + + = + + + = + +.. + + + + + + + + = + + + + ( ) + ( ) + + = + + + = + = 1,2,, = + + + + = + + + =, + + = 1,, ; = 1,, =, + = 1,, ; = 1,, = 0 0 0 0 0 0 0...... 0 0 0, =, + + + = 0 0 0 0 0 0 0 0 0....

Lebih terperinci

Pembimbing : Agus Purwanto, D.Sc.

Pembimbing : Agus Purwanto, D.Sc. Oleh : YOHANES DWI SAPUTRA 1105 100 051 Pembimbing : Agus Purwanto, D.Sc. JURUSAN FISIKA Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 010 PENDAHULUAN Latar

Lebih terperinci

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas Teori Relativitas Mirza Satriawan December 7, 2010 Fluida Ideal dalam Relativitas Khusus Quiz 1 Tuliskan perumusan kelestarian jumlah partikel dengan memakai vektor-4 fluks jumlah partikel. 2 Tuliskan

Lebih terperinci

Teori Ensambel. Bab Rapat Ruang Fase

Teori Ensambel. Bab Rapat Ruang Fase Bab 2 Teori Ensambel 2.1 Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu

Lebih terperinci

TERMODINAMIKA & FISIKA STATISTIK (Tes 3)

TERMODINAMIKA & FISIKA STATISTIK (Tes 3) OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM PERGURUAN TINGGI 2017 (ONMIPA-PT) Bidang Fisika: TERMODINAMIKA & FISIKA STATISTIK (Tes 3) 16 Mei 2017 Waktu: 120 menit KETENTUAN UMUM Petunjuk Pengerjaan

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanka Statstk SEMESTER/ Sem. - 06/07 PR#4 : Dstrbus bose Ensten dan nteraks kuat Kumpulkan d Selasa 9 Aprl

Lebih terperinci

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron Tes Formatif 1 Petunjuk: Jawablah semua soal di bawah ini pada lembar jawaban yang disediakan! =============================================================== 1. Sebuah elektron ditempatkan dalam sebuah

Lebih terperinci

TERMODINAMIKA MIRZA SATRIAWAN

TERMODINAMIKA MIRZA SATRIAWAN TERMODINAMIKA MIRZA SATRIAWAN March 20, 2013 Daftar Isi 1 SISTEM TERMODINAMIKA 2 1.1 Deskripsi Sistem Termodinamika............................. 2 1.2 Kesetimbangan Termodinamika..............................

Lebih terperinci

2. Deskripsi Statistik Sistem Partikel

2. Deskripsi Statistik Sistem Partikel . Deskripsi Statistik Sistem Partikel Formulasi statistik Interaksi antara sistem makroskopis.1. Formulasi Statistik Dalam menganalisis suatu sistem, kombinasikan: ide tentang statistik pengetahuan hukum-hukum

Lebih terperinci

Aliran Fluida. Konsep Dasar

Aliran Fluida. Konsep Dasar Aliran Fluida Aliran fluida dapat diaktegorikan:. Aliran laminar Aliran dengan fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar

Lebih terperinci

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1 FI-1101: Kuliah 13 TEORI KINETIK GAS Teori Kinetik Gas Suhu Mutlak Hukum Boyle-Gay y Lussac Gas Ideal Teori Kinetik & Interpretasi molekular dari Suhu FI-1101: Teori Kinetik Gas, Hal 1 FISIKA TERMAL Cabang

Lebih terperinci

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Kuliah PD Pertemuan ke-1: Motivasi: 1. Mekanika A. Hukum Newton ke-: Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Misalkan F: gaya, m: massa benda, a: percepatan,

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

16 Mei 2017 Waktu: 120 menit

16 Mei 2017 Waktu: 120 menit OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM PERGURUAN TINGGI 2017 (ONMIPA-PT) Tingkat Nasional Bidang Fisika: FISIKA MODERN & MEKANIKA KUANTUM (Tes 4) 16 Mei 2017 Waktu: 120 menit Petunjuk

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

TEKNOLOGI AEROSOL Gerak Brown & Difusi. Prof. Heru Setyawan, Jurusan Teknik Kimia FTI - ITS

TEKNOLOGI AEROSOL Gerak Brown & Difusi. Prof. Heru Setyawan, Jurusan Teknik Kimia FTI - ITS TEKNOLOGI AEROSOL Gerak Brown & Difusi Prof. Heru Setyawan, Jurusan Teknik Kimia FTI - ITS Koefisien Difusi Gerak Brown: gerak berkelak-kelok tak beraturan partikel aerosol dalam udara diam yang disebabkan

Lebih terperinci

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30)

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30) 5 η = η di z = η (9) z x x z x x Dalam (Grosen 99) kondisi kinematik (9) kondisi dinamik () dapat dinyatakan dalam sistem Hamiltonian : δ H t = () δη δ H ηt = δ Dengan mengenalkan variabel baru u = x maka

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

Fisika Panas 2 SKS. Adhi Harmoko S

Fisika Panas 2 SKS. Adhi Harmoko S Fisika Panas SKS Adhi Harmoko S Balon dicelupkan ke Nitrogen Cair Balon dicelupkan ke Nitrogen Cair Bagaimana fenomena ini dapat diterangkan? Apa yang terjadi dengan molekul-molekul gas di dalam balon?

Lebih terperinci

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

Analisis Regresi Nonlinear (I)

Analisis Regresi Nonlinear (I) 9 Oktober 2013 Topik Inferensi dalam Regresi Nonlinear Contoh Kasus Regresi linear berganda secara umum sesuai untuk kebanyakan kasus. Namun, banyak kasus peubah respons dan bebas berhubungan melalui fungsi

Lebih terperinci

BAB 10 SPONTANITAS DAN KESETIMBANGAN Kondisi Umum untuk Kesetimbangan dan untuk Spontanitas

BAB 10 SPONTANITAS DAN KESETIMBANGAN Kondisi Umum untuk Kesetimbangan dan untuk Spontanitas BAB 10 SPONTANITAS DAN KESETIMBANGAN 10.1 Kondisi Umum untuk Kesetimbangan dan untuk Spontanitas Fokus kita sekarang adalah untuk mencari tahu karakteristik apa yang dapat membedakan transformasi irreversibel

Lebih terperinci

SOAL PEMBINAAN JARAK JAUH IPhO 2017 Pekan V Dosen Penguji : Dr. Rinto Anugraha

SOAL PEMBINAAN JARAK JAUH IPhO 2017 Pekan V Dosen Penguji : Dr. Rinto Anugraha SOAL PEMBINAAN JARAK JAUH IPhO 2017 Pekan V Dosen Penguji : Dr. Rinto Anugraha 1. Pulsar, Bintang Netron, Bintang dan Keruntuhan Gravitasi 1A. Pulsar Pulsar atau Pulsating Radio Sources pertama kali diamati

Lebih terperinci

Teori kendali. Oleh: Ari suparwanto

Teori kendali. Oleh: Ari suparwanto Teori kendali Oleh: Ari suparwanto Minggu Ke-1 Permasalahan oleh : Ari Suparwanto Permasalahan Diberikan sistem dan sinyal referensi. Masalah kendali adalah menentukan sinyal kendali sehingga output sistem

Lebih terperinci

BAB 5. PROPERTIS FISIK BUNYI

BAB 5. PROPERTIS FISIK BUNYI BAB 5. PROPERTIS FISIK BUNYI Definisi: Suara - gangguan yang menyebar melalui bahan elastis pada kecepatan yang merupakan karakteristik dari bahan tersebut. Suara biasanya disebabkan oleh radiasi dari

Lebih terperinci

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom Hukum Termodinamika 1 Adhi Harmoko S,M.Kom Apa yang dapat anda banyangkan dengan peristiwa ini Balon dicelupkan ke dalam nitrogen cair Sistem & Lingkungan Sistem: sebuah atau sekumpulan obyek yang ditinjau

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

FUNGSI KHUSUS DALAM BENTUK INTEGRAL

FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI FAKTORIAL Definisi n e d n! Buktikan bahwa :!! e d e d e ( ) Terbukti FUNGSI Gamma Definisi ( ) p p e d ; p > Hubungan fungsi Gamma dengan fungsi Faktorial (

Lebih terperinci

BAB II DASAR TEORI Pendahuluan. 2.2 Turbin [6,7,]

BAB II DASAR TEORI Pendahuluan. 2.2 Turbin [6,7,] BAB II DASAR TEORI 2.1. Pendahuluan Bab ini membahas tentang teori yang digunakan sebagai dasar simulasi serta analisis. Bagian pertama dimulasi dengan teori tentang turbin uap aksial tipe impuls dan reaksi

Lebih terperinci

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi JURNAL FISIKA DAN APLIKASINYA VOLUME 6, NOMOR 1 JANUARI,010 Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi Yohanes Dwi Saputra dan Agus Purwanto Laboratorium Fisika

Lebih terperinci

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan (Pendahuluan) 1D untuk syarat batas Robin 2D dengan syarat batas Dirichlet Fisika Komputasi Jurusan Fisika Universitas Padjadjaran http://phys.unpad.ac.id/jurusan/staff/dharmawan email : dharmawan@phys.unpad.ac.id

Lebih terperinci

BAB I BESARAN DAN SISTEM SATUAN

BAB I BESARAN DAN SISTEM SATUAN 1.1. Pendahuluan BAB I BESARAN DAN SISTEM SATUAN Fisika berasal dari bahasa Yunani yang berarti Alam. Karena itu Fisika merupakan suatu ilmu pengetahuan dasar yang mempelajari gejala-gejala alam dan interaksinya

Lebih terperinci

Rencana Pembelajaran Kegiatan Mingguan (RPKPM).

Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Pertemuan ke Capaian Pembelajaran Topik (pokok, subpokok bahasan, alokasi waktu) Teks Presentasi Media Ajar Gambar Audio/Video Soal-tugas Web Metode Evaluasi

Lebih terperinci

Analisis Distribusi Produktivitas Tenaga Kerja Sektor Industri Pengolahan Indonesia Menggunakan Temperatur Negatif Distribusi Boltzmann

Analisis Distribusi Produktivitas Tenaga Kerja Sektor Industri Pengolahan Indonesia Menggunakan Temperatur Negatif Distribusi Boltzmann Analisis Distribusi Produktivitas Tenaga Kerja Sektor Industri Pengolahan Indonesia Menggunakan Temperatur Negatif Distribusi Boltzmann Qoniti Amalia 1,a) dan Acep Purqon 1,b) 1 Laboratorium Sistem Kompleks,

Lebih terperinci

MOMENTUM - TUMBUKAN FISIKA DASAR (TEKNIK SISPIL) (+GRAVITASI) Mirza Satriawan. menu

MOMENTUM - TUMBUKAN FISIKA DASAR (TEKNIK SISPIL) (+GRAVITASI) Mirza Satriawan. menu FISIKA DASAR (TEKNIK SISPIL) 1/34 MOMENTUM - TUMBUKAN (+GRAVITASI) Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Sistem Partikel Dalam pembahasan-pembahasan

Lebih terperinci

HUKUM TERMODINAMIKA II Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles

HUKUM TERMODINAMIKA II Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles HUKUM ERMODINAMIKA II hermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles Hukum ermodinamika II Sistem a. Suatu benda pada temperatur tinggi, yang mengalami sentuhan

Lebih terperinci

Termodinamika Usaha Luar Energi Dalam

Termodinamika Usaha Luar Energi Dalam Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

FISIKA DASAR II DOSEN PENGASUH MATA KULIAH : Dr. Yanti Yulianti, S.Si, M.Si Akhmad Dzakwan, S.Si

FISIKA DASAR II DOSEN PENGASUH MATA KULIAH : Dr. Yanti Yulianti, S.Si, M.Si Akhmad Dzakwan, S.Si GBPP DAN SAP FISIKA DASAR II DOSEN PENGASUH MATA KULIAH : Dr. Yanti Yulianti, S.Si, M.Si Akhmad Dzakwan, S.Si JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG GARIS-GARIS

Lebih terperinci

4. Hukum-hukum Termodinamika dan Proses

4. Hukum-hukum Termodinamika dan Proses 4. Hukum-hukum Termodinamika dan Proses - Kesetimbangan termal -Kerja - Hukum Termodinamika I -- Kapasitas Panas Gas Ideal - Hukum Termodinamika II dan konsep Entropi - Relasi Termodinamika 4.1. Kesetimbangan

Lebih terperinci

FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA

FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA HUKUM PERTAMA TERMODINAMIKA Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan

Lebih terperinci

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER DAN BAHAN AJAR FISIKA HAYATI. Oleh : Tri Sudyastuti

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER DAN BAHAN AJAR FISIKA HAYATI. Oleh : Tri Sudyastuti RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER DAN BAHAN AJAR FISIKA HAYATI Oleh : Tri Sudyastuti Jurusan Teknik Pertanian Fakultas Teknologi Pertanian Universitas Gadjah Mada 2003/2004 RPKPS RENCANA

Lebih terperinci

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. ILMU FISIKA Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. DEFINISI ILMU FISIKA? Ilmu Fisika dalam Bahasa Yunani: (physikos), yang artinya alamiah, atau (physis), Alam

Lebih terperinci

HUKUM I TERMODINAMIKA

HUKUM I TERMODINAMIKA HUKUM I TERMODINAMIKA Diajukan sebagai salah satu syarat untuk memenuhi Tugas Mata Kuliah Termodinamika Kelompok 3 Di susun oleh : Novita Dwi Andayani 21030113060071 Bagaskara Denny 21030113060082 Nuswa

Lebih terperinci

Teori Relativitas Khusus

Teori Relativitas Khusus Teori Relativitas Khusus Agus Suroso (agussuroso@fi.itb.ac.id) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung agussuroso102.wordpress.com 18 April 2017 Agus Suroso (FTETI-ITB)

Lebih terperinci

RELIABILITAS & FUNGSI HAZARD. 05/09/2012 MK. Analisis Reliabilitas Darmanto, S.Si.

RELIABILITAS & FUNGSI HAZARD. 05/09/2012 MK. Analisis Reliabilitas Darmanto, S.Si. RELIABILITAS & FUNGSI HAZARD 1 RELIABILITAS Peluang bahwa suatu produk atau jasa akan beroperasi dengan baik dalam jangka waktu tertentu (durabilitas) pada kondisi pengoperasian sesuai dengan desain (suhu,

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

Bab 3. Model Matematika dan Pembahasan. 3.1 Masalah Perpindahan Panas

Bab 3. Model Matematika dan Pembahasan. 3.1 Masalah Perpindahan Panas Bab 3 Model Matematika dan Pembahasan 3.1 Masalah Perpindahan Panas Beberapa model studi telah dikembangkan mengenai perolehan minyak dengan injeksi fluida panas atau uap. Tidak sedikit asumsi yang digunakan

Lebih terperinci

TERMODINAMIKA HUKUM KE-0 HUKUM KE-1 HUKUM KE-2 NK /9

TERMODINAMIKA HUKUM KE-0 HUKUM KE-1 HUKUM KE-2 NK /9 ERMODINAMIKA HUKUM KE-0 HUKUM KE- HUKUM KE-2 NK..04 /9 SISEM DAN LINGKUNGAN Sistem adalah sekumpulan benda yang menjadi perhatian Lingkungan adalah segala sesuatu di luar sistem Keadaan suatu sistem dapat

Lebih terperinci

MATERI PELATIHAN GURU FISIKA SMA/MA

MATERI PELATIHAN GURU FISIKA SMA/MA MATERI PELATIHAN GURU FISIKA SMA/MA a. Judul: Pembelajaran Gerak Rotasi dan Keseimbangan Benda Tegar Berbasis Koop untuk Meningkatkan Pemahaman Konsep Siswa SMA b. Kompetensi Dasar Setelah berpartisipasi

Lebih terperinci

Teori Atom Mekanika Klasik

Teori Atom Mekanika Klasik Teori Atom Mekanika Klasik -Thomson -Rutherford -Bohr -Bohr-Rutherford -Bohr-Sommerfeld Kelemahan Teori Atom Bohr: -Bohr hanya dapat menjelaskan spektrum gas hidrogen, tidak dapat menjelaskan spektrum

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

Teori Relativitas Khusus

Teori Relativitas Khusus Teori Relativitas Khusus Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung agussuroso102.wordpress.com, agussuroso@fi.itb.ac.id 19 April 2017 Daftar Isi 1 Relativitas,

Lebih terperinci

Teori Kinetik Zat. 1. Gas mudah berubah bentuk dan volumenya. 2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil.

Teori Kinetik Zat. 1. Gas mudah berubah bentuk dan volumenya. 2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil. Teori Kinetik Zat Teori Kinetik Zat Teori kinetik zat membicarakan sifat zat dipandang dari sudut momentum. Peninjauan teori ini bukan pada kelakuan sebuah partikel, tetapi diutamakan pada sifat zat secara

Lebih terperinci

Pembahasan Simak UI Fisika 2012

Pembahasan Simak UI Fisika 2012 Pembahasan Simak UI Fisika 202 PETUNJUK UMUM. Sebelum mengerjakan ujian, periksalah terlebih dulu, jumlah soal dan nomor halaman yang terdapat pada naskah soal. Naskah soal ini terdiri dari 0 halaman.

Lebih terperinci

Soal Ujian 2 Persamaan Differensial Parsial

Soal Ujian 2 Persamaan Differensial Parsial Soal Uian 2 Persamaan Differensial Parsial M. Jamhuri April 15, 2013 1 Buktikan bahwa ux,t) = πˆ 1 x e θ2 dθ merupakan solusi persamaan difusi u t = u xx untuk setiap x R,t > 0. Untuk x 0 tunukkan bahwa

Lebih terperinci

4. Sebaran Peluang Kontinyu

4. Sebaran Peluang Kontinyu 4. Sebaran Peluang Kontinyu EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 1. Sebaran normal/gauss. Luas daerah di bawah kurva normal 3. Hampiran normal untuk sebaran binomial 4. Sebaran

Lebih terperinci

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda 1 Benda tegar Pada pembahasan mengenai kinematika, dinamika, usaha dan energi, hingga momentum linear, benda-benda yang bergerak selalu kita pandang sebagai benda titik. Benda yang berbentuk kotak misalnya,

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Fisika

K13 Revisi Antiremed Kelas 11 Fisika K13 Revisi Antiremed Kelas 11 Fisika Persiapan PTS Semester Genap Halaman 1 01. Jika P adalah tekanan, V adalah volume, n adalah jumlah molekul, R adalah konstanta gas umum, dan T adalah suhu mutlak. Persamaan

Lebih terperinci

Diktat TERMODINAMIKA DASAR

Diktat TERMODINAMIKA DASAR Bab III HUKUM TERMODINAMIKA I : SISTEM TERTUTUP 3. PENDAHULUAN Hukum termodinamika pertama menyatakan bahwa energi tidak dapat diciptakan dan dimusnahkan tetapi hanya dapat diubah dari satu bentuk ke bentuk

Lebih terperinci

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN PENGUKURAN SUHU Untuk mempelajari KONSEP SUHU dan hukum ke-nol termodinamika, Kita perlu mendefinisikan pengertian sistem,

Lebih terperinci

LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 12-6)

LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 12-6) LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 1-6) Oleh : Warsono, M.Si Supahar, M.Si Supardi, M.Si FAKULTAS MATEMATIKA

Lebih terperinci

INSTRUMEN PENELITIAN LPTK TAHUN 2003

INSTRUMEN PENELITIAN LPTK TAHUN 2003 INSTRUMEN PENELITIAN LPTK TAHUN 003 JUDUL PENELITIAN : PENGEMBANGAN MODEL ANALISIS STRUKTUR PENGETAHUAN MATERI TERMODINAMIKA DALAM RANGKA MENUNJANG PROSES PEMBELAJARAN PROBLEM SOLVING BERBASIS KONSEP (PSBK)

Lebih terperinci

BAB 1 Energi : Pengertian, Konsep, dan Satuan

BAB 1 Energi : Pengertian, Konsep, dan Satuan BAB Energi : Pengertian, Konsep, dan Satuan. Pengenalan Hal-hal yang berkaitan dengan neraca energi : Adiabatis, isothermal, isobarik, dan isokorik merupakan proses yang digunakan dalam menentukan suatu

Lebih terperinci

BAB II DASAR TEORI. A. Kemagnetan Bahan. Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet. seperti terlihat pada Gambar 2.

BAB II DASAR TEORI. A. Kemagnetan Bahan. Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet. seperti terlihat pada Gambar 2. BAB II DASAR TEORI A. Kemagnetan Bahan Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet seperti terlihat pada Gambar 2. Gambar 2: Diagram pengelompokan bahan magnet (Stancil &

Lebih terperinci

BAB 2. Landasan Teori. 2.1 Persamaan Dasar

BAB 2. Landasan Teori. 2.1 Persamaan Dasar BAB 2 Landasan Teori Objek yang diamati pada permasalahan ini adalah lapisan fluida tipis, yaitu akan dilihat perubahan ketebalan dari lapisan fluida tipis tersebut dengan adanya penambahan surfaktan ke

Lebih terperinci

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17, 3. ORBIT KEPLERIAN AS 2201 Mekanika Benda Langit 1 3.1 PENDAHULUAN Mekanika Newton pada mulanya dimanfaatkan untuk menentukan gerak orbit benda dalam Tatasurya. Misalkan Matahari bermassa M pada titik

Lebih terperinci

Pembahasan Soal SNMPTN 2012 SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal SNMPTN 2012 SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SNMPTN 2012 SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Fisika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair

Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair Kelompok 3 Nahida Rani (1106013555) Nuri Liswanti Pertiwi (1106015421) Rizqi Pandu Sudarmawan (0906557045) Sony Ikhwanuddin (1106052902) Sulaeman

Lebih terperinci

UJIAN NASIONAL TAHUN FISIKA

UJIAN NASIONAL TAHUN FISIKA UJIAN NASIONAL TAHUN 007 008 FISIKA 1. Wati mengukur panjang batang logam dengan menggunakan mikrometer skrup seperti gambar di bawah. Panjang batang logam tersebut adalah... A. 17,50 mm B. 17,05 mm C.

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci