Soal Ujian 2 Persamaan Differensial Parsial

Ukuran: px
Mulai penontonan dengan halaman:

Download "Soal Ujian 2 Persamaan Differensial Parsial"

Transkripsi

1 Soal Uian 2 Persamaan Differensial Parsial M. Jamhuri April 15, 2013

2 1 Buktikan bahwa ux,t) = πˆ 1 x e θ2 dθ merupakan solusi persamaan difusi u t = u xx untuk setiap x R,t > 0. Untuk x 0 tunukkan bahwa { lim ux,t) = 1, x > 0 t 0 + 0, x < 0 Jawaban: misalkan φθ) = e θ2, maka t ux, t) = 1 πˆ x t xt ux, t) = 1 πˆ x θ e θ dθ = 1 πˆ x = xt [e θ2] θ t = x 4t t φθ) dθ ˆ x 2x dθ = 4t θe θ2 dθ πt 2x ux, t) = t 4t πt x 2 = xe 4t 4t πt [ ] 1 2 x 2 e θ 1)

3 Next x ux, t) = 1 πˆ x θ [e θ2] θ x dθ = 1 πˆ x 2θe θ2 1 ) 2 dθ t Dari 1) dan 2) maka x ux, t) = 1 πtˆ x θe θ2 dθ = 1 πt [ 1 2 e θ2] x x2 e 4t = 2 πt 2 x 2 ux, t) = e 4t x2 x 2 πt = 1 2 2x x 2 ) πt 4t e 4t x 2 = xe 4t 4t πt u t u xx = 0. 2)

4 2 Buktikan prinsip perbandingan bagi persamaan difusi: ika u dan v masing-masing adalah solusi persamaan difusi pada domain Ω = {x,t) 0 < x < L,t > 0}, dan ika u v untuk t = 0, x = 0,x = L, maka tunukkan bahwa u v pada Ω = Ω Ω Jawaban: Definisikan w x, t) = v x, t) ux, t), Definisikan uga {x, t) : t = 0 atau x = 0 atau x = l} dan D {x, t) : t > 0, x 0, l)} Maka dengan menggunakan informasi yang diberikan pada soal Dari prinsip maksimum diperoleh sup w x, t) 0. x,t) sup w x, t) 0. x,t) D Maka ux, t) v x, t) untuk 0 x l, t > 0

5 L 3 1 Bagaimanakah besaran energy E t) = 0 2 u2 dx berubah terhadap waktu ika ux,t) memenuhi u t = u xx, 0 < x < L, t > 0 u x 0, t) = u0, t), u x L,t) = ul, t) Jawaban: Perubahan energi diatas terhadap waktu adalah ˆ de L ) 1 = dt t 0 2 u2 dx = 1 ˆ L 2 0 t u2 dx = 1 ˆ L u tu + uu t) dx 2 0 ˆ L = uu tdx 0 ˆ de L dt = uu xxdx 0

6 Misalkan dan v = u dv = u xdx dw = u xxdx ˆ w = u xxdx Now = u x ˆ ˆ L L uu xxdx = uu x L 0 u 2 x dx 0 0 ˆ L = [ul, t) u x L, t) u0, t) u x 0, t)] u 2 x dx 0 karena u x 0, t) = u0, t) dan u x L, t) = ul, t) = 0, maka dan sehingga ul, t) u x L, t) = ul, t) ul, t) u0, t) u x 0, t) = u0, t) u0, t) ˆ de dt = [ul, t)]2 [u0, t)] 2 u 2 x dx Karena ruas kanan dari persamaan diatas de ), maka perubahan energi terhadap dt waktu selalu turun.

7 4 Bahas kestabilan metoda BTCS implisit) bagi persamaan u t = u xx. Jawaban: Metode BTCS untuk persamaan difusi di atas adalah u n t = un un x 2 substitusi u n = ρ n e ia pada persamaan diatas diperoleh ρ n+1 e ia ρ n e ia = t x 2 ρ n+1 e ia+1) 2ρ n+1 e ia + ρ n+1 e ia 1)) bagi kedua sisi persamaan diatas dengan ρ n e ia diperoleh ρ 1 = S ρe ia 2ρ + ρe ia), S = t x 2 ρ 1 = S e ia 2 + e ia) ρ ρ 1 = S 2 cos a 2)ρ ρ 2S cos a 1)ρ = 1 [1 2S cos a 1)]ρ = 1 ρ = = 1 1 2S cos a 1) S 1 cos a)

8 Karena 0 1 cosa 2, maka 1 + 2S 1 cos a) 1 dan S 1 cos a) 1, S sehingga metode BTCS untuk persamaan difusi diatas stabil tanpa syarat.

9 5 Bahas kekonsistenan persamaan beda u n 1 = 2S u +1 n bagi persamaan difusi u t = ku xx. Jawaban: Dengan menggunakan deret taylor ) ) + u n 1 + u 1 n, S = k t x 2 u n±1 = u n ± t u t n t2 u tt n ± 1 6 t3 u ttt n t4 u tttt n ± u n ±1 = u n ± x u x n x2 u xx n ± 1 6 x3 u xxx n x4 u xxxx n ± maka u n 1 = 2 t u t n t3 u ttt n + + u n 1 = 2u n t2 u tt n t4 u tttt n + u n +1 + un 1 = 2u n x2 u xx n x4 u xxxx n + dan [ ] [ u n +1 + un 1 ] + u n 1 = [ x 2 u xx n + 1 ] x4 u xxxx n + [ t 2 u tt n + 1 ] t4 u tttt n +

10 Jika deret Taylor diatas kita substitusikan pada persamaan beda-nya diperoleh 2 t ut n + 1 t 3 uttt n ) + = 2k t [ 6 x 2 x 2 uxx n + 1 x 4 uxxxx n ) + t 2 utt n + 1 t 4 utttt n )] + t ut n ut n ut n + 1 t 3 uttt n + = t 2 uttt n + = t 2 uttt n 6 k t x 2 x 2 + = k uxx n k ut n k uxx n ) Perhatikan bahwa ut = kuxx, maka + [ x 2 uxx n + 1 x 4 uxxxx n ) + t 2 utt n + 1 t 4 utttt n )] + [ x 2 uxx n + 1 x 4 uxxxx n ) + t 2 utt n + 1 t 4 utttt n )] x 2 uxxxx n ) + k t2 x 2 u tt n k x2 utt = ) u = k 2 u t t t x 2 = k 2 ) u x 2 t uxxxx n = k 2 x 2 t2 x 2 u tt n + 1 t 4 x 2 u tttt n t 2 uttt n + = 0 3) 6 k 2 u x 2 = k 2 4 u x 4 = k2 uxxxx dan k t 2 x 2 u tt n k x2 uxxxx n = = k 3 t 2 x 2 uxxxx n k x2 uxxxx n k3 t 2 x 2 k x 2 uxxxx n k 2 1 ) uxxxx n

11 6 Tentukan solusinya dengan metoda separasi variabel: { u t = ku xx, 0 < x < L,t > 0 u x 0,t) = 0, ul, t) = 0 selanutnya tentukan lim t ux,t), dan interpretasikan hasilnya. Jawaban: Misalkan ux, t) = X x) T t), substitusi pada persamaan difusi diatas menghasilkan XT T kt = kx T = X X = λ Persamaan diatas dapat dituliskan secara terpisah sebagai dengan syarat batas dan X + λx = 0 4) X 0) = 0, dan X L) = 0 T + λkt = 0 5)

12 Solusi umum untuk ODE 4) dan 5) diatas adalah X x) = A cosβx + B sinβx dengan λ = β 2. dan dt dt ˆ 1 T dt = λkt ˆ = λk dt log T = λk [t + C 1] log T = λkt λkc 1 log T = λkt + C 2 explog T) = exp λkt + C 2) T t) = Ce λkt Now, syarat batas pada x = 0, memberikan X x) = Aβ sinβx + Bβ cosβx Aβ sin 0 + Bβ cos 0 = 0 Bβ = 0 kita tidak ingin β = 0, maka B = 0, sehingga X x) = A cosβx

13 Syarat batas pada x = L, memberikan dan A cosβl = 0 cos βl = 0 βl = arccos 0 βl = n + 1 ) π, n = 0, 1, 2,... 2 n + 1 β = 2) π L ) n π 2 λ n = L 2 [ ] n + 1 X n x) = cos 2) πx, T n t) = C ne n+ 1 ) 2π 2 kt 2 L 2 L solusi untuk u adalah u n x, t) = C ne n+ 1 2π 2 kt [ ] 2) n + 1 L 2 cos 2) πx L

14 Karena kombinasi linier dari sulosi persamaan difusi uga solusi, maka ux, t) = C ne n+ 2 1 ) 2π 2 kt [ n + 1 L 2 cos 2) πx L n=0 [ ] lim ux, t) = n + 1 C n 0 cos 2) πx = 0 t L n=0 Bayangkan penyebaran tinta pada suatu daerah 0 x L), Karena ada tinta yang keluar dari daerah lewat x = L yang direpresentasikan oleh ul, t) = 0, maka konsentrasi tinta pada waktu yang sangat lama ) akan sama dengan nol. ]

15 7 Penerapan metode BTCS implisit) dengan x = 1 pada { u t = ku xx, 0 < x < 5, t > 0 u x 0, t) = 0, u5,t) = d akan menghasilkan sistem persamaan linier berbentuk Au = b Tentukan matriks A dan vektor b. Cermati ukuran A dan b. Jawaban: Metode BTCS untuk persamaan difusi diatas adalah u n t [ = k u n = S +1 2un [ +1 2un ] ], S = k t S S) un+1 S +1 = un 6)

16 untuk 0 < x < 5, dan sehingga 6) dapat ditulis ulang sebagai 1 = 0 = 1 S S) S +1 = u n dan permasalahan diatas dapat digambarkan sebagai berikut: 2S S +1 = u n 7) n = 1 : d n = 0 : d = 0 = 1 = 2 = 3 = 4 = 5 n 0 0 2Su0 1 Su1 1 = u Su 1 Su1 2 = u Su 1 2 Su1 3 = u Su 1 3 Su1 4 = u Su4 1 Su1 5 = u4 0 Matriks A-nya adalah 2S S u S S S S 0 u 1 A = S S u S u 1 = u 1 4 u 0 0 u 0 1 u 0 2 u 0 3 u d

Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi

Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi Persamaan Difusi Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M Jamhuri UIN Malang April 7, 2013 Penurunan Persamaan Difusi Misalkan u(x, t) menyatakan konsentrasi dari zat pada posisi

Lebih terperinci

Metode Beda Hingga pada Persamaan Gelombang

Metode Beda Hingga pada Persamaan Gelombang Metode Beda Hingga pada Persamaan Gelombang Tulisan ini diadaptasi dari buku PDP yang disusun oleh Dr. Sri Redeki Pudaprasetia M. Jamhuri UIN Malang July 2, 2013 M. Jamhuri UIN Malang Metode Beda Hingga

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 4: Separasi Variabel untuk Persamaan Panas Orde Satu Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Persamaan

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

METODE PEMISAH VARIABEL: PERSAMAAN LAPLACE

METODE PEMISAH VARIABEL: PERSAMAAN LAPLACE METODE PEMISAH VARIABEL: PERSAMAAN LAPLACE M. Jamhuri April 1, 2013 Salah satu metode untuk menyelesaikan persamaan Laplace adalah dengan metode pemisahan variabel. Misalkan diberikan persamaan laplace

Lebih terperinci

Simulasi Persamaan Gelombang

Simulasi Persamaan Gelombang December 15, 213 Soal 1 Perhatikan persamaan gelombang u tt = u xx, untuk x 1, dengan syarat batas u x (,t) = dan u (1,t) =, dan syarat awal u t (x,) = dan { 2 u (x,) = 16 (x 3) 2 (x 7) 2, 3 x 7, untuk

Lebih terperinci

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t

Lebih terperinci

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL Dalam menyelesaikan persamaan pada tugas akhir ini terdapat beberapa teori dasar yang digunakan. Oleh karena itu, pada

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 5: Separasi Variabel untuk Persamaan Panas Orde Satu - Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Review

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

4. Deret Fourier pada Interval Sebarang dan Aplikasi

4. Deret Fourier pada Interval Sebarang dan Aplikasi 4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret trigonometri tersebut

Lebih terperinci

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma Fungsi Gamma Pengantar Matematika Teknik Kimia Muthia Elma Fungsi Gamma Defenisi Merupakan salah satu fungsi khusus yang biasanya disajikan dalam pembahasan kalkulus tingkat lanjut Dalam aplikasinya fungsi

Lebih terperinci

Kunci Jawaban Quis 1 (Bab 1,2 dan 3) tipe 1

Kunci Jawaban Quis 1 (Bab 1,2 dan 3) tipe 1 Kunci Jawaban Quis (Bab,2 dan 3) tipe. Tentukan representasi deret Taylor dari f(x) = ln( + x) di sekitar a =. Tuliskan sampai turunan ke 5. Kemudian estimasilah ln(.2) dengan menggunakan deret Taylor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN LINIER NON HOMOGEN Contoh PD linier non homogen orde 2. Bentuk umum persamaan PD Linier Non Homogen Orde 2, adalah sebagai berikut : y + f(x) y + g(x) y = r(x) ( 2-35) Solusi umum y(x) akan didapatkan

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Tim Ilmu Komputasi Week 6: Separasi Variabel untuk Persamaan Gelombang Orde dua dan Koesien Fourier Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id

Lebih terperinci

1 Pendahuluan pdp 2. 4 Persamaan Difusi Prinsip Maksimum Fungsi Green Metoda separasi variable, recall...

1 Pendahuluan pdp 2. 4 Persamaan Difusi Prinsip Maksimum Fungsi Green Metoda separasi variable, recall... Contents 1 Pendahuluan pdp 2 2 Persamaan Type Hiperbolik 6 2.1 Persamaan Transport.............................. 6 2.1.1 Metoda karakteristik........................... 7 2.1.2 Koefisien tak konstan..........................

Lebih terperinci

BAB PDB Linier Order Satu

BAB PDB Linier Order Satu BAB 1 Konsep Dasar 1 BAB PDB Linier Order Satu BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua Untuk memulai pembahasan ini terlebih dahulu akan ditinjau beberapa teorema tentang konsep umum

Lebih terperinci

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema,

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa hal yang menjadi landasan dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

4. Deret Fourier pada Interval Sebarang dan Aplikasi

4. Deret Fourier pada Interval Sebarang dan Aplikasi 8 Hendra Gunawan 4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu

Lebih terperinci

log2 PEMBAHASAN SOAL TRY OUT = = 2 1 = 27 8 = 19 Jawaban : C = = = 2( 15 10) Jawaban : B . 4. log3 1 2 (1) .

log2 PEMBAHASAN SOAL TRY OUT = = 2 1 = 27 8 = 19 Jawaban : C = = = 2( 15 10) Jawaban : B . 4. log3 1 2 (1) . TRY OUT AKBAR UN SMA 08 PEMBAHASAN SOAL TRY OUT. 9 6 4 8 7 Jawaban : C 4 4 = = = 7 8 4 = 9. 5 + = 0 5 = 0 5 = 5 0 = ( 5 0). log5 5 log8 log6 4 log log4 = log5 5 4 log log log6 log4 =. log5 5. 4. log log

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi II.1 Gambaran Umum Model Pada bab ini, kita akan merumuskan model matematika dari masalah ketidakstabilan lapisan fluida tipis yang bergerak

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD hanisantosa@gmail.com 2 BAB 2 MEDAN LISTRIK DAN HUKUM GAUSS Pendahuluan, Distribusi Muatan Kontinu, Mencari Medan Listrik Menggunakan Integral,

Lebih terperinci

SISTEM HUKUM KEKEKALAN LINEAR

SISTEM HUKUM KEKEKALAN LINEAR Bab 3 SISTEM HUKUM KEKEKALAN LINEAR 3.1 Sistem Linear Hiperbolik Sistem linear dalam pengertian Tugas Akhir ini adalah suatu sistem hukum kekekalan dengan bentuk umum, t u + d A α (t) xα u = 0 (3.1.1)

Lebih terperinci

BAB V SISTEM PERSAMAAN DIFERENSIAL

BAB V SISTEM PERSAMAAN DIFERENSIAL BAB V SISTEM PERSAMAAN DIFERENSIAL Kompetensi Mahasiswa dapat 1. Membangun sistem persamaan diferensial dari beberapa persamaan yang bergantung pada satu variabel bebas yang sama. 2. Menentukan selesaian

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)

Lebih terperinci

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi JURNAL FOURIER Oktober 2013, Vol. 2, No. 2, 113-123 ISSN 2252-763X Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi Annisa Eki Mulyati dan Sugiyanto Program Studi Matematika Fakultas

Lebih terperinci

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17, 3. ORBIT KEPLERIAN AS 2201 Mekanika Benda Langit 1 3.1 PENDAHULUAN Mekanika Newton pada mulanya dimanfaatkan untuk menentukan gerak orbit benda dalam Tatasurya. Misalkan Matahari bermassa M pada titik

Lebih terperinci

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO REFERENSI E-BOOK REFERENSI ONLINE SOS Mathematics http://www.sosmath.com/diffeq/diffeq.html Wolfram Research Math World http://mathworld.wolfram.com/ordinarydifferentialequation.h

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

BAB 2 PERSAMAAN DIFFERENSIAL BIASA

BAB 2 PERSAMAAN DIFFERENSIAL BIASA BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan

Lebih terperinci

B21 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( )

B21 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( ) B Pak Anang http://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M8-0/0 Mata Pelajaran Jenjang Program Studi Hari/Tanggal Jam MATA PELAJARAN : MATEMATIKA : SMA/MA : IPA WAKTU

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

13. Aplikasi Transformasi Fourier

13. Aplikasi Transformasi Fourier 13. plikasi ransformasi Fourier Misal adalah operator linear pada fungsi yang terdefinisi pada R dengan sifat: jika [f(x] = g(x, maka [f(x + s] = g(x + s untuk setiap s R. Maka, fungsi f(x = e ax (a C

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Keterdiferensialan Statistika FMIPA Universitas Islam Indonesia Fungsi y = f (x) terdiferensialkan di titik x 0 jika f (x 0 + h) f (x 0 ) lim = f (x 0 ) h 0 ( h ) f (x0 + h) f (x 0 ) lim f (x 0 ) = 0 h

Lebih terperinci

TE Sistem Linier. Sistem Waktu Kontinu

TE Sistem Linier. Sistem Waktu Kontinu TE 226 - Sistem Linier Jimmy Hasugian Electrical Engineering - Maranatha Christian University jimlecture@gmail.com - http://wp.me/p4scve-g Sistem Waktu Kontinu Jimmy Hasugian (MCU) Sistem Waktu Kontinu

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

Fourier Analysis & Its Applications in PDEs - Part I

Fourier Analysis & Its Applications in PDEs - Part I Fourier Analysis & Its Applications in PDEs Hendra Gunawan http://personal.fmipa.itb.ac.id/hgunawan/ Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA WIDE 2010 5-6 August

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA

SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA SIMAK UI KEMAMPUAN DASAR Matematika Dasar Universitas Indonesia 0 FReS-TA SIMAK UI - Matematika Dasar 45 Kode Naskah Soal: PETUNJUK KHUSUS PETUNJUK

Lebih terperinci

: D C adalah fungsi kompleks dengan domain riil

: D C adalah fungsi kompleks dengan domain riil BAB 4. INTEGRAL OMPLES 4. Integral Garis ompleks Misalkan ( : D adalah fungsi kompleks dengan domain riil b D [ a, b], maka integral (, dimana ( x( + iy( dapat dengan mudah a b dihitung, yaitu a i contoh

Lebih terperinci

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5.

16. INTEGRAL. A. Integral Tak Tentu 1. dx = x + c 2. a dx = a dx = ax + c. 3. x n dx = + c. cos ax + c. 4. sin ax dx = 1 a. 5. 6. INTEGRAL A. Integral Tak Tentu. dx = x + c. a dx = a dx = ax + c. x n dx = n+ x n+ + c. sin ax dx = a cos ax + c 5. cos ax dx = a sin ax + c 6. sec ax dx = a tan ax + c 7. [ f(x) ± g(x) ] dx = f(x)

Lebih terperinci

Fisika Umum Suyoso Kinematika MEKANIKA

Fisika Umum Suyoso Kinematika MEKANIKA GERAK LURUS MEKANIKA A. Kecepatan rata-rata dan Kecepatan sesaat Suatu benda dikatan bergerak lurus jika lintasan gerak benda itu merupakan garis lurus. Perhatikan gambar di bawah: Δx A B O x x t t v v

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

FUNGSI KHUSUS DALAM BENTUK INTEGRAL

FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI FAKTORIAL Definisi n e d n! Buktikan bahwa :!! e d e d e ( ) Terbukti FUNGSI Gamma Definisi ( ) p p e d ; p > Hubungan fungsi Gamma dengan fungsi Faktorial (

Lebih terperinci

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan

Persamaan Poisson. Fisika Komputasi. Irwan Ary Dharmawan (Pendahuluan) 1D untuk syarat batas Robin 2D dengan syarat batas Dirichlet Fisika Komputasi Jurusan Fisika Universitas Padjadjaran http://phys.unpad.ac.id/jurusan/staff/dharmawan email : dharmawan@phys.unpad.ac.id

Lebih terperinci

Bab III Respon Sinusoidal

Bab III Respon Sinusoidal Bab III Respon Sinusoidal Sinyal sinusiodal digunakan sebagai input ui terhadap kinera sistem, misal untuk mengetahui respon frekuensi, distorsi harmonik dan distorsi intermodulasi... Bentuk Amplituda-fasa

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

Pembahasan Simak UI Fisika 2012

Pembahasan Simak UI Fisika 2012 Pembahasan Simak UI Fisika 202 PETUNJUK UMUM. Sebelum mengerjakan ujian, periksalah terlebih dulu, jumlah soal dan nomor halaman yang terdapat pada naskah soal. Naskah soal ini terdiri dari 0 halaman.

Lebih terperinci

Bab 3 Fungsi Elementer

Bab 3 Fungsi Elementer Bab 3 Fungsi Elementer Bab 3 ini direncanakan akan disampaikan dalam 3 kali pertemuan, dengan perincian sebagai berikut: (1) Pertemuan I: Fungsi Eksponensial dan sifat-sifatnya, Fungsi Trigonometri. ()

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Definisi KINEMATIKA Kinematika adalah cabang ilmu fisika yang

Lebih terperinci

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah

Lebih terperinci

Ujian Nasional. Tahun Pelajaran 2010/2011 IPA MATEMATIKA (D10) UTAMA. SMA / MA Program Studi

Ujian Nasional. Tahun Pelajaran 2010/2011 IPA MATEMATIKA (D10) UTAMA. SMA / MA Program Studi Ujian Nasional Tahun Pelajaran 00/0 UTAMA SMA / MA Program Studi IPA MATEMATIKA (D0) c Fendi Alfi Fauzi alfysta@yahoo.com Ujian Nasional Tahun Pelajaran 00/0 (Pelajaran Matematika) Tulisan ini bebas dibaca

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

Kalkulus Variasi. Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas. Toni Bakhtiar. Departemen Matematika IPB

Kalkulus Variasi. Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas. Toni Bakhtiar. Departemen Matematika IPB Kalkulus Variasi Masalah Kalkulus Variasi, Fungsional Objektif, Variasi, Syarat Perlu Optimalitas Toni Bakhtiar Departemen Matematika IPB Februari 2014 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.

Lebih terperinci

Hendra Gunawan. 26 Februari 2014

Hendra Gunawan. 26 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan

Lebih terperinci

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah...

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah... SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN /. Nilai a yang menyebabkan fungsi kuadrat f x a x ax a a a a a a Solusi: [Jawaban D] a a a. () D a a a a a

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 11-12: Finite Dierence Method for PDE Wave Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Masalah Gelombang

Lebih terperinci

MODEL MATEMATIKA MANIPULATOR FLEKSIBEL

MODEL MATEMATIKA MANIPULATOR FLEKSIBEL Bab 3 MODEL MATEMATIKA MANIPULATOR FLEKSIBEL Pada Bab ini akan dibahas mengenai model matematika dari manipulator fleksibel. Model matematika yang akan diturunkan akan menggunakan teori balok Timoshenko

Lebih terperinci

Kontrol Optimum. MKO dengan Kendala pada Peubah Kontrol. Toni Bakhtiar. Departemen Matematika IPB. Februari 2017

Kontrol Optimum. MKO dengan Kendala pada Peubah Kontrol. Toni Bakhtiar. Departemen Matematika IPB. Februari 2017 Kontrol Optimum MKO dengan Kendala pada Peubah Kontrol Toni Bakhtiar Departemen Matematika IPB Februari 2017 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 2017 1 / 53 Outline MKO berkendala

Lebih terperinci

KINEMATIKA GERAK 1 PERSAMAAN GERAK

KINEMATIKA GERAK 1 PERSAMAAN GERAK KINEMATIKA GERAK 1 PERSAMAAN GERAK Posisi titik materi dapat dinyatakan dengan sebuah VEKTOR, baik pada suatu bidang datar maupun dalam bidang ruang. Vektor yang dipergunakan untuk menentukan posisi disebut

Lebih terperinci

LAMPIRAN I. Alfabet Yunani

LAMPIRAN I. Alfabet Yunani LAMPIRAN I Alfabet Yunani Alha Α Nu Ν Beta Β Xi Ξ Gamma Γ Omicron Ο Delta Δ Pi Π Esilon Ε Rho Ρ Zeta Ζ Sigma Σ Eta Η Tau Τ Theta Θ Usilon Υ Iota Ι hi Φ, Kaa Κ Chi Χ Lambda Λ Psi Ψ Mu Μ Omega Ω LAMPIRAN

Lebih terperinci

Kalkulus Variasi. Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas. Toni Bakhtiar. Departemen Matematika IPB.

Kalkulus Variasi. Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas. Toni Bakhtiar. Departemen Matematika IPB. Kalkulus Variasi Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas Toni Bakhtiar Departemen Matematika IPB Februari 214 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 214 1

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt. 1. Pengertian Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap. Pada sebuah tali yang panjang diregangkan di dalam arah x di mana sebuah gelombang transversal sedang berjalan.

Lebih terperinci

HANDOUT PERSAMAAN DIFERENSIAL BIASA PDB 4)SKS. DOSEN Efendi, M.Si. BUKU)REFERENSI: )Persamaan )Diferensial)oleh)Dr.St. Budi Waluya, M.

HANDOUT PERSAMAAN DIFERENSIAL BIASA PDB 4)SKS. DOSEN Efendi, M.Si. BUKU)REFERENSI: )Persamaan )Diferensial)oleh)Dr.St. Budi Waluya, M. HANDOUT PERSAMAAN DIFERENSIAL BIASA PDB 4)SKS DOSEN Efendi, M.Si BUKU)REFERENSI: )Persamaan )Diferensial)oleh)Dr.St. Budi Waluya, M.Si Daftar Isi 1 Pengantar Persamaan Diferensial 1 1.1 Pendahuluan...............................

Lebih terperinci

Fungsi Elementer (Bagian Kedua)

Fungsi Elementer (Bagian Kedua) Fungsi Elementer (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IX) Outline 1 Fungsi Hiperbolik 2 sin(iz) =

Lebih terperinci

FISIKA. Sesi GELOMBANG BERJALAN DAN STASIONER A. GELOMBANG BERJALAN

FISIKA. Sesi GELOMBANG BERJALAN DAN STASIONER A. GELOMBANG BERJALAN FISIKA KELAS XII IPA - KURIKULUM KTSP 0 Sesi GELOMBANG BERJALAN DAN STASIONER A. GELOMBANG BERJALAN Gelombang adalah getaran yang merambat. Adapun gelombang berjalan merupakan suatu gelombang di mana setiap

Lebih terperinci

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013 Soal dan Pembahasan UN Matematika SMA IPA Tahun 013 LOGIKA MATEMATIKA p siswa rajin belajar ; q mendapat nilai yang baik r siswa tidak mengikuti kegiatan remedial ~ r siswa mengikut kegiatan remedial Premis

Lebih terperinci

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN Lucy L. Batubara 1, Deswita. Leli 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia

BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia BAB III Diferensial Departemen Teknik Kimia Universitas Indonesia BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz

Lebih terperinci

Pembahasan soal oleh MATEMATIKA. Rabu, 18 April 2012 ( )

Pembahasan soal oleh  MATEMATIKA. Rabu, 18 April 2012 ( ) DOKUMEN NEGARA Pembahasan soal oleh http://pak-anang.blogspot.com B MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Perpustakaan SMAN Wonogiri MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M8-0/0 Hak Cipta

Lebih terperinci

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL Heni Kusnani 1, Leli Deswita, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB I PENDAHULUAN. keadaan dari suatu sistem. Dalam aplikasinya, suatu sistem kontrol memiliki tujuan

BAB I PENDAHULUAN. keadaan dari suatu sistem. Dalam aplikasinya, suatu sistem kontrol memiliki tujuan BAB I PENDAHULUAN 11 Latar Belakang Masalah Sistem kontrol merupakan suatu alat untuk mengendalikan dan mengatur keadaan dari suatu sistem Dalam aplikasinya, suatu sistem kontrol memiliki tujuan atau sasaran

Lebih terperinci

PEMBAHASAN UN SMA IPA TAHUN AJARAN 2011/2012

PEMBAHASAN UN SMA IPA TAHUN AJARAN 2011/2012 Page of PEMBAHASAN UN SMA IPA TAHUN AJARAN 0/0 OLEH: SIGIT TRI GUNTORO, M.Si MARFUAH, S.Si, M.T REVIEWER: UNTUNG TRISNA S., M.Si JAKIM WIYOTO, S.Si Page of Misalkan, p : hari ini hujan q: saya tidak pergi

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua

Lebih terperinci

PERSAMAAN DIFFERENSIAL LINIER

PERSAMAAN DIFFERENSIAL LINIER PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 2017/2018-1. Jika diketahui x = 8, y = 25 dan z = 81, maka nilai dari x 2 y 2 z adalah.... (a) 0 (b) 00 (c) 500

Lebih terperinci