VIII. Termodinamika Statistik

Ukuran: px
Mulai penontonan dengan halaman:

Download "VIII. Termodinamika Statistik"

Transkripsi

1 VIII. Termodinamika Statistik 8.1. Pendahuluan Mereka yang mengembangkan termodinamika statistik: - Boltzmann - Gibbs dan setelah kemauan teori kuantum: - Satyendra Bose - lbert Einstein - Enrico Fermi - Paul Dirac Pada termodinamika statistik (menurut Boltzmann) dibedakan macrostate dan microstate suatu sistem. microstate dari sebuah sistem dapat dielaskan bila posisi dan kecepatan setiap setiap partikel diberikan macrostate dari sebuah sistem dapat dielaskan bila sifat-sifat makroskopik sistem (seperti tekanan, temperatur, volume, umlah mole etc.) diketahui M. Hikam, Termodinamika Statistik 86

2 Microstate Macrostate v 1 P r 1 r 2 v V T v 2 Pada kenyataannya yang dapat kita ketahui, tentu saa, macrostate. Sangat sulit untuk mengetahui kecepatan dan posisi partikel pada suatu waktu tertentu umlah molekul terlalu banyak. Namun dapat kita pahami bahwa cukup banyak microstate yang berbeda dapat berkorespondensi dengan macrostate yang sama. Contoh pada pelemparan empat koin Rp (koin kecil). Satu sisi koin berupa gambar garuda, yang lain sapi. Macrostate Kemungkinan microstate (G = garuda, S= sapi) Jumlah microstate 4 garuda GGGG 1 3 garuda, GGGS, GGSG, GSGG, SGGG 4 1 sapi 2 garuda, GGSS, GSGS, SGGS, SGSG, 6 2 sapi GSSG, SSGG 1 garuda, GSSS, SGSS, SSGS, SSSG 4 3 sapi 4 sapi SSSS 1 M. Hikam, Termodinamika Statistik 87

3 Prinsip dasar pada pendekatan statistik setiap microstate memiliki kemungkinan keadian yang sama. Jumlah total microstate : =16 Peluang mendapatkan macrostate terbesar pada kondisi 2 garuda dan 2 sapi, yakni: 6/16 = 37,5% Untuk 100 koin: Macrostate Garuda Sapi Jumlah Microstate 1 1, , , , , , , , , , Posisi itulah yang paling mungkin. M. Hikam, Termodinamika Statistik 88

4 Kalau kita teruskan ke distribusi kecepatan: Jumlah molekul lau, v Lihat arah: Jumlah molekul kecepatan v x M. Hikam, Termodinamika Statistik 89

5 8.2. Probabilitas Termodinamik Dalam sistem tertutup dan terisolasi, energi E dan umlah partikel N adalah keduanya konstan. microstate yang mungkin adalah yang memenuhi kedua kondisi ini. Ketika waktu beralan karena ada interaksi antar partikel, bisa saa sekelompok partikel berubah energinya yang mengakibatkan perubahan keadaan energi setiap partikel. microstate akan berubah namun setiap kemungkinan microstate harus memenuhi kondisi E dan N yang konstan. Jumlah microstate yang mungkin yang berkorespondensi dengan suatu macrostate k disebut probabilitas termodinamika, W k. W 1 W 2 Jumlah microstate secara keseluruhan (assembly) Ω menadi: Ω = W k k Sifat-sifat makroskopis benda tergantung pada nilai rata-rata dalam waktu sifat-sifat mikroskopisnya. Contoh tekanan gas tergantung pada harga rata-rata lau momentum dalam suatu area tertentu. M. Hikam, Termodinamika Statistik 90

6 Jadi dibutuhkan suatu cara untuk menentukan umlah partikel ratarata N pada level energi dalam assembly. N disebut umlah penempatan (occupation number) rata-rata pada level. mbil N k sebagai umlah penempatan pada level di macrostate k. Maka rata-rata grup yang menempati level : N kwk g N = k 1 = N kw k Wk Ω k k Secara rata-rata waktu uga akan didapat hasil serupa. Dapat ditulis: 1 N = Ω k N k W k 8.3. Berbagai Macam Termodinamika Statistik Statistika partikel biasanya dapat dibedakan sbb: Statistik Bose-Einstein Statistik Fermi-Dirac Statistik Maxwell-Boltzmann Untuk membedakan hal ini digunakan konsep partikel identik sbb: Suatu sistem (misal gas) terdiri dari N partikel dalam volume V: M. Hikam, Termodinamika Statistik 91

7 Sebut: Q i koordinat gabungan (posisi dan spin) partikel ke-i s i keadaan kuantum partikel ke-i Keadaan seluruh gas: {s 1, s 2, s 3,...} dengan fungsi gelombang pada keadaan ini: Ψ = Ψ [ s 1, s2, s3,..] (Q 1, Q 2,... Q N ) Beberapa kasus:. Kasus Klassik (Statistik Maxwell Boltzmann) Dalam kasus ini (Statistik MB) partikel dapat dibedakan (distinguishable) berapa pun umlah partikel dapat menempati keadaan tunggal s yang sama tidak ada simetri yang dibutuhkan ketika dua partikel ditukar B. Deskripsi Mekanika Kuantum Simetri elas dibutuhkan ketika teradi pertukaran partikel Partikel secara intrinsik tidak dapat dibedakan (indistinguishible) Dapat teradi pembatasan untuk menempati keadaan tertentu Karena keadaan simetri ini, keadaan kuantum erat hubungannya dengan spin partikel: (a) Spin bulat (integral spin) (b) Spin setengah (half integral spin) Dengan demikian statistika mekanika kuantum terbagi dua: (a) Partikel dengan Spin bulat (Statistik Bose-Einstein) Setiap partikel memiliki momentum angular spin total (diukur dalam unit h ) bilangan bulat: 0, 1, 2, 3, 4,... M. Hikam, Termodinamika Statistik 92

8 Fungsi gelombang total bersifat simetri, yakni Ψ( Q Q i ) = Ψ( Q i Q ) Tidak dapat dibedakan setiap pertukaran partikel tidak menghasilkan keadaan baru (b) Partikel dengan Spin kelipatan ½ (Statistik Fermi-Dirac) Setiap partikel memiliki momentum angular spin total (diukur dalam unit h ) kelipatan ½ yakni 1, 3,... Fungsi gelombang total bersifat antisimetri, yakni Ψ( Q Q i ) = Ψ( Q i Q ) Tidak dapat dibedakan Karena sifat antisimetri dan partikel indistinguishable maka dua atau lebih partikel tidak mungkin pada keadaan yang sama. Prinsip eksklusi Pauli Resumé: Klassik Kuantum Maxwell-Boltzmann Bose-Einstein Fermi-Dirac Distinguishable indistinguishable, spin: 0,1,2,3,4,... indistinguishable spin:, 3,... Tak ada simetri simetri ntisimetri Tak ada batasan umlah menempati satu keadaan Tak ada batasan umlah menempati satu keadaan contoh: Foton, He Prinsip eksklusi Pauli contoh: Elektron, He 3 M. Hikam, Termodinamika Statistik 93

9 Supaya elas tinau kasus 2 partikel dengan keadaan kuantum yang mungkin ada tiga s = 1, 2, 3. Maxwell-Boltzman: B B B B B B B B B Bose-Einstein: Fermi Dirac: M. Hikam, Termodinamika Statistik 94

10 Pada statistik Maxwell-Boltzmann partikel-partikel dapat dibedakan dan umlah partikel yang menempati energi yang sama tidak dibatasi. da seumlah N partikel (assembly) dan suatu macrostate dengan umlah penempatan N 1, N 2, N,..etc. dan level degenerasi g 1, g 2, g,..etc. Contoh: Kemungkinan susunan keberadaan dua partikel (a dan b) pada tiga level energi: Level Keadaan (1) (2) (3) 1 ab 2 ab 3 b 4 a b 5 b a 6 a B 7 b 8 a B 9 b Kalau ada N partikel, umlah kemungkinan distribusi: w = N g Pada semua level menadi: Π w = Π N g M. Hikam, Termodinamika Statistik 95

11 N Tetapi Π g tidak sama dengan W k karena pertukaran partikel menyebabkan keadaan yang berbeda, hal ini berkontribusi pada N! N! kemungkinan distribusi: =, adi N 1! N 2!... Π! W k = Resume Π N! N N umlah partikel g umlah level! Π Maxwell-Boltzmann: N g N g = N! Π w = Bose-Einstein: ( g + N 1)! w = ( g 1)! N! Fermi Dirac: g! w = ( g N )! N! g N N! N 8.4. Interpretasi Statistik tentang Entropi Pada suatu sistem PVT: T S = U + P V µ N disini µ merupakan potensial Kimia. M. Hikam, Termodinamika Statistik 96

12 Dari sudut pandang statistik, perubahan energi adalah akibat perubahan umlah microstate yang mungkin. ada hubungan antara model statistik dengan entropi. Dalam hal ini entropi dapat dihubungkan dengan probabilitas termodinamik (umlah microstate dalam assembly) Karena entropi merupakan besaran ekstensif, maka entropi total S merupakan umlah entropi-entropi S 1 dan S 2 dari individual sistem. S = S 1 + S 2 Sementara itu Ω = Ω 1 Ω 2 Jadi entropi tidak mungkin berbanding lurus dengan probabilitas termodinamika. Katakanlah S merupakan fungsi tertentu dari Ω seperti S = J(Ω), maka J(Ω 1 ) + J(Ω 2 ) = J(Ω 1 Ω 2 ) Karena J(Ω 1 ) hanya fungsi Ω 1, maka J ( Ω1 ) dj = ( Ω1 ) Ω1 dω1 sehingga: dj ( Ω1 ) = Ω 2 J'(Ω 1 Ω 2 ) dω1 dengan cara yang sama: dj ( Ω2 ) = Ω 1 J'(Ω 1 Ω 2 ) dω2 dari persamaan-persamaan tersebut: dj Ω ( Ω1 ) dj 1 = Ω ( Ω2 ) 2 dω1 dω2 M. Hikam, Termodinamika Statistik 97

13 dan karena Ω 1 dan Ω 2 independen, maka persamaan tersebut hanya benar bila sama dengan suatu konstanta, misal = a. Jadi untuk sebarang sistem: dj ( Ω) Ω = a d Ω dω dj(ω) = a Ω sehingga J(Ω) = a ln Ω Supaya sesuai dengan termodinamika klassik, a = k (konstanta Boltzmann) S = k ln Ω Persamaan terakhir ini menunukkan pengertian entropi dari tinauan fisika statistik. pakah masih sealan dengan definisi umum bahwa entropi merupakan ukuran ketidakteraturan? Tentu saa dapat dibenarkan. Kita tahu bahwa Ω merupakan umlah microstate, penambahan umlah ini mencerminkan ketidakteraturan. Kalau kita dapat memiliki Ω = 1 (hanya satu keadaan), maka S = k ln Ω = 0 kondisi teoritis untuk T = 0. Disini sistem teratur sempurna. Dapat dibuktikan dalam banyak hal (Sears-Salinger, page 325) bahwa definisi entropi secara termodinamik ds = d'q sealan T dengan definisi statistik S = k ln Ω. M. Hikam, Termodinamika Statistik 98

14 8.5. Fungsi Distribusi Maxwell-Boltzmann Dari N g W k = N! Π N! dapat dibuktikan (lihat Sears-Salinger page ) fungsi distribusi Maxwell-Boltzmann: N N µ ε = exp g k B T 8.6. Fungsi Partisi dan Sifat-sifat Termodinamika Sistem Fungsi distribusi Maxwell-Boltzmann dapat ditulis: µ ε N = N (exp ) g exp k B T k B T Karena N = N, maka: N = N = N (exp µ k B T ) g exp ε k B T Jumlah suku terakhir ini disebut fungsi partisi: ε Z = g exp k B T Dari hal tersebut: µ 1 exp = k B T Z Distribusi Maxwell-Boltzmann menadi: N N ε = exp g Z k B T M. Hikam, Termodinamika Statistik 99

15 Seterusnya dapat dibuktikan dengan mudah (untuk distribusi Maxwell-Boltzmann, see page 340): F = NkT ln Z S = T U + Nk ln Z G = NkT ln Z + fungsi (T) U = NkT 2 ln Z T V ln Z P = NkT V T Jelas tampak dari pendekatan statistik, besaran-besaran fisika dapat diturunkan ika fungsi partisi diketahui. M. Hikam, Termodinamika Statistik 100

3. Termodinamika Statistik

3. Termodinamika Statistik 3. Termodinamika Statistik Pada bagian ini akan dibahas pemanfaatan postulat statistik yang berdasarkan sistem dalam keadaan keseimbangan untuk menjelaskan besaran makroskopis. Disiplin ini disebut Mekanika

Lebih terperinci

2. Deskripsi Statistik Sistem Partikel

2. Deskripsi Statistik Sistem Partikel . Deskripsi Statistik Sistem Partikel Formulasi statistik Interaksi antara sistem makroskopis.1. Formulasi Statistik Dalam menganalisis suatu sistem, kombinasikan: ide tentang statistik pengetahuan hukum-hukum

Lebih terperinci

IX. Aplikasi Mekanika Statistik

IX. Aplikasi Mekanika Statistik IX. Aplikasi Mekanika Statistik 9.1. Gas Ideal Monatomik Sebagai test case termodinamika statistik, kita coba terapkan untuk gas ideal monatomik. Mulai dengan fungsi partisi: ε j Z = g j exp j k B T Energi

Lebih terperinci

Perumusan Ensembel Mekanika Statistik Kuantum. Part-1

Perumusan Ensembel Mekanika Statistik Kuantum. Part-1 Perumusan Ensembel Mekanika Statistik Kuantum Part-1 Latar Belakang Untuk system yang distinguishable maka teori ensemble mekanika statistic klasik dapat dipergunakan. Tetapi bilamana system partikel bersifat

Lebih terperinci

ANALISA KELAKUAN PARTIKEL BERDASARKAN STATISTIK MAXWELL-BOLZTMANN BOSE-EINSTEIN DAN FERMI-DIRAC SKRIPSI. Rio Tambunan

ANALISA KELAKUAN PARTIKEL BERDASARKAN STATISTIK MAXWELL-BOLZTMANN BOSE-EINSTEIN DAN FERMI-DIRAC SKRIPSI. Rio Tambunan i ANALISA KELAKUAN PARTIKEL BERDASARKAN STATISTIK MAXWELL-BOLZTMANN BOSE-EINSTEIN DAN FERMI-DIRAC SKRIPSI Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Rio Tambunan 040801024

Lebih terperinci

VI. Teori Kinetika Gas

VI. Teori Kinetika Gas VI. Teori Kinetika Gas 6.1. Pendahuluan dan Asumsi Dasar Subyek termodinamika berkaitan dengan kesimpulan yang dapat ditarik dari hukum-hukum eksperimen tertentu, dan memanfaatkan kesimpulan ini untuk

Lebih terperinci

peroleh. SEcara statistika entropi didefinisikan sebagai

peroleh. SEcara statistika entropi didefinisikan sebagai BAB 5 Entropi 5.1 Entropi (S) Pertama-tama mari kita definisikan sebuah besaran termodinamika yang bernama entropi secara statistika. Secara termodinamika, entropi telah didefinisikan melalui hubungan

Lebih terperinci

2.7 Ensambel Makrokanonik

2.7 Ensambel Makrokanonik 22 BAB 2. TEORI ENSAMBEL 2.7 Ensambel Makrokanonik Dalam bagian ini kita akan menjabarkan rapat ruang fase untuk sistem terbuka, sistem yang berada dalam keadaan kesetimbangan termal dengan lingkungan

Lebih terperinci

DESKRIPSI, SILABUS DAN SAP MATA KULIAH FI-472 FISIKA STATISTIK

DESKRIPSI, SILABUS DAN SAP MATA KULIAH FI-472 FISIKA STATISTIK DESKRIPSI, SILABUS DAN SAP MATA KULIAH FI-472 FISIKA STATISTIK I. DESKRIPSI Mata kuliah ini merupakan mata kuliah wajib. Kompetensi yang diharapkan adalah mahasiswa dapat memiliki pemahaman terhadap hubungan

Lebih terperinci

Ensembel Kanonik Klasik

Ensembel Kanonik Klasik Ensembel Kanonik Klasik Menghitung Banyak Status Keadaan Sistem Misal ada dua sistem A dan B yang boleh bertukar energi (tapi tidak boleh tukar partikel). Misal status keadaan dan energi masing-masing

Lebih terperinci

Chap. 8 Gas Bose Ideal

Chap. 8 Gas Bose Ideal Chap. 8 Gas Bose Ideal Model: Gas Foton Foton adalah Boson yg tunduk kepada distribusi BE. Model: Foton memiliki frekuensi ω, rest mass=0, spin 1ħ Energi E=ħω dan potensial kimia =0 Momentum p = ħ k, dengan

Lebih terperinci

Statistik + konsep mekanika. Hal-hal yang diperlukan dalam menggambarkan keadaan sistem partikel adalah:

Statistik + konsep mekanika. Hal-hal yang diperlukan dalam menggambarkan keadaan sistem partikel adalah: Bab 4 Deskripsi Statistik Sistem Partikel Bagaimana gambaran secara statistik dari sistem partikel? Statistik + konsep mekanika Hal-hal yang diperlukan dalam menggambarkan keadaan sistem partikel adalah:

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHUUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu:

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu: KB.2 Fisika Molekul 2.1 Prinsip Pauli. Konsep fungsi gelombang-fungsi gelombang simetri dan antisimetri berlaku untuk sistem yang mengandung partikel-partikel identik. Ada perbedaan yang fundamental antara

Lebih terperinci

n i,n,v = N (1) i,n,v Kedua, untuk nilai termperatur tertentu, terdapat energi rerata n i,n,v E i = N < E i >= N U (2) V i,n,v n i,n,v N = N N (3)

n i,n,v = N (1) i,n,v Kedua, untuk nilai termperatur tertentu, terdapat energi rerata n i,n,v E i = N < E i >= N U (2) V i,n,v n i,n,v N = N N (3) HW week 4 solution. Setelah anda mempelajari empat jenis ensambel, cobalah untuk membuat ensambel baru yang terkait dengan suatu sistem, yang mana sistem dapat: bertukar energi dengan lingkungan dan berada

Lebih terperinci

Teori Ensambel. Bab Rapat Ruang Fase

Teori Ensambel. Bab Rapat Ruang Fase Bab 2 Teori Ensambel 2. Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu

Lebih terperinci

TERMODINAMIKA & FISIKA STATISTIK (Tes 3)

TERMODINAMIKA & FISIKA STATISTIK (Tes 3) OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM PERGURUAN TINGGI 2017 (ONMIPA-PT) Bidang Fisika: TERMODINAMIKA & FISIKA STATISTIK (Tes 3) 16 Mei 2017 Waktu: 120 menit KETENTUAN UMUM Petunjuk Pengerjaan

Lebih terperinci

FI-5002 Mekanika Statistik SEMESTER/ Sem /2017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan :

FI-5002 Mekanika Statistik SEMESTER/ Sem /2017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan : ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanika Statistik SEMESTER/ Sem. - 016/017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan :

Lebih terperinci

Nama Anggota Kelompok: 1. Ahmad Samsudin 2. Aisyah Nur Rohmah 3. Dudi Abdu Rasyid 4. Ginanjar 5. Intan Dwi 6. Ricky

Nama Anggota Kelompok: 1. Ahmad Samsudin 2. Aisyah Nur Rohmah 3. Dudi Abdu Rasyid 4. Ginanjar 5. Intan Dwi 6. Ricky Nama Anggota Kelompok: 1. Ahmad Samsudin 2. Aisyah Nur Rohmah 3. Dudi Abdu Rasyid 4. Ginanjar 5. Intan Dwi 6. Ricky A. Aplikasi Statistik Bose-Einstein 1.1. Kondensasi Bose-Einstein Gambar 1.1 Salah satu

Lebih terperinci

Teori Ensambel. Bab Rapat Ruang Fase

Teori Ensambel. Bab Rapat Ruang Fase Bab 2 Teori Ensambel 2.1 Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu

Lebih terperinci

2.11 Penghitungan Observabel Sebagai Rerata Ensambel

2.11 Penghitungan Observabel Sebagai Rerata Ensambel 2.11. PENGHITUNGAN OBSERVABEL SEBAGAI RERATA ENSAMBEL33 2.11 Penghitungan Observabel Sebagai Rerata Ensambel Dalam pendahuluan ke teori ensambel, kita mengasumsikan bahwa semua observabel dapat dituliskan

Lebih terperinci

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron Tes Formatif 1 Petunjuk: Jawablah semua soal di bawah ini pada lembar jawaban yang disediakan! =============================================================== 1. Sebuah elektron ditempatkan dalam sebuah

Lebih terperinci

Chap 7. Gas Fermi Ideal

Chap 7. Gas Fermi Ideal Chap 7. Gas Fermi Ideal Gas Fermi pada Ground State Distribusi Fermi Dirac pada kondisi Ground State (T 0) memiliki perilaku: n p = e β ε p μ +1 1 ε p < μ 1 0 jika ε p > μ Hasil ini berarti: Seluruh level

Lebih terperinci

Pendahuluan. Bab Keadaan mikro dan keadaan makro. 1.2 Ruang Fase

Pendahuluan. Bab Keadaan mikro dan keadaan makro. 1.2 Ruang Fase Bab 1 Pendahuluan 1.1 Keadaan mikro dan keadaan makro Kuantitas makro keadaan fisis suatu sistem merupakan perwujudan rerata kuantitas mikro sistem tersebut. Sebagai contoh, tekanan dari suatu gas merupakan

Lebih terperinci

BAB II DASAR TEORI. A. Kemagnetan Bahan. Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet. seperti terlihat pada Gambar 2.

BAB II DASAR TEORI. A. Kemagnetan Bahan. Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet. seperti terlihat pada Gambar 2. BAB II DASAR TEORI A. Kemagnetan Bahan Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet seperti terlihat pada Gambar 2. Gambar 2: Diagram pengelompokan bahan magnet (Stancil &

Lebih terperinci

Atau dengan menginverse S = S(U), menjadi U=U(S), kemudian menghitung:

Atau dengan menginverse S = S(U), menjadi U=U(S), kemudian menghitung: ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA UJIA TEGAH SEMESTER - FI-5 Mekanika Statistik SEMESTER/ Sem. - 6/7 Hari/Tgl. : Senin 3 Maret 7 Waktu :.-3. Sifat :

Lebih terperinci

KONDENSASI BOSE-EINSTEIN. Korespondensi Telp.: , Abstrak

KONDENSASI BOSE-EINSTEIN. Korespondensi Telp.: ,   Abstrak KONDENSASI BOSE-EINSTEIN Wipsar Sunu Brams Dwandaru Laboratorium Fisika Teori dan Komputasi, Jurusan Pendidikan Fisika, F MIPA UNY, Karangmalang, Yogyakarta, 55281 Korespondensi Telp.: 082160580833, Email:

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHULUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA FI-5002 Mekanika Statistik SEMESTER/ Sem. 2-2016/2017 QUIZ 2 Waktu : 120 menit (TUTUP BUKU) 1. Misalkan sebuah

Lebih terperinci

TERMODINAMIKA MIRZA SATRIAWAN

TERMODINAMIKA MIRZA SATRIAWAN TERMODINAMIKA MIRZA SATRIAWAN March 20, 2013 Daftar Isi 1 SISTEM TERMODINAMIKA 2 1.1 Deskripsi Sistem Termodinamika............................. 2 1.2 Kesetimbangan Termodinamika..............................

Lebih terperinci

KETENTUAN AGUNG ( THE GOLDEN RULE ) Suparno Satira

KETENTUAN AGUNG ( THE GOLDEN RULE ) Suparno Satira KETENTUAN AGUNG ( THE GOLDEN RULE ) Suparn Satira Suparn_satira@yah.cm 1 JENJANG / HIRARKI Falsafah Visi Idelgi / Dktrin Misi Aturan / Knsep Dasar Anggaran Dasar / ART Perumusan dinamika / Gejala Peraturan

Lebih terperinci

Fungsi Gelombang Radial dan Tingkat Energi Atom Hidrogen

Fungsi Gelombang Radial dan Tingkat Energi Atom Hidrogen Fungsi Gelombang adial dan Tingkat Energi Atom Hidrogen z -e (r, Bilangan kuantum r atom hidrogenik Ze y x Fungsi gelombang atom hidrogenik bergantung pada tiga bilangan kuantum: nlm nl Principal quantum

Lebih terperinci

sifat-sifat gas ideal Hukum tentang gas 3. Menerapkan konsep termodinamika dalam mesin kalor

sifat-sifat gas ideal Hukum tentang gas 3. Menerapkan konsep termodinamika dalam mesin kalor teori kinetik gas mempelajari sifat makroskopis dan sifat mikroskopis gas. TEORI KINETIK GAS sifat-sifat gas ideal 1. terdiri atas molekul-molekul yang sangat banyak dan jarak pisah antar molekul lebih

Lebih terperinci

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti

Lebih terperinci

3. Teori Kinetika Gas

3. Teori Kinetika Gas 3. Teori Kinetika Gas - Partikel gas dan interaksi - Model molekular gas ideal - Energi dalam - Persamaan keadaan gas - Kecepatan partikel (rms, rata-rata, modus) 3.1. Partikel Gas dan Interaksi Padat

Lebih terperinci

MAKALAH PITA ENERGI. Di susun oleh, Pradita Ajeng Wiguna ( ) Rombel 1. Untuk Memenuhi Tugas Mata Kuliah Fisika dan Teknologi Semikonduktor

MAKALAH PITA ENERGI. Di susun oleh, Pradita Ajeng Wiguna ( ) Rombel 1. Untuk Memenuhi Tugas Mata Kuliah Fisika dan Teknologi Semikonduktor MAKALAH PITA ENERGI Untuk Memenuhi Tugas Mata Kuliah Fisika dan Teknologi Semikonduktor Di susun oleh, Pradita Ajeng Wiguna (4211412011) Rombel 1 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. ILMU FISIKA Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. DEFINISI ILMU FISIKA? Ilmu Fisika dalam Bahasa Yunani: (physikos), yang artinya alamiah, atau (physis), Alam

Lebih terperinci

Pendahuluan. Setelah mempelajari bab 1 ini, mahasiswa diharapkan

Pendahuluan. Setelah mempelajari bab 1 ini, mahasiswa diharapkan 1 Pendahuluan Tujuan perkuliahan Setelah mempelajari bab 1 ini, mahasiswa diharapkan 1. Mengetahui gambaran perkuliahan. Mengerti konsep dari satuan alamiah dan satuan-satuan dalam fisika partikel 1.1.

Lebih terperinci

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam Elektron Bebas Beberapa teori tentang panas jenis zat padat yang telah dibahas dapat dengan baik menjelaskan sifat-sfat panas jenis zat padat yang tergolong non logam, akan tetapi untuk golongan logam

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Di dalam dunia mikroskopik, fisika klasik mengalami kegagalan untuk menjelaskan setiap fenomena yang ada. Spektrum khas yang dimiliki oleh atom, teramatinya dua komponen

Lebih terperinci

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM POKOK-POKOK MATERI FISIKA KUANTUM PENDAHULUAN Dalam Kurikulum Program S-1 Pendidikan Fisika dan S-1 Fisika, hampir sebagian besar digunakan untuk menelaah alam mikro (= alam lelembutan micro-world): Fisika

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup: PENDAHULUAN Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup: kristal semikonduktor intrinsik dan kristal semikonduktor ekstrinsik. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

Sifat Gas secara Teori dan Distribusi Kecepatan Molekul

Sifat Gas secara Teori dan Distribusi Kecepatan Molekul Modul 1 Sifat Gas secara Teori dan Distribusi Kecepatan Molekul Dra. Isana Syl, M.Si. G PENDAHULUAN as merupakan zat sederhana alami. Oleh karena itu, suatu model sederhana dan perhitungan mendasar dapat

Lebih terperinci

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya 1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku

Lebih terperinci

V. Potensial Termodinamika

V. Potensial Termodinamika V. otensial ermodinamika 5.1. Fungsi Helmholtz dan Gibbs Selain energi dalam (U) dan entropi (S) cukup banyak besaran yang dapat didefinisikan berdasarkan kombinasi U, S serta variabel keadaan lainnya.

Lebih terperinci

T 21 Penentuan Variabel Ekstensif Ekonomi Melalui Model Termodinamika Dengan Simulasi Statistika Fuzzy (1,1)

T 21 Penentuan Variabel Ekstensif Ekonomi Melalui Model Termodinamika Dengan Simulasi Statistika Fuzzy (1,1) T 21 Penentuan Variabel Ekstensif Ekonomi Melalui Model Termodinamika Dengan Simulasi Statistika Fuzzy (1,1) Ririn Setoyowati, Purnami Widyaningsih dan Sutanto Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1 FI-1101: Kuliah 13 TEORI KINETIK GAS Teori Kinetik Gas Suhu Mutlak Hukum Boyle-Gay y Lussac Gas Ideal Teori Kinetik & Interpretasi molekular dari Suhu FI-1101: Teori Kinetik Gas, Hal 1 FISIKA TERMAL Cabang

Lebih terperinci

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom Hukum Termodinamika 1 Adhi Harmoko S,M.Kom Apa yang dapat anda banyangkan dengan peristiwa ini Balon dicelupkan ke dalam nitrogen cair Sistem & Lingkungan Sistem: sebuah atau sekumpulan obyek yang ditinjau

Lebih terperinci

TERMODINAMIKA & FISIKA STATISTIK

TERMODINAMIKA & FISIKA STATISTIK OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM PERGURUAN TINGGI 017 (ONMIPA-PT) Bidang Fisika (Tes 3) 3 Maret 017 Waktu: 10 menit TERMODINAMIKA & FISIKA STATISTIK Petunjuk Pengerjaan : KETENTUAN

Lebih terperinci

FISIKA MODERN. Pertemuan Ke-7. Nurun Nayiroh, M.Si.

FISIKA MODERN. Pertemuan Ke-7. Nurun Nayiroh, M.Si. FISIKA MODERN Pertemuan Ke-7 Nurun Nayiroh, M.Si. Efek Zeeman Gerakan orbital elektron Percobaan Stern-Gerlach Spin elektron Pieter Zeeman (1896) melakukan suatu percobaan untuk mengukur interaksi antara

Lebih terperinci

BAGIAN 1 PITA ENERGI DALAM ZAT PADAT

BAGIAN 1 PITA ENERGI DALAM ZAT PADAT 1.1. Partikel bermuatan BAGIAN 1 PITA ENERGI DALAM ZAT PADAT - Muatan elektron : -1,6 x 10-19 C - Massa elektron : 9,11 x 10-31 kg - Jumlah elektron dalam setiap Coulomb sekitar 6 x 10 18 buah (resiprokal

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 1.4. Hipotesis 1. Model penampang hamburan Galster dan Miller memiliki perbedaan mulai kisaran energi 0.3 sampai 1.0. 2. Model penampang hamburan Galster dan Miller memiliki kesamaan pada kisaran energi

Lebih terperinci

Getaran Dalam Zat Padat BAB I PENDAHULUAN

Getaran Dalam Zat Padat BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Pendahuluan Getaran atom dalam zat padat dapat disebabkan oleh gelombang yang merambat pada Kristal. Ditinjau dari panjang gelombang yang digelombang yang digunakan dan dibandingkan

Lebih terperinci

Oleh: Widya Wati, M.Pd 1

Oleh: Widya Wati, M.Pd 1 Aplikasi Distribusi Maxwell-Boltzmann dalam Menentukan Kecepatan Molekular Oleh: Widya Wati, M.Pd 1 Abstrak Distribusi Maxwell-Boltzmann adalah salah satu dari tiga distribusi partikel yang dikenal pada

Lebih terperinci

Fisika Panas 2 SKS. Adhi Harmoko S

Fisika Panas 2 SKS. Adhi Harmoko S Fisika Panas SKS Adhi Harmoko S Balon dicelupkan ke Nitrogen Cair Balon dicelupkan ke Nitrogen Cair Bagaimana fenomena ini dapat diterangkan? Apa yang terjadi dengan molekul-molekul gas di dalam balon?

Lebih terperinci

II. Persamaan Keadaan

II. Persamaan Keadaan II. ersamaan Keadaan Bahasan entang:.1. ersamaan keadaan gas ideal dan diagram -v-.. endekatan persamaan keadaan gas real.3. Ekspansi dan Kompresibilitas.4. Konstanta kritis gas van der Waals.5. Hubungan

Lebih terperinci

1. 1 APA TERMODINAMIKA ITU

1. 1 APA TERMODINAMIKA ITU BAB I PENDAHULUAN 1.1 Apa Termodinamika itu? 1.2 Diferensial fungsi dua variabel 1.3 Diferensial eksak dan tak eksak 1.4 Dua hubungan penting antara diferensial parsial 1. 1 APA TERMODINAMIKA ITU Termodinamika

Lebih terperinci

Atom menyusun elemen dengan bilangan sederhana. Setiap atom dari elemen yang berbeda memiliki massa yang berbeda.

Atom menyusun elemen dengan bilangan sederhana. Setiap atom dari elemen yang berbeda memiliki massa yang berbeda. Review Model Atom Model Atom Dalton Atom menyusun elemen dengan bilangan sederhana. Setiap atom dari elemen yang berbeda memiliki massa yang berbeda. Model Atom Thomson Secara garis besar atom berupa bola

Lebih terperinci

11/25/2013. Teori Kinetika Gas. Teori Kinetika Gas. Teori Kinetika Gas. Tekanan. Tekanan. KINETIKA KIMIA Teori Kinetika Gas

11/25/2013. Teori Kinetika Gas. Teori Kinetika Gas. Teori Kinetika Gas. Tekanan. Tekanan. KINETIKA KIMIA Teori Kinetika Gas Jurusan Kimia - FMIPA Universitas Gadjah Mada (UGM) KINETIKA KIMIA Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada,

Lebih terperinci

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford.

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford. 1 BAB FISIKA ATOM Perkembangan teori atom Model Atom Dalton 1. Atom adalah bagian terkecil dari suatu unsur yang tidak dapat dibagi-bagi 2. Atom-atom suatu unsur semuanya serupa dan tidak dapat berubah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Atom dan Molekul Definisi molekul yang sederhana yaitu bagian yang terkecil dari suatu zat yang masih mempunyai sifat yang sama dengan zat tersebut. Sebagai contoh, suatu molekul

Lebih terperinci

BA B B B 2 Ka K ra r kt k eri r s i tik i k S is i tem Ma M kr k o r s o ko k p o i p k i Oleh Endi Suhendi

BA B B B 2 Ka K ra r kt k eri r s i tik i k S is i tem Ma M kr k o r s o ko k p o i p k i Oleh Endi Suhendi BAB Karakteristik Sistem Makroskopik Dalam termodinamika dibahas perilaku dan dinamika temperatur sistem makroskopik. Sistem diparameterisasi oleh volume, tekanan, temperatur dan kapasitas panas jenis

Lebih terperinci

ORBITAL DAN IKATAN KIMIA ORGANIK

ORBITAL DAN IKATAN KIMIA ORGANIK ORBITAL DAN IKATAN KIMIA ORGANIK Objektif: Pada Bab ini, mahasiswa diharapkan untuk dapat memahami, Teori dasar orbital atom dan ikatan kimia organik, Orbital molekul orbital atom dan Hibridisasi orbital

Lebih terperinci

a. Lattice Constant = a 4r = 2a 2 a = 4 R = 2 2 R = 2,8284 x 0,143 nm = 0,4045 nm 2

a. Lattice Constant = a 4r = 2a 2 a = 4 R = 2 2 R = 2,8284 x 0,143 nm = 0,4045 nm 2 SOUSI UJIAN TENGAH SEMESTER E-32 MATERIA TEKNIK EEKTRO Semester I 23/24, Selasa 2 Nopember 22 Waktu : 7: 9: (2menit)- Closed Book SEKOAH TEKNIK EEKTRO DAN INFORMATIKA - INSTITUT TEKNOOGI BANDUNG Dosen

Lebih terperinci

Ensembel Grand Kanonik (Kuantum) Gas IDeal

Ensembel Grand Kanonik (Kuantum) Gas IDeal Ensembel Grand Kanonik (Kuantum) Gas IDeal Fungsi Partisi Grand Kanonik: Gas Ideal Seerti di Klasik fungsi artisi Grand Kanonik : ζ z, V, T = N=0 z N Q N (V, T) dengan Q N adalah fungsi artisi kanonik,

Lebih terperinci

Chap 7a Aplikasi Distribusi. Fermi Dirac (part-1)

Chap 7a Aplikasi Distribusi. Fermi Dirac (part-1) Chap 7a Aplikasi Distribusi Fermi Dirac (part-1) Teori Bintang Katai Putih Apakah bintang Katai Putih Bintang yg warnanya pudar/pucat krn hanya memancarkan sedikit cahaya krn supply hidrogennya sudah tinggal

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP 10.09.04 PAF224 Revisi ke Tanggal Dikaji Ulang Oleh Dikendalikan Oleh Disetujui Oleh Ketua Program Studi GPM Dekan Fakultas.

Lebih terperinci

KB 1. Usaha Magnetik Dan Pendinginan Magnetik

KB 1. Usaha Magnetik Dan Pendinginan Magnetik KB 1. Usaha Magnetik Dan Pendinginan Magnetik 1.1 Usaha Magnetik. Interaksi magnetik merupakan hal yang menarik dalam bidang Fisika. Interaksi magnetik ini merupakan hal yang sangat penting dalam mempelajari

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

Ensembel Grand Kanonik Klasik. Part-1

Ensembel Grand Kanonik Klasik. Part-1 Ensembel Grand Kanonik Klasik Part-1 Hubungan Thermodinamika Sistem Terbuka Model : Sistem terbuka bisa bertukar partikel dan energi dengan lingkungan. Hukum 1 Thermo: du = dq-pdv atau du= TdS-PdV Jika

Lebih terperinci

Mengenal Sifat Material. Teori Pita Energi

Mengenal Sifat Material. Teori Pita Energi Mengenal Sifat Material Teori Pita Energi Ulas Ulang Kuantisasi Energi Planck : energi photon (partikel) bilangan bulat frekuensi gelombang cahaya h = 6,63 10-34 joule-sec De Broglie : Elektron sbg gelombang

Lebih terperinci

Fisika Statistik. Jumlah SKS : 3. Oleh : Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman

Fisika Statistik. Jumlah SKS : 3. Oleh : Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman Fisika Statistik Jumlah SKS : 3 Oleh : Rahmawati M, S.Si., M.Si. Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman Pertemuan Pendahuluan (Termodninamika) Silabus. Pendahuluan

Lebih terperinci

Analisis Distribusi Produktivitas Tenaga Kerja Sektor Industri Pengolahan Indonesia Menggunakan Temperatur Negatif Distribusi Boltzmann

Analisis Distribusi Produktivitas Tenaga Kerja Sektor Industri Pengolahan Indonesia Menggunakan Temperatur Negatif Distribusi Boltzmann Analisis Distribusi Produktivitas Tenaga Kerja Sektor Industri Pengolahan Indonesia Menggunakan Temperatur Negatif Distribusi Boltzmann Qoniti Amalia 1,a) dan Acep Purqon 1,b) 1 Laboratorium Sistem Kompleks,

Lebih terperinci

HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI

HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI Disusun untuk memenuhi tugas mata kuliah Fisika Kuantum Dosen Pengampu: Drs. Ngurah Made Darma Putra, M.Si., PhD Disusun oleh kelompok 8:.

Lebih terperinci

model atom mekanika kuantum

model atom mekanika kuantum 06/05/014 FISIKA MODERN Pertemuan ke-11 NURUN NAYIROH, M.Si Werner heinsberg (1901-1976), Louis de Broglie (189-1987), dan Erwin Schrödinger (1887-1961) merupakan para ilmuwan yang menyumbang berkembangnya

Lebih terperinci

BAB I PENDAHULUAN (1-1)

BAB I PENDAHULUAN (1-1) BAB I PENDAHULUAN Penelitian tentang analisis system fisis vibrasi molekuler yang berada dalam pengaruh medan potensial Lenard-Jones atau dikenal pula dengan potensial 6-2 sudah dilakukan. Kajian tentang

Lebih terperinci

KATEGORI TEORI SELEKSI TINGKAT PROVINSI OSN PERTAMINA 2014 BIDANG FISIKA

KATEGORI TEORI SELEKSI TINGKAT PROVINSI OSN PERTAMINA 2014 BIDANG FISIKA KATEGORI TEORI SELEKSI TINGKAT PROVINSI OSN PERTAMINA 4 BIDANG FISIKA PETUNJUK PENGERJAAN. Tuliskan secara lengkap identitas Anda di Lembar Jawab Komputer (LJK): Nama Lengkap, Nomor Ujian, dan Data lainnya..

Lebih terperinci

BAB V RADIASI. q= T 4 T 4

BAB V RADIASI. q= T 4 T 4 BAB V RADIASI Radiasi adalah proses perpindahan panas melalui gelombang elektromagnet atau paket-paket energi (photon) yang dapat merambat sampai jarak yang sangat jauh tanpa memerlukan interaksi dengan

Lebih terperinci

SOLUTION QUIZ 1 INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION QUIZ 1 INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA PR 1 - FI-52 Mekanika Statistik SEMESTER/ Sem. 2-216/217 Waktu : 9 menit (Closed Book) 1. Tinjau dipol identik yang

Lebih terperinci

Bab VIII Teori Kinetik Gas

Bab VIII Teori Kinetik Gas Bab VIII Teori Kinetik Gas Sumber : Internet : www.nonemigas.com. Balon udara yang diisi dengan gas massa jenisnya lebih kecil dari massa jenis udara mengakibatkan balon udara mengapung. 249 Peta Konsep

Lebih terperinci

BAB II DASAR TEORI. dibuat melingkar (loop) dengan luasan sebesar da, maka arus I dalam luasan yang

BAB II DASAR TEORI. dibuat melingkar (loop) dengan luasan sebesar da, maka arus I dalam luasan yang BAB II DASAR TEORI A. Momen Magnet Di sekitar kawat berarus listrik terdapat medan magnet. Jika kawat tersebut dibuat melingkar (loop) dengan luasan sebesar da, maka arus I dalam luasan yang ditutup loop

Lebih terperinci

I. Pendahuluan. Berasal dari dua kata Yunani: thermos (heat) dan dynamis (power). B. terhadap cabang Fisika dan ilmu lainnya

I. Pendahuluan. Berasal dari dua kata Yunani: thermos (heat) dan dynamis (power). B. terhadap cabang Fisika dan ilmu lainnya I. Pendahuluan Termodinamika cabang ilmu pengetahuan alam yang mempelajari perpindahan panas dan interkonversi panas & kerja dalam berbagai proses fisika dan kimia. Berasal dari dua kata Yunani: thermos

Lebih terperinci

FONON I : GETARAN KRISTAL

FONON I : GETARAN KRISTAL MAKALAH FONON I : GETARAN KRISTAL Diajukan untuk Memenuhi Tugas Mata Kuliah Pendahuluan Fisika Zat Padat Disusun Oleh: Nisa Isma Khaerani ( 3215096525 ) Dio Sudiarto ( 3215096529 ) Arif Setiyanto ( 3215096537

Lebih terperinci

Termodinamika Usaha Luar Energi Dalam

Termodinamika Usaha Luar Energi Dalam Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

FUNGSI GELOMBANG. Persamaan Schrödinger

FUNGSI GELOMBANG. Persamaan Schrödinger Persamaan Schrödinger FUNGSI GELOMBANG Kuantitas yang diperlukan dalam mekanika kuantum adalah fungsi gelombang partikel Ψ. Jika Ψ diketahui maka informasi mengenai kedudukan, momentum, momentum sudut,

Lebih terperinci

I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu

I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu 1 Muatan Listrik Contoh klassik: Penggaris digosok-gosok pada kain kering tarik-menarik dengan

Lebih terperinci

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein BAB II DASAR TEORI Sebagaimana telah diketahui dalam kinematika relativistik, persamaanpersamaannya diturunkan dari dua postulat relativitas. Dua kerangka inersia yang bergerak relatif satu dengan yang

Lebih terperinci

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5 Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani Program Studi Pendidikan Fisika FKIP Universitas Jember email: schrodinger_risma@yahoo.com

Lebih terperinci

Teori Kinetik Zat. 1. Gas mudah berubah bentuk dan volumenya. 2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil.

Teori Kinetik Zat. 1. Gas mudah berubah bentuk dan volumenya. 2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil. Teori Kinetik Zat Teori Kinetik Zat Teori kinetik zat membicarakan sifat zat dipandang dari sudut momentum. Peninjauan teori ini bukan pada kelakuan sebuah partikel, tetapi diutamakan pada sifat zat secara

Lebih terperinci

Pilihan ganda soal dan jawaban teori kinetik gas 20 butir. 5 uraian soal dan jawaban teori kinetik gas.

Pilihan ganda soal dan jawaban teori kinetik gas 20 butir. 5 uraian soal dan jawaban teori kinetik gas. Pilihan ganda soal dan jawaban teori kinetik gas 20 butir. 5 uraian soal dan jawaban teori kinetik gas. A. Pilihlah salah satu jawaban yang paling tepat! 1. Partikel-partikel gas ideal memiliki sifat-sifat

Lebih terperinci

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( )

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( ) PENDAHULUAN FISIKA KUANTUM FI363 / 3 sks Asep Sutiadi (1974)/(0008097002) TUJUAN PERKULIAHAN Selesai mengikuti mata kuliah ini mahasiswa diharapkan mampu menjelaskan pada kondisi seperti apa suatu permasalahan

Lebih terperinci

Efek de Haas-Van Alphen

Efek de Haas-Van Alphen Efek de Haas-Van Alphen Diagmagnetisasi Landau pada suhu rendah menimbulkan efek osilasi dari susceptibilitas magnetik ketika medan magnet luar diturunkan, efek ini disebut efek de Haas-Van Alphen. Secara

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Struktur atom Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran

Lebih terperinci

IV. Entropi dan Hukum Termodinamika II

IV. Entropi dan Hukum Termodinamika II IV. Entropi dan Hukum ermodinamika II Perhatikan peristiwa sehari-hari di bawah ini: Juga perhatikan peristiwa yang dapat dilakukan di laboratorium: :: 2 (a) (b) (c) Peristiwa (a): benda pada suhu dalam

Lebih terperinci

PENGARUH EKSPANSI CEPAT ADIABATIS TERHADAP PERUBAHAN SUHU GAS IDEAL SKRIPSI

PENGARUH EKSPANSI CEPAT ADIABATIS TERHADAP PERUBAHAN SUHU GAS IDEAL SKRIPSI PLAGIA MERUPAKAN INDAKAN IDAK ERPUJI PENGARUH EKSPANSI CEPA ADIABAIS ERHADAP PERUBAHAN SUHU GAS IDEAL SKRIPSI Diaukan untuk memenuhi persyaratan Memperoleh gelar sarana sains (S.Si) Program studi fisika

Lebih terperinci

16 Mei 2017 Waktu: 120 menit

16 Mei 2017 Waktu: 120 menit OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM PERGURUAN TINGGI 2017 (ONMIPA-PT) Tingkat Nasional Bidang Fisika: FISIKA MODERN & MEKANIKA KUANTUM (Tes 4) 16 Mei 2017 Waktu: 120 menit Petunjuk

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

Karakteristik Limit dari Proses Kelahiran dan Kematian

Karakteristik Limit dari Proses Kelahiran dan Kematian Karakteristik Limit dari Proses Kelahiran dan Kematian Disusun guna memenuhi tugas mata kuliah Pengantar Proses Stokastik Disusun oleh : Saidun Nariswari Setya Dewi Lisa Apriana Marvina Puspito Nita Eka

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci