MATERI PELATIHAN GURU FISIKA SMA/MA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MATERI PELATIHAN GURU FISIKA SMA/MA"

Transkripsi

1 MATERI PELATIHAN GURU FISIKA SMA/MA a. Judul: Pembelajaran Gerak Rotasi dan Keseimbangan Benda Tegar Berbasis Koop untuk Meningkatkan Pemahaman Konsep Siswa SMA b. Kompetensi Dasar Setelah berpartisipasi dalam pelatihan ini diharapkan : 1) Para guru mampu memberikan inovasi pembelajaran untuk materi Gerak Rotasi dan Keseimbangan Benda Tegar untuk menciptakan pembelajaran yang menyenangkan 2) Implementasi pembelajaran mampu meningkatkan pemahaman konsep siswa tentang materi Gerak Rotasi dan keseimbangan benda Tegar c. Peta Konsep Rotasi benda tegar pengertian Sudut dan jarak kinematika Kecepatan sudut Momentum sudut torka Percepatan sudut Kekekalan momentum sudut Energi kinetik usaha d. Kata Kunci Rotasi benda tegar, sudut, jarak, kecepatan sudut, momentum sudut, torka, energi kinetik, usaha e. Strategi Pembelajaran Model : Diskusi dan kerja kelompok Metode : Diskusi Kelompok dan Pemacahan Masalah f. Media Pembelajaran : Power Point dan Animasi (Video) tentang Gerak Rotasi dan Keseimbangan Benda Tegar g. Materi Pembelajaran 1. Pengertian Benda tegar adalah sistem partikel yang mana posisi relatif partikel-partikelnya,satu dengan yang lainnya di dalam sistem, (dianggap) tetap. Akibatnya ketika benda ini berotasi terhadap suatu sumbu tetap, maka jarak setiap partikel dalam sistem terhadap sumbu rotasi akan selalu tetap. 1

2 Tinjau rotasi sebuah partikel dalam lintasan lingkaran dengan jejari r. Jarak yang telah ditempuh dalam selang waktu t adalah s terkait dengan sudut (dalam radian). Hubungan s dan diberikan oleh s = r. Untuk selang waktu yang sangat kecil maka besar kecepatan linier diberikan oleh: Δs Δθ = r Δt Δt 2. Kecepatan sudut Besaran θ disebut sebagai kecepatan sudut, yang arahnya diberikan oleh arah putar t tangan kanan, tegak lurus bidang lingkaran. Jadi hubungan antara kecepatan linier dengan kecepatan sudut diberikan oleh v = ω x r 3. Percepatan Sudut Percepatan sudut didefinisikan sebagai laju perubahan kecepatan sudut terhadap waktu ω t Hubungan antara percepatan linier dan percepatan sudut diberikan oleh 4. Kinematika rotasi dv dt = rdω dt = rα Karena persamaan-persamaan kinematika yang menghubungkan, dan bentuknya sama dengan persamaan-persamaan kinematika gerak linear, maka dengan memakai analogi ini akan diperoleh kaitan sebagai berikut untuk keceptan sudut konstan θ(t) = θ o + ωt dan kaitan-kaitan berikut untuk percepatan sudut konstan θ(t) = θ o + o t αt2 ω(t) = ω o + α t ω(t) 2 = ω o 2 + 2αθ 2

3 5. Momentum sudut Untuk memudahkan penyelidikan dan analisa terhadap gerak rotasi, didefinisikan beberapa besaran sebagai analog konsep gaya dan momentum. Pertama didefinisikan konsep momentum sudut l Momentum sudut suatu partikel yang memiliki momentum linear p dan berada pada posisi r dari suatu titik referensi O adalah l = r p Perlu diperhatikan bahwa nilai l bergantung pada pemilihan titik referensi O, nilainya dapat berubah bila digunakan titik referensi yang berbeda. 6. Torka Laju perubahan momentum sudut terhadap waktu didefinisikan sebagai besaran torka τ dl dt = d (r x p ) dt Karena bentuk Maka dr dt = dr dp x p + r x dt dt x p = v x mv = 0 τ = r x F = dl dt 7. Sistem partikel (rotasi) Untuk suatu sistem banyak partikel total momentum sudutnya diberikan oleh dengan l i adalah momentum sudut partikel ke-i. Total torka yang bekerja pada sistem ini 3

4 8. Torka internal dan eksternal Torka yang bekerja pada sistem dapat dikelompokkan menjadi dua jenis, torka internal yang bekerja pada partikel oleh partikel lain dalam sistem, dan torka eksternal yang berasal dari gaya eksternal. Karena prinsip aksi-reaksi, dan bila garis kerja gaya aksi-reaksi tersebut segaris maka total torka antara dua partikel i dan j 9. Kekekalan momentum sudut Sehingga total torka yang bekerja pada sistem partikel hanyalah torka eksternal, dan perubahan momentum sudut total sistem hanya bergantung pada torka eksternal Ketika tidak ada torka eksternal maka momentum sudut total sistem akan konstan. 10. Energi Kinetik Rotasi Kita tinjau suatu sistem partikel yang berotasi terhadap suatu sumbu tetap. Jarak setiap partikel terhadapa sumbu rotasi selalu tetap. Bila sistem partikel ini adalah benda tegar maka kesemua partikel akan bergerak bersama-sama dengan kecepatan sudut yang sama. Energi kinetik sistem partikel tersebut adalah Besaran yang ada dalam tanda kurung didefinisikan sebagai momen inersia I dari sistem relatif terhadap sumbu rotasi Bila bendanya kontinum, maka perumusan momen inersianya menjadi dengan r! 2 adalah jarak tegak lurus elemen massa dm ke sumbu putar 4

5 11. Teorema sumbu sejajar Tinjau sebuah benda seperti tampak pada gambar di bawah ini dengan titik pm adalah titik pusat massanya. Momen inersia bendaterhadap sumbu di titik P dan momen inersia terhadap sumbu yangsejajar tetapi melalui titik pusat massanya terkait sebagai berikut Tetapi Sehingga suku pertama tidak lain adalah (M adalah massa total benda), suku kedua adalah momen inersia terhadap pusat massa, sedangkan suku ketiga lenyap (karena tidak lain adalah posisi pusat massa ditinjau dari pusat massa). Sehingga 12. Teorema sumbu tegak lurus Tinjau benda pada gambar di bawah inikita ketahui bahwa 5

6 Jadi momen inersia terhadap suatu sumbu sama dengan jumlah momen inersia terhadap dua sumbu yang saling tegak terhadapnya 13. Usaha Definisi usaha untuk gerak rotasi sama dengan definisi usaha pada gerak linear. Sebuah partikel diberi gaya F. Partikel itu bergerak melingkar dengan lintasan yang berjejari r, menempuh lintasan sepanjang ds. Usaha yang dilakukan F adalah dw = F. ds Tetapi kita dapat menuliskan ds = dθ x r, sehingga dw = F. dθ x r = r x F. dθ = τ. dθ Tetapi usaha yang dilakukan sama dengan perubahan energi kinetik, sehingga Dengan dω=αdt dan dθ= ωdt, maka, maka kita peroleh τ = Iα 14. Kesetimbangan Benda Tegar Sebuah benda tegar berada dalam keadaan seimbang mekanis bila, relatif terhadap suatu kerangka acuan inersial a Percepatan linier pusat massanya nol. b Percepatan sudutnya mengelilingi sembarang sumbu tetap dalam kerangka acuan ini juga nol. Syarat Kesetimbangan Persyaratan pertama ekuivalen dengan persyaratan bahwa total gaya eksternal yang bekerja pada benda tegar sama dengan nol F eks = 0 Sedangkan persyaratan kedua ekuivalen dengan persyaratan bahwa total torka eksternal yang bekerja pada benda tegar sama dengan nol τ eks = 0 6

7 h. Latihan Soal dan Pembahasan 1. Sebuah cakram berputar dengan percepatan angular konstan α = 2 rad/s 2. Jika cakram mulai dari keadaan diam, berapa putara yang dibuat dalam 10 s? Pembahasan Persoalan ini adalah analog dengan persoalan linier untuk mencari jarak yang ditempuh partikel dalam suatu waktu tertentu jika benda mulai dari keadaan diam dengan percepatan konstan. Jumlah putaran dihubungkan dengan perpindahan angular dari difinis bahwa tiap putaran adalah perpindahan angular sebesar 2π rad. Jadi, kita perlu mencari perpindahan angular θ θ 0 dalam radian untuk waktu10 s da mengalikannya dengan faktor konversi (1 put)/(2π rad). Kita tahu ω 0 = 0 (cakram mulai dari keadaan diam). Jadi, θ θ 0 = θ 0 t αt2 = (2 rad/s2 )(10 s) 2 = 10 rad Karena itu jumlah putaran adalah 100 rad x 1 putaran 2πrad = 15,9 putaran Carilah kelajua angular dari cakram pada contoh 1 setelah 10 s. Kita dapatkan ω = ω 0 + αt = 0 + (2 rad/s 2 )(10 s) = 20 rad/s Untuk memeriksa hasil ini dan juga contoh yang lalu, kita juga dapat mencari kelajuan angular: Atau ω 2 = 2α(θ θ 0 ) = 2(2 rad/s 2 )(100 s) = 400 rad 2 /s 2 ω = 400 rad2 s 2 = 20 rad/s 2. Empat partikel bermassa m dihubungkan oleh batang tak bermassa hingga membentuk segi empat dengan sisi 2a dan 2b seperti ditunjukan pada gambar. Sistem berputar terhadap sebuah sumbu dalam bidang gambar yang melalui pusatnya. Carilah momen inersia terhadap sumbu ini. Dari gambar, kita dapat melihat bahwa jarak dari tiap partikel kesumbu putar adalah a. Karena itu, momen inersia tiap partikel terhadap sumbu ini dalah ma 2, dan karena ada empat partikel, momen inersia total benda adalah I = 4ma 2 7

8 Gambar Empat pertikel bermassa dihubungkan dengan oleh batag tak bermassa dan brotasi melalui sumbu yang melalui bidabg partikel-partikel itu dan melalui pusat massa Jarak b sama sekali tidak berperan karena tidak dihubungka dengan jarak dari tiap massa ke sumbu putar. 3. Sebuah tali dililitkan mengelilingi tepi cakram uniform yag diputar hingga berotasi tanpa gesekan terhadap suatu sumbu tetap yang melalui pusatnya. Massa cakram adalah 3 kg, dan jari-jarinya adalah 25 cm. Tali ditarik dengan gaya F yang besarnya 10 N (Lihat Gambar). Jika cakaram mula-mula diam berapakah kecepatan angularnya setelah 5 s? Momen inersia cakram uniform cakram terhadap sumbunya adalah I = 1 2 MR2 = 1 1 (3kg)(0,25 m)2 = 9,38 x 10 2 kg m 2 karena arah tali pada saat tali meninggalkan tepi cakram adalah selalu tagensial terhadap cakram. Lengan gaya yang dikerjakannya adalah R. Jadi torsi luar adalah Gambar sebuah tali yang dililitkan mengelilingi cakram. τ = FR = (10 N)(0,25 m) = 2,5 N.m untuk mendapatkan kecepatan angular, mula-mula kita harus mendapatkan percepatan angular dari hukum kedua Newton untuk gerak = τ netto I = 2,5 N.m 0,0938 Kg.m 2 = 26,7 rad/s2 Karena α konstan kita dapatkan ω dari persamaan 8-8 dengan mengambil ω 0 = 0 : ω = ω 0 + αt = 0 + (26,7 rad/s 2 )(5 s) = 133 rad/s 4. Sebuah benda bermassa m dikaitkan pada tali ringan yang dililitkan mengelilingi sebuah roda dengan momen inersia I dan jari-jari R (lihat gambar). Bantalan roda adalah licin, dan tali tidak selip di tepinya. Carilah tegangan tali dan percepatan benda. Satu-satunya gaya yang bekerja pada roda adalah tegangan tali T, yang mempunyai lengan R dan menghasilkan rotasi searah jarum jam. Dengan mengambil arah jarum sebagai arah positif, kita dapatkan TR = Iα Gambar sebuah tali yang dililitkan mengelilingi cakram. Dua buah gaya yang bekerja pada benda yang digantung, tegangan ke atas T dan gaya gravitasi ke bawah mg. Dengan mengambil arah ke bawah adalah positif. Agar a dan α 8

9 mempunyai tanda yang sama. Dari huku kedua Newton kita dapatkan mg T = ma Ada tiga besaran yang tidak diketahui, T, a dan α dalam kedua persamaan ini. Tali merupakan kendala yang menyebabkan kita dapat menghubungkan a dan α. Karena tali tidak selip, kelajuanya sama dengan percepatan tengansial titik pada tepi roda. Jadi percepatannya adalah A = Rα Denga mensubtitusi a/r untuk α kita dapatkan TR = I a R a = TR2 I Subtitusi hasil ini untuk adalam Persamaan 8-20 menghasilkan Atau mg T = m TR2 I T (1 + mr2 ) = mg I T = I I + mr 2 = mg Kita dapat menggunakan untuk T dalam persamaan 8-22 untuk mendaptkan a : a = mr2 I + mr 2 g 5. Sebuah cakram uniform yang bermassa 3 kg dan berjari-jari 12 cm berputar 480 put/men. Hitunglah energi kinetiknya. Dari Tabel 8-1, momen inersia cakram uniform diberikan oleh I = 1 2 mr2 = 1 2 (3 kg)(0,12 m)2 = 0,0216 kg. m 2 Kecepatan angularnya adalah 480 putaran 2π rad ω = ( ) ( ) = 50,3 rad/s 60 s 1 putaran Dengan demikian, energi kinetik adalah K = 1 2 Iω2 = 1 (0,,0216 kg. 2 m2 ) (50,3 rad/s) 2 = 27,3 J 9

10 Perhatikan bahwa kita menghilagkan satuan tak berdimensi radian dan dan menggunakan 1 kg.m 2 /s 2 = 1 J. 6. Mesin sebuah mobil menghasilkan torsi 380 N.m pada 3200 put/men. Hitunglah daya keluaran mesin ini. Kelajuan angular yang sesuai dengan 3200 put/men adalah 3200 putaran 2π rad menit ω = ( ) ( ) (1 ) = 335 rad/s 1 menit 1 putaran 60 s Daya keluaran mesin diberikan P = τω(380 N. m)(335 rad s) = 127 kw 7. Carilah momen inersia cincin bermassa M dan berjari-jari R terhadap sumbu yang melalui pusatnya da tegak lurus bidang cincin Dalam kasus ini, semua massa berada pada jarak r = R sehigga momen inersianya adalah I = r 2 dm = R 2 dm = MR 2 Gambar 8-8 sebuah cincin berotasi terhadap sumbu yang tegak lurus pada bidang cincin dan melalui pusatnya. Karena semua massa cincin berada pada jarak R dari sumbu ini, momen inersianya adalah MR 2 8. Carilah momen inersia sebuah batang dengan kerapatan uniform terhadap sumbu yang tegak lurus batang melalui salah stu ujungnya. Elemen massa dm ditunjukkan pada Gambar 8-9. Elemen ini berada pada jarak x dari sumbu putar. Karena massa total M didistribusikan secara uniform sepanjag L, kerapatan massa linier adalah ρ = M/L. Jadi, dm = ρ dx = (M L)dx. Momen inersia terhadap sumbu y adalah Gambar geometri untuk menyusun integral untuk menghitung momen inersia batang terhadap sumbu yang tegak lurus batang dan memlalui salah satu ujungnya L I y = x 2 L dm = 0 x 2 M dx = M L L L x2 dx 0 0 = M L L 1 3 x3 = ML3 3L = 1 ML

11 Momen inersia terhadap sumbu z juga 1 3 ML2, dan momen inersia terhadap sumbu x adalah nol, jika semua massa berada pada sumbu x. 9. Carilah momen inersia cakram uniform terhadap sumbu yang melewati pusatnya dan tagak lurus bidang cakram. Kita menduga bahwa I akan lebih kecil dari pada MR 2 karea massa cakram tidak terkonsentrasi di r = R seperti pada cincin, melainkan terdistribus secara uniform dari r = 0 sampai r = R. Kita harus hitung I dengan mengambil elemen massa dm yang ditunjukkan pada Gambar Tiap elemen massa adalah sebuah cincin berjari-jari r yang tebalnya dr. Momen inersiabtiap elemen adalah r 2 dm. Karena luas tiap elemen adalah da = 2πr 2 dr. Maka massa tiap elemen adalah Gambar 8-10 geometri untuk menyusun integral untuk menghitung momen inersia cakram yag uniform yang berputar tehadap sebuah sumbu yang melalui pusatnya dan tegak lurus bidang cakram. dm = M da = M 2π dr A A Dengan A= πr 2 adalah luas cakaram, jadi kita dapatkan I = r 2 dm = r 2 M 2πr dr A = 2πM πr 2 0 R 0 L r3 dr = 2M R 2 R 4 4 = 1 2 MR2 10. Soal-soal pilihan ganda 1. Sebuah mesin mobil menghasilkan daya 3π 2 x 10 4 W ketika berputar pada laju 1800 putaran per menit. Momen gaya yang dihasilkan sebesar A. 500 N.m B. 450 N.m C. 400 N.m D. 350 N. m E. 300 N.m 2. Dua buah partikel identik masing-masing bermassa 2 kg dihubungkan oleh batang tipis tak bermassa (panjang batang 4 m). Sistem berputar pada sebuah sumbu tegak lurus batang yang berjarak 1 m dari salah satu partikel. Momen inersia sistem adalah... A. 4 kg m 2 B. 5,3 kg m 2 C. 20 kg m 2 D. 32 kg m 2 E. 36 kg m 2 11

12 3. Roda sepeda dengan momen inersia I = 1 kg m 2 semula tidak berputar, jika sebuah torka sebesar 10 N.m bekerja padanya selama 10 s, maka kecepatan sudut setelah 10 s adalah... A. 50 rad/s B. 100π rad/s C. 100 rad/s D. 500 rad/s E rad/s 4. Sebuah benda bermassa 1 kg diikat dengan tali sepanjang 1 m dan berputar di atas permukaan bidang yang licin dengan kecepatan sudut 0,5 rad/s. Momen gaya yang dikerahkan oleh tegangan tali adalah... A. 0 N. M B. 0,25 N. M C. 0,5 N. M D. 1,5 N. M E. 2 N. M 5. Dua beban dengan massa 5,0 kg dan 7,0 kg diletakkan dengan jarak 4,0m satu sama lain pada sebuah batang yang ringan (yang massanya dapat diabaikan). Hitung momen inersia sistem ketika dirotasikan sekitar sebuah sumbu yang berada di tengah antara kedua beban tersebut. A. 48 kg m 2 B. 50 kg m 2 C. 58 kg m 2 D. 60 kg m 2 E. 68 kg m Sumber Referensi Douglas C. Giancolli. (2001). Fisika. Edisi Kelima. Jakarta: Penerbit Erlangga Paul M. Fishbane, et. al. (Physics for Scientists and Engineers with Modern Physics Paul A. Tipler. (2000). Physics for Scientists and Engineers, 5e 12

13 MATERI PELATIHAN GURU FISIKA SMA/MA BIDANG FISIKA Materi Disampaikan Dalam Rangka Pelatihan Mata Pelajaran Fisika SMA/MA Program Pascasarjana UNY Bekerjasama dengan DIKTI di Hotel UNY pada Tanggal Mei 2012 Oleh Dr. Insih Wilujeng PROGRAM PASCASARJANA UNY

14 14

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/36 FISIKA DASAR (TEKNIK SISPIL) BENDA TEGAR Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Rotasi Benda Tegar Benda tegar adalah sistem partikel yang

Lebih terperinci

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1 Jurusan Fisika-Unej BENDA TEGAR Kuliah FI-1101 Fisika 004 Dasar Dr. Linus Dr Pasasa Edy Supriyanto MS Bab 6-1 Jurusan Fisika-Unej Bahan Cakupan Gerak Rotasi Vektor Momentum Sudut Sistem Partikel Momen

Lebih terperinci

4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D

4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D 9:4:04 Posisi, Kecepatan dan Percepatan Angular 9:4:04 Partikel di titik P bergerak melingkar sejauh θ. Besarnya lintasan partikelp (panjang busur) sebanding sebanding dengan: s = rθ Satu keliling lingkaran

Lebih terperinci

Gerak rotasi: besaran-besaran sudut

Gerak rotasi: besaran-besaran sudut Gerak rotasi Benda tegar Adalah kumpulan benda titik dengan bentuk yang tetap (jarak antar titik dalam benda tersebut tidak berubah) Gerak benda tegar dapat dipandang sebagai gerak suatu titik tertentu

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

GERAK BENDA TEGAR. Kinematika Rotasi

GERAK BENDA TEGAR. Kinematika Rotasi GERAK BENDA TEGAR Benda tegar adalah sistem benda yang terdiri atas sistem benda titik yang jumlahnya tak-hinggadan jika ada gaya yang bekerja, jarak antara titik-titik anggota sistem selalu tetap. Gerak

Lebih terperinci

Dari gamabar diatas dapat dinyatakan hubungan sebagai berikut.

Dari gamabar diatas dapat dinyatakan hubungan sebagai berikut. Pengertian Gerak Translasi dan Rotasi Gerak translasi dapat didefinisikan sebagai gerak pergeseran suatu benda dengan bentuk dan lintasan yang sama di setiap titiknya. gerak rotasi dapat didefinisikan

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI Momen gaya : Simbol : τ Momen gaya atau torsi merupakan penyebab benda berputar pada porosnya. Momen gaya terhadap suatu poros tertentu

Lebih terperinci

C. Momen Inersia dan Tenaga Kinetik Rotasi

C. Momen Inersia dan Tenaga Kinetik Rotasi C. Momen Inersia dan Tenaga Kinetik Rotasi 1. Sistem Diskrit Tinjaulah sistem yang terdiri atas 2 benda. Benda A dan benda B dihubungkan dengan batang ringan yang tegar dengan sebuah batang tegak yang

Lebih terperinci

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus BAB 7. GERAK ROTASI 7.1. Pendahuluan Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus Sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut

Lebih terperinci

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Fisika Kelas XI SCI Semester I Oleh: M. Kholid, M.Pd. 43 P a g e 6 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Kompetensi Inti : Memahami, menerapkan, dan

Lebih terperinci

FISIKA XI SMA 3

FISIKA XI SMA 3 FISIKA XI SMA 3 Magelang @iammovic Standar Kompetensi: Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar: Merumuskan hubungan antara konsep torsi,

Lebih terperinci

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi Fisika Umum (MA101) Topik hari ini: Kinematika Rotasi Hukum Gravitasi Dinamika Rotasi Kinematika Rotasi Perpindahan Sudut Riview gerak linear: Perpindahan, kecepatan, percepatan r r = r f r i, v =, t a

Lebih terperinci

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2 Pembahasan UAS 2013 1. Sebuah cakram homogen berjari-jari 0,3 m pada titik tengahnya terdapat sebuah poros mendatar dan tegak lurus dengan cakram. Seutas tali dililitkan melingkar pada sekeliling cakram

Lebih terperinci

(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh:

(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh: a 1.16. Dalam sistem dibawah ini, gesekan antara m 1 dan meja adalah µ. Massa katrol m dan anggap katrol tidak slip. Abaikan massa tali, hitung usaha yang dilakukan oleh gaya gesek selama t detik pertama!

Lebih terperinci

Bab 6 Momentum Sudut dan Rotasi Benda Tegar

Bab 6 Momentum Sudut dan Rotasi Benda Tegar Bab 6 Momentum Sudut dan Rotasi Benda Tegar A. Torsi 1. Pengertian Torsi Torsi atau momen gaya, hasil perkalian antara gaya dengan lengan gaya. r F Keterangan: = torsi (Nm) r = lengan gaya (m) F = gaya

Lebih terperinci

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2 Pembahasan UAS 2014 1. Sebuah cakram homogen berjari-jari 0,3 m pada titik tengahnya terdapat sebuah poros mendatar dan tegak lurus dengan cakram. Seutas tali dililitkan melingkar pada sekeliling cakram

Lebih terperinci

FIsika DINAMIKA ROTASI

FIsika DINAMIKA ROTASI KTS & K- Fsika K e l a s X DNAMKA ROTAS Tujuan embelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami konsep momen gaya dan momen inersia.. Memahami teorema sumbu

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

BAB 1 Keseimban gan dan Dinamika Rotasi

BAB 1 Keseimban gan dan Dinamika Rotasi BAB 1 Keseimban gan dan Dinamika Rotasi titik berat, dan momentum sudut pada benda tegar (statis dan dinamis) dalam kehidupan sehari-hari.benda tegar (statis dan Indikator Pencapaian Kompetensi: 3.1.1

Lebih terperinci

DINAMIKA ROTASI DAN KESETIMBANGAN

DINAMIKA ROTASI DAN KESETIMBANGAN FIS A. BENDA TEGAR Benda tegar adalah benda yang tidak mengalami perubahan bentuk dan volume selama bergerak. Benda tegar dapat mengalami dua macam gerakan, yaitu translasi dan rotasi. Gerak translasi

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN 37 BAB IV HASIL PENELITIAN A. Deskripsi Objek Penelitian Objek penelitian ini adalah konsep-konsep Fisika pada materi Dinamika Rotasi Benda Tegar yang terdapat dalam 3 buku SMA kelas XI yang diteliti yaitu

Lebih terperinci

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh

Lebih terperinci

SOAL SOAL FISIKA DINAMIKA ROTASI

SOAL SOAL FISIKA DINAMIKA ROTASI 10 soal - soal fisika Dinamika Rotasi SOAL SOAL FISIKA DINAMIKA ROTASI 1. Momentum Sudut Seorang anak dengan kedua lengan berada dalam pangkuan sedang berputar pada suatu kursi putar dengan 1,00 putaran/s.

Lebih terperinci

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda 1 Benda tegar Pada pembahasan mengenai kinematika, dinamika, usaha dan energi, hingga momentum linear, benda-benda yang bergerak selalu kita pandang sebagai benda titik. Benda yang berbentuk kotak misalnya,

Lebih terperinci

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR 80 BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Benda tegar adalah benda yang dianggap sesuai dengan dimensi ukuran sesungguhnya dengan jarak antar partikel penyusunnya tetap. Ketika benda tegar

Lebih terperinci

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi)

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi) Gerak Rotasi Momen Inersia Terdapat perbedaan yang penting antara masa inersia dan momen inersia Massa inersia adalah ukuran kemalasan suatu benda untuk mengubah keadaan gerak translasi nya (karena pengaruh

Lebih terperinci

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu :

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : BAB VI KESEIMBANGAN BENDA TEGAR Standar Kompetensi 2. Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar 2.1 Menformulasikan hubungan antara konsep

Lebih terperinci

Bab VI Dinamika Rotasi

Bab VI Dinamika Rotasi Bab VI Dinamika Rotasi Sumber : Internet : www.trade center.com Adanya gaya merupakan faktor penyebab terjadinya gerak translasi. Bianglala yang berputar terjadi karena kecenderungan untuk mempertahankan

Lebih terperinci

Momen inersia yaitu ukuran kelembapan suatu benda untuk berputar. Rumusannya yaitu sebagai berikut:

Momen inersia yaitu ukuran kelembapan suatu benda untuk berputar. Rumusannya yaitu sebagai berikut: Momen Gaya Momen gaya merupakan salah satu bentuk usaha dengan salah satu titik sebagai titik acuan. Momen gaya merupakan hasil kali gaya dan jarak terpendek arah garis kerja terhadap titik tumpu. Momen

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT 1. VEKTOR Jika diketahui vektor A = 4i 8j 10k dan B = 4i 3j + 2bk. Jika kedua vektor tersebut saling tegak lurus, maka tentukan

Lebih terperinci

RENCANA PEMBELAJARAN GERAK ROTASI UNTUK SMU KELAS 2 SEMESTER 2. Disusun Oleh SAEFUL KARIM

RENCANA PEMBELAJARAN GERAK ROTASI UNTUK SMU KELAS 2 SEMESTER 2. Disusun Oleh SAEFUL KARIM RENCANA PEMBELAJARAN GERAK ROTASI UNTUK SMU KELAS 2 SEMESTER 2 Disusun Oleh SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI 2003 RENCANA PEMBELAJARAN GERAK ROTASI Mata Pelajaran Kelas/Semester Satuan

Lebih terperinci

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik.

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. Kompetensi Dasar Menganalisis besaran fisika pada gerak dengan kecepatan dan percepatan konstan.

Lebih terperinci

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s².

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s². Hukum newton hanya memberikan perumusan tentang bagaimana gaya mempengaruhi keadaan gerak suatu benda, yaitu melalui perubahan momentumnya. Sedangkan bagaimana perumusan gaya dinyatakan dalam variabelvariabel

Lebih terperinci

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR

BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR 85 BAB 3 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Benda tegar adalah benda yang dianggap sesuai dengan dimensi ukuran sesungguhnya di mana jarak antar partikel penyusunnya tetap. Ketika benda tegar

Lebih terperinci

BAB. 6 DINAMIKA ROTASI DAN KESETIMBAGAN BENDA TEGAR A. MOMEN GAYA DAN MOMEN INERSIA

BAB. 6 DINAMIKA ROTASI DAN KESETIMBAGAN BENDA TEGAR A. MOMEN GAYA DAN MOMEN INERSIA BAB. 6 DINAMIKA OTASI DAN KESETIMBAGAN BENDA TEGA A. MOMEN GAYA DAN MOMEN INESIA 1. Momen Gaya Benda hanya dapat mengaami perubahan gerak rotasi jika pada benda tersebut diberi momen gaya, dengan adanya

Lebih terperinci

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1 . Pengantar a. Hubungan Gerak Melingkar dan Gerak Lurus Gerak melingkar adalah gerak benda yang lintasannya berbentuk lingkaran dengan jari jari r Kedudukan benda ditentukan berdasarkan sudut θ dan jari

Lebih terperinci

Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule.

Satuan dari momen gaya atau torsi ini adalah N.m yang setara dengan joule. Gerak Translasi dan Rotasi A. Momen Gaya Momen gaya merupakan salah satu bentuk usaha dengan salah satu titik sebagai titik acuan. Misalnya anak yang bermain jungkat-jungkit, dengan titik acuan adalah

Lebih terperinci

5. Tentukanlah besar dan arah momen gaya yang bekerja pada batang AC dan batang AB berikut ini, jika poros putar terletak di titik A, B, C dan O

5. Tentukanlah besar dan arah momen gaya yang bekerja pada batang AC dan batang AB berikut ini, jika poros putar terletak di titik A, B, C dan O 1 1. Empat buah partikel dihubungkan dengan batang kaku yang ringan dan massanya dapat diabaikan seperti pada gambar berikut: Jika jarak antar partikel sama yaitu 40 cm, hitunglah momen inersia sistem

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 5 MOMEN INERSIA

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 5 MOMEN INERSIA LAPORAN PRAKTIKUM FISIKA DASAR MODUL 5 MOMEN INERSIA Nama : Lukman Santoso NPM : 240110090123 Tanggal / Jam Asisten : 17 November 2009/ 15.00-16.00 WIB : Dini Kurniati TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN

Lebih terperinci

GERAK ROTASI. Hoga saragih. hogasaragih.wordpress.com

GERAK ROTASI. Hoga saragih. hogasaragih.wordpress.com GERAK ROTASI Hoga saragih Benda tegar yang dimaksud adalah benda dengan bentuk tertentu yang tidak berubah, sehinga partikelpartikel pembentuknya berada pada posisi tetap relatif satu sama lain. Tentu

Lebih terperinci

Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu GERAK MELINGKAR BERATURAN

Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu GERAK MELINGKAR BERATURAN 3 GEAK MELINGKA BEATUAN Kincir raksasa melakukan gerak melingkar. Sumber: Kompas, 20 Juli 2006 Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu benda bergerak pada garis lurus, gerak

Lebih terperinci

FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO

FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO Departemen Fisika Universitas Airlangga, Surabaya E-mail address, P. Carlson: i an cakep@yahoo.co.id URL: http://www.rosyidadrianto.wordpress.com Puji syukur

Lebih terperinci

BAB IX MEKANIKA BENDA TEGAR

BAB IX MEKANIKA BENDA TEGAR BAB IX MEKANIKA BENDA TEGAR MEKANIKA BENDA TEGAR Benda tegar adalah sistem benda yang terdiri dari sistem-sistem benda titik yang tak hingga banyaknya dan jika ada benda yang bekerja padanya jarak antara

Lebih terperinci

DINAMIKA. Massa adalah materi yang terkandung dalam suatu zat dan dapat dikatakan sebagai ukuran dari inersia(kelembaman).

DINAMIKA. Massa adalah materi yang terkandung dalam suatu zat dan dapat dikatakan sebagai ukuran dari inersia(kelembaman). DINAMIKA Konsep Gaya dan Massa Massa adalah materi yang terkandung dalam suatu zat dan dapat dikatakan sebagai ukuran dari inersia(kelembaman). Gaya adalah penyebab terjadi gerakan pada benda. Konsep Gaya

Lebih terperinci

TEST KEMAMPUAN DASAR FISIKA

TEST KEMAMPUAN DASAR FISIKA TEST KEMAMPUAN DASAR FISIKA Jawablah pertanyaan-pertanyaan di bawah ini dengan pernyataan BENAR atau SALAH. Jika jawaban anda BENAR, pilihlah alasannya yang cocok dengan jawaban anda. Begitu pula jika

Lebih terperinci

Gerak Melingkar Pendahuluan

Gerak Melingkar Pendahuluan Gerak Melingkar Pendahuluan Gerak roda kendaraan, gerak CD, VCD dan DVD, gerak kendaraan di tikungan yang berbentuk irisan lingkaran, gerak jarum jam, gerak satelit mengitari bumi, dan sebagainya adalah

Lebih terperinci

BAB 13 MOMEN INERSIA Pendahuluan

BAB 13 MOMEN INERSIA Pendahuluan BAB 13 MOMEN INERSIA 13.1. Pendahuluan Pada pembahasan mengenai Torsi, gurumuda sudah menjelaskan pengaruh torsi terhadap gerakan benda yang berotasi. semakin besar torsi, semakin besar pengaruhnya terhadap

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

PENGARUH PERBEDAAN PANJANG POROS SUATU BENDA TERHADAP KECEPATAN SUDUT PUTAR

PENGARUH PERBEDAAN PANJANG POROS SUATU BENDA TERHADAP KECEPATAN SUDUT PUTAR PENGARUH PERBEDAAN PANJANG POROS SUATU BENDA TERHADAP KECEPATAN SUDUT PUTAR Sri Jumini 1, Lilis Muhlisoh 2 1,2) Prodi Pendidikan Fisika, FITK UNSIQ Wonosobo jawa Tengah Email : umyfadhil@yahoo.com ABSTRAK

Lebih terperinci

Pelatihan Ulangan Semester Gasal

Pelatihan Ulangan Semester Gasal Pelatihan Ulangan Semester Gasal A. Pilihlah jawaban yang benar dengan menuliskan huruf a, b, c, d, atau e di dalam buku tugas Anda!. Perhatikan gambar di samping! Jarak yang ditempuh benda setelah bergerak

Lebih terperinci

Latihan I IMPULS MOMENTUM DAN ROTASI

Latihan I IMPULS MOMENTUM DAN ROTASI Latihan I IMPULS MOMENTUM DAN ROTASI 1. Bola bergerak jatuh bebas dari ketinggian 1 m lantai. Jika koefisien restitusi = ½ maka tinggi bola setelah tumbukan pertama A. 50 cm B. 25 cm C. 2,5 cm D. 12,5

Lebih terperinci

Karena hanya mempelajari gerak saja dan pergerakannya hanya dalam satu koordinat (sumbu x saja atau sumbu y saja), maka disebut sebagai gerak

Karena hanya mempelajari gerak saja dan pergerakannya hanya dalam satu koordinat (sumbu x saja atau sumbu y saja), maka disebut sebagai gerak BAB I. GERAK Benda dikatakan melakukan gerak lurus jika lintasan yang ditempuhnya membentuk garis lurus. Ilmu Fisika yang mempelajari tentang gerak tanpa mempelajari penyebab gerak tersebut adalah KINEMATIKA.

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 2 PESAWAT ATWOOD

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 2 PESAWAT ATWOOD LAPORAN PRAKTIKUM FISIKA DASAR MODUL 2 PESAWAT ATWOOD Nama : Nova Nurfauziawati NPM : 240210100003 Tanggal / jam : 2 Desember 2010 / 13.00-15.00 WIB Asisten : Dicky Maulana JURUSAN TEKNOLOGI INDUSTRI PANGAN

Lebih terperinci

bermassa M = 300 kg disisi kanan papan sejauh mungkin tanpa papan terguling.. Jarak beban di letakkan di kanan penumpu adalah a m c m e.

bermassa M = 300 kg disisi kanan papan sejauh mungkin tanpa papan terguling.. Jarak beban di letakkan di kanan penumpu adalah a m c m e. SOAL : 1. Empat buah gaya masing-masing : F 1 = 100 N F 2 = 50 N F 3 = 25 N F 4 = 10 N bekerja pada benda yang memiliki poros putar di titik P. Jika ABCD adalah persegi dengan sisi 4 meter, dan tan 53

Lebih terperinci

BAB III GERAK MELINGKAR BERATURAN DAN GERAK MELINGKAR BERUBAH BERATURAN

BAB III GERAK MELINGKAR BERATURAN DAN GERAK MELINGKAR BERUBAH BERATURAN BAB III GERAK MELINGKAR BERATURAN DAN GERAK MELINGKAR BERUBAH BERATURAN A. KOMPETENSI DASAR : 3.. Memprediksi besaran-besaran fisika pada gerak melingkar beraturan dan gerak melingkar berubah beraturan.

Lebih terperinci

KINEMATIKA GERAK 1 PERSAMAAN GERAK

KINEMATIKA GERAK 1 PERSAMAAN GERAK KINEMATIKA GERAK 1 PERSAMAAN GERAK Posisi titik materi dapat dinyatakan dengan sebuah VEKTOR, baik pada suatu bidang datar maupun dalam bidang ruang. Vektor yang dipergunakan untuk menentukan posisi disebut

Lebih terperinci

Mengukur Kebenaran Konsep Momen Inersia dengan Penggelindingan Silinder pada Bidang Miring

Mengukur Kebenaran Konsep Momen Inersia dengan Penggelindingan Silinder pada Bidang Miring POSDNG SKF 16 Mengukur Kebenaran Konsep Momen nersia dengan Penggelindingan Silinder pada Bidang Miring aja Muda 1,a), Triati Dewi Kencana Wungu,b) Lilik Hendrajaya 3,c) 1 Magister Pengajaran Fisika Fakultas

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

FISIKA DASAR MIRZA SATRIAWAN

FISIKA DASAR MIRZA SATRIAWAN FISIKA DASAR MIRZA SATRIAWAN November 6, 2007 Daftar Isi 1 Pendahuluan 4 1.1 Besaran dan Pengukuran..................... 4 1.2 Vektor............................... 7 1.2.1 Penjumlahan Vektor...................

Lebih terperinci

PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/ Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume

PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/ Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume PREDIKSI UAS 1 FISIKA KELAS X TAHUN 2013/2014 A. PILIHAN GANDA 1. Besaran-besaran berikut yang merupakan besaran pokok adalah a. Panjang, lebar,luas,volume d. Panjang, lebar, tinggi, tebal b. Kecepatan,waktu,jarak,energi

Lebih terperinci

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω =

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω = v adalah kecepatan bola A: v = ωr. ω adalah kecepatan sudut bola A terhadap sumbunya (sebenarnya v dapat juga ditulis sebagai v = d θ dt ( + r), tetapi hubungan ini tidak akan kita gunakan). Hukum kekekalan

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

Statika dan Dinamika

Statika dan Dinamika Statika dan Dinamika Dinamika Dinamika adalah mempelajari tentang gerak dengan menganalisis penyebab gerak tersebut. Dinamika meliputi: Hubungan antara massa dengan gaya : Hukum Newton tentang gerak. Momentum,

Lebih terperinci

3.6.1 Menganalisis momentum sudut pada benda berotasi Merumuskan hukum kekekalan momentum sudut.

3.6.1 Menganalisis momentum sudut pada benda berotasi Merumuskan hukum kekekalan momentum sudut. I. Kompetensi Inti KI 1: Menghayati dan mengamalkan ajaran agama yang dianutnya. KI 2: Menghayati dan mengamalkan perilaku jujur, disiplin, tanggung jawab, peduli (gotong royong, kerja sama, toleran, damai),

Lebih terperinci

MAKALAH MOMEN INERSIA

MAKALAH MOMEN INERSIA MAKALAH MOMEN INERSIA A. Latar belakang Dalam gerak lurus, massa berpengaruh terhadap gerakan benda. Massa bisa diartikan sebagai kemampuan suatu benda untuk mempertahankan kecepatan geraknya. Apabila

Lebih terperinci

1. a) Kesetimbangan silinder m: sejajar bidang miring. katrol licin. T f mg sin =0, (1) tegak lurus bidang miring. N mg cos =0, (13) lantai kasar

1. a) Kesetimbangan silinder m: sejajar bidang miring. katrol licin. T f mg sin =0, (1) tegak lurus bidang miring. N mg cos =0, (13) lantai kasar 1. a) Kesetimbangan silinder m: sejajar bidang miring katrol licin T f mg sin =0, (1) tegak lurus bidang miring N mg cos =0, (2) torka terhadap pusat silinder: TR fr=0. () Dari persamaan () didapat T=f.

Lebih terperinci

Antiremed Kelas 10 FISIKA

Antiremed Kelas 10 FISIKA Antiremed Kelas 10 FISIKA Gerak Melingkar Beraturan PG Doc Name: AR10FIS098 Doc. Version: 01-09 halaman 1 01. Jika suatu benda sedang bergerak pada kelajuan tetap dalam suatu lingkaran, maka... Kecepatan

Lebih terperinci

Kinematika Gerak KINEMATIKA GERAK. Sumber:

Kinematika Gerak KINEMATIKA GERAK. Sumber: Kinematika Gerak B a b B a b 1 KINEMATIKA GERAK Sumber: www.jatim.go.id Jika kalian belajar fisika maka kalian akan sering mempelajari tentang gerak. Fenomena tentang gerak memang sangat menarik. Coba

Lebih terperinci

Pilihlah jawaban yang paling benar!

Pilihlah jawaban yang paling benar! Pilihlah jawaban yang paling benar! 1. Besarnya momentum yang dimiliki oleh suatu benda dipengaruhi oleh... A. Bentuk benda B. Massa benda C. Luas penampang benda D. Tinggi benda E. Volume benda. Sebuah

Lebih terperinci

GuruMuda.Com. Konsep, Rumus dan Kunci Jawaban ---> Alexander San Lohat 1

GuruMuda.Com. Konsep, Rumus dan Kunci Jawaban ---> Alexander San Lohat  1 Indikator 1 : Membaca hasil pengukuran suatu alat ukur dan menentukan hasil pengukuran dengan memperhatikan aturan angka penting. Pengukuran dasar : Pelajari cara membaca hasil pengukuran dasar. dalam

Lebih terperinci

BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR

BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR BAB DNAMKA OTAS DAN KESEMBANGAN BENDA TEGA. SOA PHAN GANDA. Dengan menetapkan arah keluar bidang kertas, sebagai arah Z positif dengan vektor satuan k, maka torsi total yang bekerja pada batang terhadap

Lebih terperinci

KHAIRUL MUKMIN LUBIS IK 13

KHAIRUL MUKMIN LUBIS IK 13 Fakultas Perikanan - KESETIMBANGAN Kondisi benda setelah menerima gaya-gaya luar SEIMBANG : Bila memenuhi HUKUM NEWTON I Resultan Gaya yang bekerja pada benda besarnya sama dengan nol sehingga benda tersebut

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

Matematika Teknik Dasar-2 11 Aplikasi Integral - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 11 Aplikasi Integral - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 11 Aplikasi Integral - 2 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Momen Inersia Energi yang dimiliki benda karena pergerakannya disebut Energi Kinetik

Lebih terperinci

GMBB. SMA.GEC.Novsupriyanto93.wordpress.com Page 1

GMBB. SMA.GEC.Novsupriyanto93.wordpress.com Page 1 1. Sebuah benda bermassa 1 kg berputar dengan kecepatan sudut 120 rpm. Jika jari-jari putaran benda adalah 2 meter percepatan sentripetal gerak benda tersebut adalah a. 32π 2 m/s 2 b. 42 π 2 m/s 2 c. 52π

Lebih terperinci

MODUL. DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KOTA MATARAM SMA NEGERI 1 MATARAM JL. PENDIDIKAN NO. 21 TELP/Fax. (0370) MATARAM

MODUL. DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KOTA MATARAM SMA NEGERI 1 MATARAM JL. PENDIDIKAN NO. 21 TELP/Fax. (0370) MATARAM MODUL OLEH BURHANUDIN, SPd NIP 98 005 00 0 009 DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KOTA MATARAM SMA NEGERI MATARAM JL PENDIDIKAN NO TELP/ax (070) 665 MATARAM MODUL ISIKA TORSI DAN KESEIMBANGAN SMAN MATARAM

Lebih terperinci

SILABUS ROTASI BENDA TEGAR UNTUK SMU KELAS 2 SEMESTER 2. Disusun Oleh SAEFUL KARIM

SILABUS ROTASI BENDA TEGAR UNTUK SMU KELAS 2 SEMESTER 2. Disusun Oleh SAEFUL KARIM SILABUS ROTASI BENDA TEGAR UNTUK SMU KELAS 2 SEMESTER 2 Disusun Oleh SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI 2003 SILABUS ROTASI BENDA TEGAR Mata Pelajaran Kelas/Semester Satuan Pendidikan Alokasi

Lebih terperinci

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT MEKANIKA Pengukuran, Besaran & Vektor 1. Besaran yang dimensinya ML -1 T -2 adalah... A. Gaya B. Tekanan C. Energi D. Momentum E. Percepatan 2. Besar tetapan Planck adalah

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROVINSI BIDANG FISIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

PAPER FISIKA DASAR MODUL 7 MOMEN INERSIA

PAPER FISIKA DASAR MODUL 7 MOMEN INERSIA PAPER FISIKA DASAR MODUL 7 MOMEN INERSIA Nama : Nova Nurfauziawati NPM : 240210100003 Tanggal / jam : 18 November 2010 / 13.00-15.00 WIB Asisten : Dicky Maulana JURUSAN TEKNOLOGI INDUSTRI PANGAN FAKULTAS

Lebih terperinci

V. MOMENTUM DAN IMPULS

V. MOMENTUM DAN IMPULS V. MOMENTUM DAN IMPULS Hukum kekekalan energi yang dibahas dalam Bab terdahulu, hanyalah salah satu dari hukum kekekalan di dalam fisika. Kuantitas lain yang ditemukan memiliki sifat kekal adalah momentum

Lebih terperinci

Antiremed Kelas 10 FISIKA

Antiremed Kelas 10 FISIKA Antiremed Kelas 10 FISIKA Gerak Melingkar Beraturan Latihan Soal Doc Name: K1AR10FIS001 Doc. Version: 01-08 halaman 1 01. Jika suatu benda sedang bergerak pada kelajuan tetap dalam suatu lingkaran, maka...

Lebih terperinci

θ t = θ t Secara grafik θ-t : kecepatan sudut dapat ditentukan menggunakan tangen sudut kemiringan grafik terhadap sumbu t dθ dt d dt Gerak Melingkar

θ t = θ t Secara grafik θ-t : kecepatan sudut dapat ditentukan menggunakan tangen sudut kemiringan grafik terhadap sumbu t dθ dt d dt Gerak Melingkar Gerak Melingkar Posisi dari suatu titik yang mengalami gerak melingkar dinyatakan dengan θ yaitu besar sudut yang telah ditempuh dari awal perhitungan. Kecepatan sudut ω Adalah besar sudut yang ditempuh

Lebih terperinci

GERAK MELINGKAR. Gerak Melingkar Beraturan

GERAK MELINGKAR. Gerak Melingkar Beraturan KD: 3.1 Menganalisis gerak lurus,parabola dan gerak melingkar dengan menggunakan vektor. GERAK MELINGKAR Gerak melingkar yaitu Gerak suatu benda dengan lintasan yang berbentuk lingkaran.contoh :Compact

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas FISIKA Dinamika Rotasi dan Kesetimbangan Benda egar - Dinamika Rotasi Doc Name: ARFIS070 Version : 0-07 halaman Perhatikan gambar berikut ini! m B Q r m A r 3 r P m C m A = kg; m B = 3kg;

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Fisika

K13 Revisi Antiremed Kelas 10 Fisika K13 evisi Antiremed Kelas 10 Fisika Persiapan PTS Semester Genap Doc. Name: K13A10FIS0PTS Version: 017-03 Halaman 1 01. Pada benda bermassa m, bekerja gaya F yang menimbulkan percepatan a. Jika gaya dijadikan

Lebih terperinci

Antiremed Kelas 10 FISIKA

Antiremed Kelas 10 FISIKA Antiremed Kelas 0 FISIKA Dinamika, Partikel, dan Hukum Newton Doc Name : K3AR0FIS040 Version : 04-09 halaman 0. Gaya (F) sebesar N bekerja pada sebuah benda massanya m menyebabkan percepatan m sebesar

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika terdiri dari dua (2) bagian yaitu : soal isian singkat (24 soal) dan soal pilihan

Lebih terperinci

Jadi momentum anguler adalah jumlah momen dari momentum linear jika sumbu putar sistem berhimpit.

Jadi momentum anguler adalah jumlah momen dari momentum linear jika sumbu putar sistem berhimpit. Momentum Anguler Pada gerak translasi, momentum linear sebuah benda adalah perkalian massa dan kecepatan linear (translasi) p = m v. Pada gerak rotasi dikenal dengan momentum anguler dengan notasi L analog

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

K13 Revisi Antiremed Kelas 10 FISIKA

K13 Revisi Antiremed Kelas 10 FISIKA K1 Revisi Antiremed Kelas 10 FISIKA Gerak Melingkar Beraturan Latihan Soal PG Doc Name: RK1AR10FIS0501 Doc. Version: 016-10 halaman 1 01. Jika suatu benda sedang bergerak pada kelajuan tetap dalam suatu

Lebih terperinci

Aplikasi Prinsip Gyroscope untuk Mempertahankan Kesetimbangan Sebuah Sistem Sederhana

Aplikasi Prinsip Gyroscope untuk Mempertahankan Kesetimbangan Sebuah Sistem Sederhana Aplikasi Prinsip Gyroscope untuk Mempertahankan Kesetimbangan Sebuah Sistem Sederhana Liya Kholida 1,a), Rizqa Sitorus 1,b), Alfian Inzia Fusiari 1,c), Nurrohman 1d) dan Dwi Irwanto 2,e) 1 Magister Pengajaran

Lebih terperinci

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel).

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). BAB IV DINAMIKA PARIKEL A. SANDAR KOMPEENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). B. KOMPEENSI DASAR : 1. Menjelaskan Hukum Newton sebagai konsep dasar

Lebih terperinci

Antiremed Kelas 10 Fisika

Antiremed Kelas 10 Fisika Antiremed Kelas Fisika Persiapan UAS Fisika Doc. Name:ARFISUAS Doc. Version: 26-7 halaman. Perhatikan tabel berikut! No Besaran Satuan Dimensi Gaya Newton [M][L][T] 2 2 Usaha Joule [M][L] [T] 3 Momentum

Lebih terperinci

FISIKA GERAK MELINGKAR BERATURAN

FISIKA GERAK MELINGKAR BERATURAN K-13 Kelas X FISIK GEK MELINGK BETUN TUJUN PEMBELJN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi gerak melingkar beraturan dan ciri-cirinya. 2. Memahami

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci