No Soal No Cara Maple 1 Misalkan. A > restart; > K:=matrix(3,3,[3,-2,7,6,5,4,0,4,9]); K

Ukuran: px
Mulai penontonan dengan halaman:

Download "No Soal No Cara Maple 1 Misalkan. A > restart; > K:=matrix(3,3,[3,-2,7,6,5,4,0,4,9]); K"

Transkripsi

1 Misalkan A = > K:=matrix(3,3,[3,-,,6,5,4,0,4,9]); K > L:=matrix(3,3,[6,-,4,0,,3,,,5]); > K:=submatrix(K,[],[,,3]); 6 4 K : = [ 3 ] L = > evalm(k.l); Gunakan metode submatriks tentukan: (a) Baris pertama dari KL > evalm(k.l);[ 6 4 4] (b) Kolom pertama dari LK B > evalm(l.k); > K:=submatrix(K,[,,3],[]); K : = > evalm(l.k); 6 63 Tentukan suatu operasi baris yang akan mengembalikan matriks elementer di bawah ini menjadi matriks identitas. > A:=matrix(,,[,0,-3,]); 0 > H_(3):=addrow(A,,,3); 3 H_(3 ) := Gunakan aturan Crammer untuk menyelesaikan x, tanpa perlu menyelesaikan y, z w. 4x + y + z + w = 6 3x + y z + w = x + 3y 5z + 8w = 3 x + y + z + w = 3 > spl:={4*x+y+z+w=6,3*x+*yz+w=,*x+3*y-5*z+8*w=-3,x+y+z+*w=3}; spl := {4 xc yczcw = 6, 3 xc ykzcw =, xc ycz C w = 3, xc 3 yk5 zc8 w =K3} > M:=genmatrix(spl,[x,y,z,w],flag); > A:=submatrix(M,[,,3,4],[,,3,4]); > Ax:=submatrix(M,[,,3,4],[5,,3,4]); > x:=det(ax)/det(a); x := 4 Gunakan matriks adjoin untuk menentukan invers matriks berikut = 5 > :=matrix(,,[3,,5,]); := 3 5 > adj(); K K5 3 > det(); > A_invers:=(/det().adj()); A_invers := K K5 3

2 Misalkan A = > K:=matrix(3,3,[3,-,,6,5,4,0,4,9]); K > L:=matrix(3,3,[6,-,4,0,,3,,,5]); > K:=submatrix(K,[3],[,,3]); 6 4 K : = [ 0 4 9] L = 0 3. Gunakan metode > evalm(k.l); submatriks tentukan: (a) Baris ketiga dari KL > evalm(k.l); [ ] (b) Kolom kedua dari KL B > L:=submatrix(L,[,,3],[]); L : = 4 > evalm(k.l); 6 Tentukan suatu operasi baris yang akan mengembalikan matriks elementer di bawah ini menjadi matriks identitas. > A:=matrix(3,3,[,0,0,0,,0,0,0,3]); 0 0 > H3_(/3):=mulrow(A,3,/3); H3_0 := Jika = adalah matriks 0 blok segitiga atas, dimana adalah matriks bujursangkar, maka det() = det ( ).det ( ), gunakan hasil ini untuk menghitung det () untuk: = Gunakan matriks elementer untuk menentukan invers matriks berikut = 5 > :=matrix(5,5,[,-,,5,6,4,3,-,3,4,0,0,,3,5,0,0,-,6,,0,0,3,5,]); > :=submatrix(,[,],[,]); > :=submatrix(,[3,4,5],[3,4,5]); > A:=det(); A :=K080 > K:=det().det(); K :=K080 > :=matrix(,,[3,,5,]); > Id:=LinearAlgebra:-IdentityMatrix(,); 3 0 > augment(,id); K > gaussjord(%); 0 K5 3

3 Misalkan A = > K:=matrix(3,3,[3,-,,6,5,4,0,4,9]); K > L:=matrix(3,3,[6,-,4,0,,3,,,5]); > K:=submatrix(K,[3],[,,3]); 6 4 K : = [ 0 4 9] L = 0 3. Gunakan metode > evalm(k.k); submatriks tentukan: (a) Baris ketiga dari KK > evalm(k.k); [ ] (b) Kolom kedua dari LK Tentukan suatu operasi baris yang akan mengembalikan matriks elementer di bawah ini menjadi matriks identitas Gunakan aturan Crammer untuk menyelesaikan z, tanpa perlu menyelesaikan x, y w. 4x + y + z + w = 6 3x + y z + w = x + 3y 5z + 8w = 3 x + y + z + w = 3 4 Gunakan informasi yang digunakan untuk mencari A A = 3 5 B > evalm(l.k); > L:=submatrix(L,[],[,,3]); L : = [ 0 3] > evalm(l.k); [ 6 3] > A:=matrix(4,4,[0,0,0,,0,,0,0,0,0,,0,, 0,0,0]); > H4:=swaprow(A,4,); H4 := > spl:={4*x+y+z+w=6,3*x+*yz+w=,*x+3*y-5*z+8*w=-3,x+y+z+*w=3}; spl := { 4 x C yc zc w = 6, 3 x C yk zc w =, x C yc z C w = 3, x C 3 yk 5 zc 8 w = K3 } > M:=genmatrix(spl,[x,y,z,w],flag); > A:=submatrix(M,[,,3,4],[,,3,4]); > Az:=submatrix(M,[,,3,4],[,,5,4]); > z:=det(az)/det(a); z := > A_inv:=matrix(,,[,-,3,5]); > A:=inverse(A_inv); A := 5 3 K3 3 0 > evalm(a.a_inv); 0 3 3

4 Jika Q dipartisi menjadi > :=matrix(3,4,[-,,,5,0,- Q Q 3,4,,,5,6,]); = Q = > Q:=matrix(4,3,[,,4,-3,5,,,- Q,5,0,3,-3]); Q Q Q > :=submatrix(,[,],[,]); Q = Q Q Q Q > Q:=submatrix(Q,[,],[,]); > :=submatrix(,[,],[3,4]); 5 > Q:=submatrix(Q,[3,4],[,]); = > evalm(.q+.q); 5 6 K K3 3 5 Q = Tentukan elemen Q Q Tentukan suatu operasi baris yang akan mengembalikan matriks elementer di bawah ini menjadi matriks identitas Tanpa melakukan perhitungan langsung, tunjukkan bahwa x = 0 x =, memenuhi: x x = 0 > A:=matrix(4,4,[,0,- /,0,0,,0,0,0,0,,0,0,0,0,]); > H3_(/):=addrow(A,3,,/); H3_ := > A:=matrix(3,3,[x^,x,,,,,0,0,-5]); x x A := 0 0 K5 > det(a); K5 x C 0 x > solve(%); 0, 4 Gunakan informasi yang digunakan untuk mencari 3 (A) = > inv:=matrix(,,[-3,,,-]); > A:=inverse(inv); A := 3 > evalm(/*a); 3

5 Jika Q dipartisi menjadi > :=matrix(3,4,[-,,,5,0,- Q Q 3,4,,,5,6,]); = Q = > Q:=matrix(4,3,[,,4,-3,5,,,- Q,5,0,3,-3]); Q Q Q > :=submatrix(,[,],[,]); Q = Q Q Q Q > Q:=submatrix(Q,[,],[,]); > :=submatrix(,[,],[3,4]); 5 > :=submatrix(q,[3,4],[,3]); = > evalm(.q+.); K 4 K 3 5 Q = Tentukan elemen Q erhatikan matriks-matriks 4 8 K =, L = Tentukan matriks elementer E sedemikian rupa sehingga E K = L 5 3 Untuk nilai k berapakah A tidak dapat dibalik? 4 A = 3 6 k 3 4 Tentukan A, A - dari matriks berikut: 0 A = 0 > K:=matrix(3,3,[3,4,,,-,-,8,,5]); > L:=matrix(3,3,[8,,5,,-,-,3,4,]); > E:=evalm(L.inverse(K)); 0 0 E := > equal((e.a),b); true > A:=matrix(3,3,[,,4,3,,6,k,3,]); 4 A := 3 6 k 3 > det(a); > solve(%); 8C8 k > A:=matrix(,,[,0,0,-]); > A:=evalm(A.A); A := > inverse(a);

6 Jika Q dipartisi menjadi > :=matrix(3,4,[-,,,5,0,- Q Q 3,4,,,5,6,]); = Q = > Q:=matrix(4,3,[,,4,-3,5,,,- Q,5,0,3,-3]); Q Q Q > :=submatrix(,[,],[,]); Q = Q Q Q Q > Q:=submatrix(Q,[,],[3]); > :=submatrix(,[,],[3,4]); 5 > :=submatrix(q,[3,4],[3]); = > evalm(.q+.); 5 6 K Q = Tentukan elemen Q erhatikan matriks-matriks 4 8 K =, L = Tentukan matriks elementer E sedemikian rupa sehingga E L = K 3 Gunakan aturan Crammer untuk menyelesaikan w, tanpa perlu menyelesaikan x, y z. 4x + y + z + w = 6 3x + y z + w = x + 3y 5z + 8w = 3 x + y + z + w = 3 4 Gunakan matriks adjoin untuk menentukan invers matriks berikut: > K:=matrix(3,3,[3,4,,,-,-,8,,5]); > L:=matrix(3,3,[8,,5,,-,-,3,4,]); > E:=evalm(K.inverse(L)); 0 0 E := > equal((e.l),k); true > spl:={4*x+y+z+w=6,3*x+*yz+w=,*x+3*y-5*z+8*w=-3,x+y+z+*w=3}; spl := { 4 x C yc zc w = 6, 3 x C yk zc w =, x C yc z C w = 3, x C 3 yk 5 zc 8 w = K3 } > M:=genmatrix(spl,[x,y,z,w],flag); > A:=submatrix(M,[,,3,4],[,,3,4]); > Aw:=submatrix(M,[,,3,4],[,,3,5]); > w:=det(aw)/det(a); w := 0 > C:=matrix(,,[,-3,4,4]); > det(c); 0 > adj(c); 4 3 K4 >inv_c:=evalm(/det(c).adj(c)); inv_c := 5 K

7 Jika Q dipartisi menjadi > :=matrix(3,4,[-,,,5,0,- Q Q 3,4,,,5,6,]); = Q = > Q:=matrix(4,3,[,,4,-3,5,,,- Q,5,0,3,-3]); Q Q Q > :=submatrix(,[3],[,]); Q = Q Q Q Q > Q:=submatrix(Q,[,],[,]); > :=submatrix(,[3],[3,4]); 5 > Q:=submatrix(Q,[3,4],[,]); = > evalm(.q+.q); 5 6 [9 3] Q = Tentukan elemen Q Q erhatikan matriks-matriks 4 K =, M = 3 Tentukan matriks elementer E 3 sedemikian rupa sehingga E 3 K = M 3 Jika = adalah matriks 0 blok segitiga atas, dimana adalah matriks bujursangkar, maka det() = det ( ).det ( ), gunakan hasil ini untuk menghitung det () untuk: = Gunakan matriks adjoin untuk menentukan invers matriks berikut: 6 4 > K:=matrix(3,3,[3,4,,,-,-,8,,5]); > M:=matrix(3,3,[3,4,,,-,-,,-,3]); > E3:=evalm(K.inverse(M)); 0 0 E3 := > equal((e3.m),k); true > :=matrix(5,5,[,-,,5,6,0,3,-,3,4,0,0,,3,5,0,0,0,6,,0,0,0,0,]); > :=submatrix(,[,],[,]); > :=submatrix(,[3,4,5],[3,4,5]); > A:=det(); A := > K:=det().det(); K := > C:=matrix(,,[6,4,,-]); > det(c); -4 K K4 > adj(c); K 6 > inv_c:=evalm(/det(c).adj(c)); inv_c := 4 K3

8 Jika Q dipartisi menjadi > :=matrix(3,4,[-,,,5,0,- Q Q 3,4,,,5,6,]); = Q = > Q:=matrix(4,3,[,,4,-3,5,,,- Q,5,0,3,-3]); Q Q Q > :=submatrix(,[3],[,]); Q = Q Q Q Q > Q:=submatrix(Q,[,],[3]); > :=submatrix(,[3],[3,4]); 5 > :=submatrix(q,[3,4],[3]); = > evalm(.q+.); 5 6 [4] Q = Tentukan elemen Q erhatikan matriks-matriks 4 K =, M = 3 Tentukan matriks elementer E 4 sedemikian rupa sehingga E 4 K = M 3 Gunakan aturan Crammer untuk menyelesaikan y, tanpa perlu menyelesaikan x, z w. 4x + y + z + w = 6 3x + y z + w = x + 3y 5z + 8w = 3 x + y + z + w = 3 4 Gunakan matriks adjoin untuk menentukan invers matriks berikut: 0 3 > K:=matrix(3,3,[3,4,,,-,-,8,,5]); > M:=matrix(3,3,[3,4,,,-,-,,-,3]); > > E4:=evalm(M.inverse(K)); 0 0 E4 := 0 0 K 0 > equal((e4.k),m); true > spl:={4*x+y+z+w=6,3*x+*yz+w=,*x+3*y-5*z+8*w=-3,x+y+z+*w=3}; spl := { 4 x C yc zc w = 6, 3 x C yk zc w =, x C yc z C w = 3, x C 3 yk 5 zc 8 w = K3 } > M:=genmatrix(spl,[x,y,z,w],flag); > A:=submatrix(M,[,,3,4],[,,3,4]); > Ay:=submatrix(M,[,,3,4],[,5,3,4]); > y:=det(ay)/det(a); y := 0 > C:=matrix(,,[,0,,3]); > det(c); 6 > adj(c); 3 0 K > inv_c:=evalm(/det(c).adj(c)); 0 inv_c := K 3 3

10 x 2 C 10 y 2 K 30 xk 10 yk100

10 x 2 C 10 y 2 K 30 xk 10 yk100 1.1 Selesaikan sistem dengan melakukan - inverse terhadap matriks koofisien ( x = A 1 b) > spl:={x1+3*x2+x3=4,2*x1+2*x2+x3=x1 + 2 + x3 = 4 1,2*x1+3*x2+x3=3}; 2x1 + 2x2 + x3 = 1 spl:={x1c3 x2cx3=4, 2 x1c2

Lebih terperinci

PEMBAHASAN SOAL UJIAN KUIS APLIKASI KOMPUTER III MATERI : APLIKASI MATRIKS

PEMBAHASAN SOAL UJIAN KUIS APLIKASI KOMPUTER III MATERI : APLIKASI MATRIKS PEMBAHASAN SOAL UJIAN KUIS APLIKASI KOMPUTER III MATERI : APLIKASI MATRIKS JURUSAN PENDIDIKAN MATEMATIKA UNIVERSITAS MUHAMMADIYAH PAREPARE Solusi Kuis Aplikom http://anrusmath.wordpress.com Page Kuis A

Lebih terperinci

ALTERNATIF PENYELESAIAN SISTEM PERSAMAAN LINEAR SECARA NUMERIK DENGAN MAPLE 10. Andi Rusdi Jurusan Pendidikan Matematika PPs UNM

ALTERNATIF PENYELESAIAN SISTEM PERSAMAAN LINEAR SECARA NUMERIK DENGAN MAPLE 10. Andi Rusdi Jurusan Pendidikan Matematika PPs UNM ALTERNATIF PENYELESAIAN SISTEM PERSAMAAN LINEAR SECARA NUMERIK DENGAN MAPLE 10 Andi Rusdi Jurusan Pendidikan Matematika PPs UNM Abstrak: Matriks menjadi suatu alternatif dalam penyelesaian sistem persamaan

Lebih terperinci

BAB III SISTEM PERSAMAAN LINEAR. Kata kunci: matriks diperbesar, eliminasi gauss, crammer, invers matriks, addrow, mulrow, gausselim, gaussjord.

BAB III SISTEM PERSAMAAN LINEAR. Kata kunci: matriks diperbesar, eliminasi gauss, crammer, invers matriks, addrow, mulrow, gausselim, gaussjord. BAB III SISTEM PERSAMAAN LINEAR Abstrak: Matriks menjadi suatu alternatif dalam penyelesaian sistem persamaan linear, matriks diperbesar adalah salah satu cara untuk meringkas suatu sistem persamaan linear,

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

BAB 3 : INVERS MATRIKS

BAB 3 : INVERS MATRIKS BAB 3 : INVERS MATRIKS PEMBAGIAN MATRIKS DAN INVERS MATRIKS Pada aljabar biasa, bila terdapat hubungan antara 2 besaran a dengan x sedemikian sehingga ax1, maka dikatakan x adalah kebalikan dari a dan

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi

Lebih terperinci

BAB I MATRIKS DAN EKSPLORASINYA

BAB I MATRIKS DAN EKSPLORASINYA BAB I MATRIKS DAN EKSPLORASINYA A. Pendahuluan Aplikasi matriks banyak dijumpai dalam kehidupan sehari-hari, disadari atau tidak, penggunaan aplikasi tersebut banyak dimanfaatkan dalam menyelesaikan masalah-masalah

Lebih terperinci

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks MATRIKS DEFINISI Matriks adalah susunan bilangan real atau bilangan kompleks (atau elemen-elemen) yang disusun dalam baris dan kolom sehinggga membentuk jajaran persegi panjang. Matriks memiliki m baris

Lebih terperinci

a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE

a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Untuk DIPERHATIKAN! a A c Untuk mencari Matriks INVERS ordo 2, rumus: 1 1 d b A a d b c c a b

Lebih terperinci

Aljabar Linier Elementer. Kuliah 7

Aljabar Linier Elementer. Kuliah 7 Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan

Lebih terperinci

Praktikum Aljabar Linear Menggunakan Maplesoft Maple

Praktikum Aljabar Linear Menggunakan Maplesoft Maple MINGGU KE : 1 PERALATAN : LCD SOFTWARE TUJUAN : MAPLE PRAKTIKUM 1 PENGENALAN MAPLE Mahasiswa dapat menggunakan Software Aplikasi Matematika (Maple) untuk : Mengenal interface Maple Menggunakan operasi-operasi

Lebih terperinci

Matematika Teknik DETERMINAN

Matematika Teknik DETERMINAN DETERMINN da satu cara lagi dalam menentukan solusi SPL dengan bekerja pada matriks koefisiennya. Cara berikut hanya akan berlaku untuk matriks koefiien berupa matriks bujursangkar atau SPL mempunyai banyak

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

Matriks. Baris ke 2 Baris ke 3

Matriks. Baris ke 2 Baris ke 3 Matriks A. Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

Lampiran 1 Pembuktian Teorema 2.3

Lampiran 1 Pembuktian Teorema 2.3 LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)

Lebih terperinci

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 12 November 2016 Sistem Persamaan Linear (SPL) Homogen yang akan dibahas kali

Lebih terperinci

METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n

METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV Norma Puspita, ST MT Matriks Matriks adlah susunan bilangan (elemen) yang disusun menurut baris dan kolom sehingga berbentuk persegi panjang Matriks dinotasikan

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL

Lebih terperinci

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

MATRIKS. Notasi yang digunakan NOTASI MATRIKS MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan mengenai konsep dasar tentang matriks meliputi definisi matriks, jenis-jenis matriks, operasi matriks, determinan, kofaktor, invers suatu matriks, serta

Lebih terperinci

Matriks Jawab:

Matriks Jawab: Matriks A. Operasi Matriks 1) Penjumlahan Matriks Jika A dan B adalah sembarang Matriks yang berordo sama, maka penjumlahan Matriks A dengan Matriks B adalah Matriks yang diperoleh dengan cara menjumlahkan

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

MATEMATIKA. Sesi MATRIKS CONTOH SOAL A. MATRIKS SATUAN (MATRIKS IDENTITAS)

MATEMATIKA. Sesi MATRIKS CONTOH SOAL A. MATRIKS SATUAN (MATRIKS IDENTITAS) MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 10 Sesi N MATRIKS A. MATRIKS SATUAN (MATRIKS IDENTITAS) Masih ingat angka 1 kan, setiap bilangan yang dikali satu apakah berubah? Tentunya tidak. Matriks satuan

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

Pertemuan 8 Aljabar Linear & Matriks

Pertemuan 8 Aljabar Linear & Matriks Pertemuan 8 Aljabar Linear & Matriks 1 Jika A adl matriks nxn yg invertible, untuk setiap matriks b dgn ukuran nx1, maka sistem persamaan linier Ax = b mempunyai tepat 1 penyelesaian, yaitu x = A -1 b

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2 Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung

Lebih terperinci

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya

Lebih terperinci

Matriks. Bab. Di unduh dari : Bukupaket.com. Kompetensi Dasar Dan Pengalaman Belajar

Matriks. Bab. Di unduh dari : Bukupaket.com. Kompetensi Dasar Dan Pengalaman Belajar Bab 1 Matriks Kompetensi Dasar Dan Pengalaman Belajar Kompetensi Dasar 1.1 Menghayati dan mengamalkan ajaran agama yang dianutnya. 2.1 Menghayati perilaku disiplin, sikap kerjasama, sikap kritis dan cermat

Lebih terperinci

3 Langkah Determinan Matriks 3x3 Metode OBE

3 Langkah Determinan Matriks 3x3 Metode OBE 3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat

Lebih terperinci

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut: SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j. MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun

Lebih terperinci

MATRIKS. Perhatikan tabel yang memuat data jumlah siswa di suatu sekolah Tabel Jumlah Siswa Kelas Laki-laki Wanita

MATRIKS. Perhatikan tabel yang memuat data jumlah siswa di suatu sekolah Tabel Jumlah Siswa Kelas Laki-laki Wanita MATRIKS A. Pengertian Matriks. Pengertian Matriks dan Ordo Matriks Perhatikan tabel yang memuat data jumlah siswa di suatu sekolah Tabel Jumlah Siswa Kelas Laki-laki Wanita Ι ΙΙ ΙΙΙ Dari tabel di atas,

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3. MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika MATRIKS FTP UB Mas ud Effendi Pokok Bahasan Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar Invers suatu matriks bujursangkar Penyelesaian set persamaan linier Nilai-eigen dan

Lebih terperinci

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 3) A. Pendahuluan Matriks dan Sistem Persamaan Linear

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 3) A. Pendahuluan Matriks dan Sistem Persamaan Linear Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 3) A. Pendahuluan Salah satu kajian matematika sekolah menengah yang memiliki banyak aplikasinya dalam menyelesaikan permasalahan yang ada dalam kehidupan

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1 6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli

Lebih terperinci

BAB 2. DETERMINAN MATRIKS

BAB 2. DETERMINAN MATRIKS BAB. DETERMINAN MATRIKS DETERMINAN MATRIKS . Definisi DETERMINAN Determinan : produk (hasil kali) bertanda dari unsur-unsur matriks sedemikian hingga berasal dari baris dan kolom yang berbeda, kemudian

Lebih terperinci

MENENTUKAN INVERS SUATU MATRIKS DENGAN MENGGUNAKAN METODE AUGMENTASI DAN REDUKSI ABSTRACT

MENENTUKAN INVERS SUATU MATRIKS DENGAN MENGGUNAKAN METODE AUGMENTASI DAN REDUKSI ABSTRACT MENENTUKAN INVERS SUATU MATRIKS DENGAN MENGGUNAKAN METODE AUGMENTASI DAN REDUKSI S. E. Wati 1, M. Imran 2, A. Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

MATRIKS Matematika Industri I

MATRIKS Matematika Industri I MATRIKS TIP FTP UB Mas ud Effendi Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu

Lebih terperinci

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks 1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

TE 1467 Teknik Numerik Sistem Linear

TE 1467 Teknik Numerik Sistem Linear TE 67 Teknik Numerik Sistem Linear Trihastuti gustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI ONTOH SIMPULN

Lebih terperinci

BAB I MATRIKS DEFINISI : NOTASI MATRIKS :

BAB I MATRIKS DEFINISI : NOTASI MATRIKS : BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR M AT E M AT I K A E K O N O M I MATRIKS DAN SPL TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Kesetimbangan Dua Pasar Permintaan kopi bergantung tidak hanya pada harganya tetapi juga pada harga

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER

Lebih terperinci

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom.

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Page- MATRIKS Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Notasi: Matriks dinyatakan dengan huruf besar, dan elemen elemennya

Lebih terperinci

MATRIKS Matematika Industri I

MATRIKS Matematika Industri I MATRIKS TIP FTP UB Mas ud Effendi Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A = NILAI EIGEN DAN VEKTOR EIGEN >> DEFINISI NILAI EIGEN DAN VEKTOR EIGEN Jika A adalah sebuah matriks n n, maka sebuah vektor taknol x pada R n disebut vektor eigen (vektor karakteristik) dari A jika Ax adalah

Lebih terperinci

Katalog Dalam Terbitan (KDT)

Katalog Dalam Terbitan (KDT) Hak Cipta 015 pada Kementerian Pendidikan dan Kebudayaan Dilindungi Undang-Undang MILIK NEGARA TIDAK DIPERDAGANGKAN Disklaimer: Buku ini merupakan buku guru yang dipersiapkan Pemerintah dalam rangka implementasi

Lebih terperinci

Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015

Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Matematika Teknik I: Matriks, Inverse, dan Determinan Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Dadang Amir Hamzah (STT) Matematika Teknik I Semester 3, 2015 1 / 33 Outline 1 Matriks Dadang

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5 Aljabar Linear & Matriks Pert. 5 Evangs Mailoa Pengantar Determinan Menurut teorema 1.4.3, matriks 2 x 2 dapat dibalik jika ad bc 0. Pernyataan ad bc disebut sebagai determinan (determinant) dari matriks

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks

Lebih terperinci

TEKNIK INFORMATIKA FENI ANDRIANI

TEKNIK INFORMATIKA FENI ANDRIANI EKNIK INFORMIK FENI NDRINI Definisi: Matriks adalah sekumpulan bilangan yang disusun dalam sebuah empat persegi panjang, secara teratur, di dalam baris-baris dan kolom-kolom. a a... a n a a... a n... a

Lebih terperinci

Katalog Dalam Terbitan (KDT)

Katalog Dalam Terbitan (KDT) Hak Cipta 05 pada Kementerian Pendidikan dan Kebudayaan Dilindungi Undang-Undang MILIK NEGARA TIDAK DIPERDAGANGKAN Disklaimer: Buku ini merupakan buku guru yang dipersiapkan Pemerintah dalam rangka implementasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Repeated Measurement Dalam repeated measurement setiap perlakuan menunjukkan pengukuran terhadap satu sampel (unit eksperimen ) atau beberapa sampel yang memiliki karakter sama

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4 Aljabar Linear & Matriks Pert. 4 Evangs Mailoa Sistem Persamaan Linier & Matriks 1. Matriks dan Operasi Matriks 2. Pengantar Sistem Persamaan Linier 3. Eliminasi Gaus 4. Invers: Aturan Aritmatika Matriks

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

BAB 4 : SISTEM PERSAMAAN LINIER

BAB 4 : SISTEM PERSAMAAN LINIER BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x

Lebih terperinci

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo

Lebih terperinci

Penerapan Steganografi Metode Least Significant Bit (LSB) dengan Invers Matriks Pada Citra Digital

Penerapan Steganografi Metode Least Significant Bit (LSB) dengan Invers Matriks Pada Citra Digital Editor: Setyawan Widyarto, ISSN: 2477-5894 9 Penerapan Steganografi Metode Least Significant Bit (LSB) dengan Invers Matriks Pada Citra Digital Eza Budi Perkasa 1, Lukas Tommy 2, Dwi Yuny Sylfania 3, Lianny

Lebih terperinci

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR 7.1 Matriks DEFINISI Susunan bilangan (fungsi) berbentuk persegi panjang yang ditutup dengan tanda kurung. Bilangan (fungsi) disebut entri-entri matriks.

Lebih terperinci

MATRIKS KUASIDEFINIT SUGENG MULYADI

MATRIKS KUASIDEFINIT SUGENG MULYADI MATRIKS KUASIDEFINIT SUGENG MULYADI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2009 ABSTRAK SUGENG MULYADI. Matriks Kuasidefinit. Dibimbing oleh FARIDA

Lebih terperinci

MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT)

MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks dan Jenisnya Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan) Beberapa Aplikasi Matriks

Lebih terperinci

MODUL PRAKTIKUM ALJABAR LINIER

MODUL PRAKTIKUM ALJABAR LINIER 2012 MODUL PRAKTIKUM ALJABAR LINIER LABORATORIUM MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM NIVERSITAS NEGERI GORONTALO KATA PENGANTAR Penuntun Praktikum dirancang untuk memberikan tuntunan

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

Aljabar Linier Lanjut. Kuliah 1

Aljabar Linier Lanjut. Kuliah 1 Aljabar Linier Lanjut Kuliah 1 Materi Kuliah (Review) Multiset Matriks Polinomial Relasi Ekivalensi Kardinal Aritmatika 23/8/2014 Yanita, FMIPA Matematika Unand 2 Multiset Definisi Misalkan S himpunan

Lebih terperinci

8 MATRIKS DAN DETERMINAN

8 MATRIKS DAN DETERMINAN 8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk

Lebih terperinci

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks DIKTAT PERKULIAHAN EDISI 1 Aljabar Linear dan Matriks Penulis : Ednawati Rainarli, M.Si. Kania Evita Dewi, M.Si. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 IF/011 1 DAFTAR ISI

Lebih terperinci

MATRIKS MEDIA PEMBELAJARAN. Kompetensi. Definisi. Jenis Jenis Matriks. Kesamaan 2 Matriks. Oprasi Pada Matriks. Referensi. Readme. Author. Exit.

MATRIKS MEDIA PEMBELAJARAN. Kompetensi. Definisi. Jenis Jenis Matriks. Kesamaan 2 Matriks. Oprasi Pada Matriks. Referensi. Readme. Author. Exit. Kompetensi MEDIA PEMBELAJARAN Definisi Jenis Jenis Matriks Kesamaan 2 Matriks Oprasi Pada Matriks Referensi Readme Author Exit Home MATRIKS Matematika SMA/MA Kelas X-MIA Semester 1 Berdasarkan Kurikulum

Lebih terperinci

Solusi Sistem Persamaan Linear Ax = b

Solusi Sistem Persamaan Linear Ax = b Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI CONTOH 4 SIMPULAN

Lebih terperinci

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha

Lebih terperinci

Nama : Diana Rahmah NIM : Kelas : Matkom 3D. Universtias Muhammadiyah Malang MATRIKS. 1. Jika B=[ b 5

Nama : Diana Rahmah NIM : Kelas : Matkom 3D. Universtias Muhammadiyah Malang MATRIKS. 1. Jika B=[ b 5 Nama : Diana Rahmah NIM : 2040060355 Kelas : Matkom 3D Universtias Muhammadiyah Malang MATRIKS. Jika B=[ b 5 2b] merupakan matriks yang mempunyai invers, maka hasil kali semua nilai b yang mungkin sehingga

Lebih terperinci

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini.

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. . INVERS MTRIKS Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. a. RNK MTRIKS Matriks tak nol dikatakan mempunyai rank r jika paling

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5

Lebih terperinci

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij)

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij) MATRIKS a a a... a n a a a... an A a a a... a n............... am am am... a mn Matriks A dengan m baris dan n kolom (A m n). Notasi Matriks : a, dimana a adalah elemen pada baris ke i kolom ke j Kesamaan

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR

MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR KOMPETENSI: 1. Memahami penggunaan faktorisasi LU dalam penyelesaian persamaan linear.. Memahami penggunaan partisi matrik dalam penyelesaian persamaan

Lebih terperinci

02-Pemecahan Persamaan Linier (1)

02-Pemecahan Persamaan Linier (1) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

SEMINAR NASIONAL BASIC SCIENCE II

SEMINAR NASIONAL BASIC SCIENCE II ISBN : 978--97-- PROSEDING SEMINAR NASIONAL BASIC SCIENCE II Konstribusi Sains Untuk Pengembangan Pendidikan, Biodiversitas dan Metigasi Bencana Pada Daerah Kepulauan SCIENTIFIC COMMITTEE: Prof. H.J. Sohilait,

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS A. Pengertian Matriks Editor Penusun : Sulistowati, S.Pd. ; Sumani, S.Pd. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si.. Pengertian Matriks dan Ordo Matriks Matriks ang

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

Minggu II Lanjutan Matriks

Minggu II Lanjutan Matriks Minggu II Lanjutan Matriks Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum Tujuan Instruksional Khusus Jumlah Pertemuan : Matriks : A. Transformasi Elementer. Transformasi Elementer pada baris

Lebih terperinci

2016 SRIWIJ MODUL PRAKTIKUM ALJABAR LINIER PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN 2016 SRIWIJAYA

2016 SRIWIJ MODUL PRAKTIKUM ALJABAR LINIER PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN 2016 SRIWIJAYA 2016 SRIWIJ MODUL PRAKTIKUM ALJABAR LINIER PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN 2016 SRIWIJAYA KATA PENGANTAR Assalamu alaikum warahmatullahi wabarakatuh Puji syukur kehadirat Allah

Lebih terperinci