ALTERNATIF PENYELESAIAN SISTEM PERSAMAAN LINEAR SECARA NUMERIK DENGAN MAPLE 10. Andi Rusdi Jurusan Pendidikan Matematika PPs UNM

Ukuran: px
Mulai penontonan dengan halaman:

Download "ALTERNATIF PENYELESAIAN SISTEM PERSAMAAN LINEAR SECARA NUMERIK DENGAN MAPLE 10. Andi Rusdi Jurusan Pendidikan Matematika PPs UNM"

Transkripsi

1 ALTERNATIF PENYELESAIAN SISTEM PERSAMAAN LINEAR SECARA NUMERIK DENGAN MAPLE 10 Andi Rusdi Jurusan Pendidikan Matematika PPs UNM Abstrak: Matriks menjadi suatu alternatif dalam penyelesaian sistem persamaan linear, matriks diperbesar adalah salah satu cara untuk meringkas suatu sistem persamaan linear, matriks ini pula yang digunakan untuk menyelesaikan sistem tersebut dengan berbagai metode yaitu metode invers matriks, eliminasi gauss, metode crammer. Untuk mempermudahkan proses tersebut penyelesaian digunakan bantuan aplikasi maple 10 Kata kunci: matriks diperbesar, eliminasi gauss, crammer, invers matriks, addrow, mulrow, gausselim, gaussjord. I. PENDAHULUAN Informasi dalam bidang sains dan matematika seringkali ditampilkan dalam bentuk baris-baris dan kolom-kolom yang membentuk jajar empat persegi panjang yang disebut matriks Matriks seringkali merupakan tabel-tabel data numerik yang diperoleh melalui pengamatan fisik, tetapi dapat juga muncul dalam berbagai macam konteks matematis. Charless (1993: 49) mendefinisikan matriks adalah suatu bilangan yang berbentuk persegi panjang. Cara yang biasa digunakan untuk menuliskan sebuah matriks dengan m baris dan n kolom, dan salah satu cara aplikasi penggunaaan matriks untuk mempersingkat sistem persamaan linear cara seperti ini disebut matriks diperbesar (Rorres, 2004: 25). Aplikasi matriks yang disusun dalam bentuk matriks diperbesar banyak mengilhami penyelesaian sistem persamaan linear, penyelesaian tersebut meliputi

2 Alternatif Penyelesaian SPL dengan Maple 2 aturan Crammer, Eliminasi Gauss, Invers Matriks, dalam penggunaan metode-metode tersebut digunakan berbagai sifat-sifat operasi matriks. II. PEMBAHASAN A. Sitem Persamaan Linear Suatu sistem sebarang dari m persamaan linear dengan n faktor yang tidak diketahui dapat dituliskan sebagai: dimana x 1, x 2,... x n adalah faktor yang tidak diketahui, dan a dan b dengan subskrip merupakan konstanta. Sebagai contoh, suatu sistem umum yang terdiri dari tiga persamaan linear dengan empat faktor yang tidak diketahui dapat ditulis sebagai: Penulisan dua subkrip pada koefisien yang tidak diketahui merupakan yang berguna untuk menyatakan lokasi koefisien dalam sistem tersebut. Subkrip yang pertama pada koefisien a ij menunjukkan persamaan di mana koefisien tersebut berada dan subskrip yang kedua menunjukkan faktor yang tidak diketahui yang dikalikan dengan koefisien tersebut. Sehingga a 12 terletak pada persamaan pertama dan dikalikan dengan faktor yang tak diketahui x 2.

3 Alternatif Penyelesaian SPL dengan Maple 3 B. Matriks yang Diperbesar Jika kita dapat mengingat lokasi-lokasi dari +, x dan =, maka suatu sistem persamaan linear yang terdiri dari m peramaan dengan n faktor yang tidak diketahui dapat disingkat dengan hanya menuliskan deretan bilangan-bilangan dalam jajaran empat persegi panjang. Ini disebut Matriks diperbesar (augment matrix) dari sistem tersebut, (Istilah matriks) digunakan dalam matematika untuk menyatakan jajaran empat persegi panjang dari bilangan-bilangan. Matriks muncul dalam banyak konteks, khususnya dalam penyelesaian sistem persamaan linear. C. Alternatif Penyelesaian Sistem Persamaan Linear Secara Numerik dengan Maple 1. Invers Matriks Rorres (2004: 66), Jika A adalah suatu matriks n x n yang dapat dibalik, maka untuk setiap matriks b, n x 1, sistem persamaan Ax=b memiliki tepat satu solusi, yaitu x = A -1 b. A dapat dibalik (det (A) 0). Contoh: 1 Perhatikan sistem persamaan linear

4 Alternatif Penyelesaian SPL dengan Maple 4 Dalam bentuk matriks sistem ini dapat ditulis sebagai Ax = b, dimana: Dengan menggunakan maple kita dapat menghitung invers (A). > with(linalg): > A:=Matrix(<< >,< >,< >>); é1 2 3 ù A := ë1 0 8 û > det(a); 1 > inva:=inverse(a); ék ù inva := 13 K 5 K 3 ë 5 K 2 K 1û > b:=vector[column](< 5,3,17 >); é 5ù b := 3 ë17û > x:=evalm(inva&*b); Dari hasil tersebut diperoleh nilai Kelemahan yang terjadi pada metode ini, sistem persamaan linear yang mempunyai solusi banyak tidak dapat diselesaikan karena matriks yang dibentuk tidak mempunyai invers. x := [1 K 1 2 ]

5 Alternatif Penyelesaian SPL dengan Maple 5 2. Metode Crammer Rorres (2004: 123), Jika Ax = b adalah suatu sistem dari n persamaan lineat dengan n faktor yang tidak diketahui sedemikian sehingga det 0, maka sistem ini memiliki solusi yang unik, solusinya adalah di mana A j adalah matriks yang diperoleh dengan mengganti entri-entri pada kolom ke-j dari A dengan entri-entri pada matriks. Contoh: 2 Dengan menggunakan aturan Crammer untuk menyelesaikan: Penyelesaian: >with(linalg); >egns:={x+2*z=6,-3*x+4*y+6*z=30,-x-2*y+3*z=8}; egns := {x C 2 z = 6, K 3 x C 4 y C 6 z = 30, K x K 2 y C 3 z = 8 } > A:=genmatrix(egns,[x,y,z],flag); é ù A := K ëk 1 K û

6 Alternatif Penyelesaian SPL dengan Maple 6 > egns:={x+2*z=6,-3*x+4*y+6*z=30,-x-2*y+3*z=8}; egns := {x C 2 z = 6, K 3 x C 4 y C 6 z = 30, K x K 2 y C 3 z = 8 } > p:=genmatrix(egns,[x,y,z],flag); é ù p := K ëk 1 K 2 3 8û > M := Matrix(3,4,[[1,0,2,6],[-3,4,6,30],[-1,-2,3,8]]); é ù M := K ëk 1 K 2 3 8û > A:=SubMatrix(M,[1,2,3],[1,2,3]); é 1 0 2ù A := K ëk 1 K 2 3û > Ax:=SubMatrix(M,[1,2,3],[4,2,3]); é 6 0 2ù Ax := ë 8 K 2 3û > Ay:=SubMatrix(M,[1,2,3],[1,4,3]); é 1 6 2ù Ay := K ëk 1 8 3û

7 Alternatif Penyelesaian SPL dengan Maple 7 > Az:=SubMatrix(M,[1,2,3],[1,2,4]); > x:=det(ax)/det(a); é ù Az := K ëk 1 K 2 8 û x := K > y:=det(ay)/det(a); y := > z:=det(az)/det(a); z := Jadi nilai Kesulitan terjadi pada saat penyelesaian mempunyai solusi banyak 3. Eliminasi Gauss Eliminasi Gauss diperkenalkan Karl Friendrich Gauss ( ) dengan melakukan mengubah matriks diperbesar dari suatu sistem persamaan linear menjadi matriks eselon baris tereduksi. Rorres (2004: 13) setiap matriks memiliki bentuk eselon baris tereduksi yang unik; artinya kita akan memperoleh eselon baris tereduksi yang sama untuk matriks yang tertentu bagaimanapun variasi operasi baris yang dilakukan. (Bukti hasil ini terdapat pada artikel The Reduced Row Echelon Form of

8 Alternatif Penyelesaian SPL dengan Maple 8 a Matrix Is Unique: A Simple Proof, oleh Thomas Yuster, Matematichs Maganize, Vol 57 No : 93-94), Sebaliknya Bentuk eselon baris dari matriks tertentu adalah tidak unik: urutan-urutan operasi baris yang berbeda akan menghasilkan bentuk-bentuk eselon baris yang berbeda pula. Algoritma Eliminasi Gauss (Rorres, 2004: 9) adalah: mengubah matriks menjadi matriks sehingga memenuhi sifat-sifat sebagai berikut: (1) Jika satu baris tidak seluruhnya nol, maka bilangan tak nol pertama pada baris itu adalah 1. Bilangan 1 ini disebut 1 utama (leading 1). (2) Jika terdapat baris yang seluruhnya terdiri dari nol, maka baris-baris ini akan dikelompokkan bersama-sama pada bagian paling bawah dari matriks. (3) Jika terdapat dua baris berurutan yang tidak seluruhnya terdiri dari nol, maka 1 utama pada baris yang lebih rendah terdapat pada kolom yang lebih kanan dari 1 utama pada baris yang lebih tinggi. (4) Setiap kolom yang memiliki 1 utama memiliki nol pada tempat-tempat lainya. Dari algoritma tersebut kita dapat menyelesaikan sistem persamaan linear berikut: Contoh 3: Dengan menggunakan eliminasi Gauss untuk menyelesaikan: Penyelesaian:

9 Alternatif Penyelesaian SPL dengan Maple 9 > with(linalg): > egns:={x+y+2*z=9,2*x+4*y-3*z=1,3*x+6*y-5*z=0}; egns := {x C y C 2 z = 9, 3 x C 6 y K 5 z = 0, 2 x C 4 y K 3 z = 1 } Mengubah matriks menjadi matriks diperbesar > A:=genmatrix(egns,[x,y,z],flag); é ù A := 3 6 K 5 0 ë2 4 K 3 1û Menambahkan -3 kali baris 1 ke baris 2 dari matriks A > addrow(a,1,2,-3); é ù 0 3 K 11 K 27 ë2 4 K 3 1û Menambahkan -2 kali baris 1 ke baris 3 dari matriks diatas (%) > addrow(%,1,3,-2); é ù 0 3 K 11 K 27 ë0 2 K 7 K 17û Mengalikan 1/3 pada baris 2 dari matriks diatas (%) > mulrow(%,2,1/3); é ù 0 1 K 11 K 9 3 ë0 2 K 7 K 17 û Menambahkan -2 kali baris 2 ke baris 3 dari matriks diatas (%) > addrow(%,2,3,-2); é ù 0 1 K 11 K ë 3 û

10 Alternatif Penyelesaian SPL dengan Maple 10 Mengalikan 3 pada baris 3 dari matriks di atas (%) > mulrow(%,3,3); é ù 0 1 K 11 K 9 3 ë û Menambahkan 11/3 kali baris 3 ke baris 2 dari matriks diatas (%) > addrow(%,3,2,11/3); é ù ë û Menambahkan -2 kali baris 3 ke baris 1 dari matriks diatas (%) > addrow(%,3,1,-2); é ù ë û Menambahkan -1 kali baris 2 ke baris 1 dari matriks diatas (%) > addrow(%,2,1,-1); é ù ë û Mengecek dengan perintah eliminasi gauss secara langsung. > gaussjord(a); é ù ë û Dari hasil di atas diperoleh hasil

11 Alternatif Penyelesaian SPL dengan Maple 11 Contoh 4: Selesaikan sistem persamaan linear homgen berikut dengan menggunakan eliminasi Gauss-Jordan Penyelesaian: > with(linalg): > egns:={2*p+2*q-r+t=0,-p-q+2*r-3*s+t=0,p+q-2*rt=0,r+s+t=0}; Menyatakan sistem persamaan ke matriks diperbesar > A:=genmatrix(egns,[p,q,r,s,t],flag); Menyatakan sistem persamaan ke matriks diperbesar dengan menghilangkan kolom terakhir egns := {2 p C 2 q K r C t = 0, K p K q C 2 r K 3 s C t = 0, r C s C t = 0, p C q K 2 r K t = 0 } é 2 2 K ù K 1 K 1 2 K A := ë 1 1 K 2 0 K 1 0 û > B:=genmatrix(egns,[p,q,r,s,t]); é 2 2 K ù K 1 K 1 2 K 3 1 B := ë 1 1 K 2 0 K 1 û

12 Alternatif Penyelesaian SPL dengan Maple 12 Menguji sistem persamaan apakah solusinya banyak. > rank(a)-rank(b); 0 Menyelesaikan sistem persamaan dengan menggunakan eliminasi gauss > gausselim(a); é2 2 K ù K ë û Menyelesaikan sistem persamaan dengan menggunakan eliminasi gauss jordan > gaussjord(a); é ù ë û Menentukan hasil penyelesaian dengan berbagai parameter. > backsub(%); [K _t 2 K _t 1 _t 2 K _t 1 0 _t 1 ] Jadi solusi umumnya adalah

13 Alternatif Penyelesaian SPL dengan Maple 13 Kasus 1 Untuk nilai berapakah, sistem persamaan berikut: Memiliki solusi trivial Penyelesaian: > with(linalg): > egns:={(lambda-3)*x+y=0,x+(lambda-3)*y=0}; egns := { (l K 3 ) x C y = 0, x C (l K 3 ) y = 0} Mengubah matriks menjadi matriks diperbesar > A:=genmatrix(egns,[x,y],flag); A := é ë l K l K 3 0 Menyelesaikan sistem dengan eliminasi gauss jordan ù û > gausselim(a); é1 l K 3 0 ë0 K 8 K l 2 C 6 l 0 ù û Menentukan nilai untuk sistem yang memiliki non trivial > factor(-8-(lambda)^2+6*(lambda)); K (l K 2 ) (l K 4 ) Menentukan hasil faktor dari sistem di atas. > fsolve(%); 2., 4.

14 Alternatif Penyelesaian SPL dengan Maple 14 Kasus 2 Untuk nilai berapakah sistem berikut ini tidak memiliki solusi? Tepat hanya satu solusi? Takterhingga banyaknya solusi? Penyelesaian: > with(linalg): > egns:={x+2*y-3*z=4,3*x-y+5*z=2,4*x+y+(a^2-14)*z=a+2}; egns := {x C 2 y K 3 z = 4, 3 x K y C 5 z = 2, 4 x C y C (a 2 K 14) z = a C 2} > A:=genmatrix(egns,[x,y,z],flag); é1 2 K 3 4 ù A := 3 K ë4 1 a 2 K 14 a C 2 û > B:=gausselim(A); é1 2 K 3 4 ù B := 0 K 7 14 K 10 ë0 0 a 2 K 16 a K 4 û Setelah dilakukan eliminasi gauss diperolah persamaan yaitu a 2 16, selanjutnya persamaan ini difaktorkan dengan perintah. > factor(a^2-16); > fsolve(%); (a K 4 ) (a C 4 ) K 4., 4.

15 Alternatif Penyelesaian SPL dengan Maple 15 Nilai a = 4 dan a = -4 disubtitusi pada a 2 16 dan a 4 diperoleh: > f := a -> (a^2-16); > f(4); > f(-4); > f := a -> (a-4); f := a/ a 2 K f := a/ a K 4 > f(4); 0 > f(-4); 8 Selanjutnya untuk nilai a = 4 yang diperoleh disubtitusi ke matriks hasil eliminasi gauss. > M:=matrix(3,4,[1,2,-3,4,0,-7,14,-10,0,0,0,0]); é1 2 K 3 4ù M := 0 K 7 14 K 10 ë û > gaussjord(m); > backsub(%); é 8 ù K 2 7 ë û é8 ë7 K _t C 2 _t 1 _t ù 1 û

16 Alternatif Penyelesaian SPL dengan Maple 16 Dari hasil di atas menunjukkan bahwa untuk a = 4 diperoleh bahwa solusinya banyak. > N:=matrix(3,4,[1,2,-3,4,0,-7,14,-10,0,0,0,-8]); é1 2 K 3 4ù N := 0 K 7 14 K 10 ë0 0 0 K 8û > gaussjord(%); é ù 0 1 K 2 0 ë û > backsub(%); Error, (in linalg:-backsub) inconsistent system Untuk nilai a = -4 tidak ada solusi, sedangkan a untuk satu salusi. III. KESIMPULAN Berbagai cara yang digunakan untuk menentukan solusi suatu sistem persamaan linear, kelebihan dan kekurangan tersebut dapat ditutupi satu sama lain, tinggal kita sebagai pemakai jeli dalam mengaplikasikannya, perkembangan teknologi tidak membuat kita semakin malas untuk mencoba dengan cara manual, tetapi menjadi suatu tantangan dan menjadi alat pengetes dari apa yang kita peroleh dengan metode manual, terkadang ada persoalan-persoalan yang kita dapatkan tidak bisa diselesaikan dengan teknologi yang berkembang saat ini, demikian sebaliknya.

17 Alternatif Penyelesaian SPL dengan Maple 17 KEPUSTAKAAN Anton, H., 1988, Aljabar Linier Elementer (Edisi Ketiga), Erlangga, Jakarta. Charles, 1993, Al Jabar Linear dan Penerapannya, Gramedia. Jakarta. Kartono, 2001, Al Jabar Linear, Vektor dan Eksplorasi dengan Maple, Graha Ilmu Yogyakarta Maplesoft., 2005, Maple 10 Harness the Power of Mathematics, Copyright Maple soft. Monagan, M.B., 1998, Maple V Rel. 5.0 Programming Guide, Waterloo Maple Inc., Canada. Rorres., 2004, Al Jabar Linear Elementer versi Aplikasi, Erlangga, Jakarta.

18 This document was created with Win2PDF available at The unregistered version of Win2PDF is for evaluation or non-commercial use only.

BAB III SISTEM PERSAMAAN LINEAR. Kata kunci: matriks diperbesar, eliminasi gauss, crammer, invers matriks, addrow, mulrow, gausselim, gaussjord.

BAB III SISTEM PERSAMAAN LINEAR. Kata kunci: matriks diperbesar, eliminasi gauss, crammer, invers matriks, addrow, mulrow, gausselim, gaussjord. BAB III SISTEM PERSAMAAN LINEAR Abstrak: Matriks menjadi suatu alternatif dalam penyelesaian sistem persamaan linear, matriks diperbesar adalah salah satu cara untuk meringkas suatu sistem persamaan linear,

Lebih terperinci

MODUL PRAKTIKUM ALJABAR LINIER

MODUL PRAKTIKUM ALJABAR LINIER 2012 MODUL PRAKTIKUM ALJABAR LINIER LABORATORIUM MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM NIVERSITAS NEGERI GORONTALO KATA PENGANTAR Penuntun Praktikum dirancang untuk memberikan tuntunan

Lebih terperinci

PENERAPAN KONSEP SPL DAN MATRIKS DALAM MENENTUKAN TEGANGAN DAN ARUS LISTRIK PADA TIAP-TIAP RESISTOR

PENERAPAN KONSEP SPL DAN MATRIKS DALAM MENENTUKAN TEGANGAN DAN ARUS LISTRIK PADA TIAP-TIAP RESISTOR PENERAPAN KONSEP SPL DAN MATRIKS DALAM MENENTUKAN TEGANGAN DAN ARUS LISTRIK PADA TIAPTIAP RESISTOR Rangga Ajie Prayoga 1), Rizky Fauziah Setyawati 1), Siti Gita Permana 1), Hendra Kartika 2) 1) Program

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

Praktikum Aljabar Linear Menggunakan Maplesoft Maple

Praktikum Aljabar Linear Menggunakan Maplesoft Maple MINGGU KE : 1 PERALATAN : LCD SOFTWARE TUJUAN : MAPLE PRAKTIKUM 1 PENGENALAN MAPLE Mahasiswa dapat menggunakan Software Aplikasi Matematika (Maple) untuk : Mengenal interface Maple Menggunakan operasi-operasi

Lebih terperinci

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut: SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR Persamaan Linear Pengertian Persamaan linear adalah persamaan yang mempunyai bentuk umum sebagai berikut. + + + Di mana:,,,, dan adalah konstanta-konstanta riil.,,,, adalah bilangan

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4 Aljabar Linear & Matriks Pert. 4 Evangs Mailoa Sistem Persamaan Linier & Matriks 1. Matriks dan Operasi Matriks 2. Pengantar Sistem Persamaan Linier 3. Eliminasi Gaus 4. Invers: Aturan Aritmatika Matriks

Lebih terperinci

APLIKASI MATRIKS DALAM GEOMETRI

APLIKASI MATRIKS DALAM GEOMETRI APLIKASI MATRIKS DALAM GEOMETRI Diajukan untuk memenuhi salah satu tugas mata Kuliah Dosen Pembina: Drs. Darwing Paduppai, M.Pd O l e h: KELOMPOK VI Kelas A ANDI RUSDI 06507010 Hj. KHADIJAH 06507003 BAMBANG

Lebih terperinci

2016 SRIWIJ MODUL PRAKTIKUM ALJABAR LINIER PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN 2016 SRIWIJAYA

2016 SRIWIJ MODUL PRAKTIKUM ALJABAR LINIER PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN 2016 SRIWIJAYA 2016 SRIWIJ MODUL PRAKTIKUM ALJABAR LINIER PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN 2016 SRIWIJAYA KATA PENGANTAR Assalamu alaikum warahmatullahi wabarakatuh Puji syukur kehadirat Allah

Lebih terperinci

No Soal No Cara Maple 1 Misalkan. A > restart; > K:=matrix(3,3,[3,-2,7,6,5,4,0,4,9]); K

No Soal No Cara Maple 1 Misalkan. A > restart; > K:=matrix(3,3,[3,-2,7,6,5,4,0,4,9]); K Misalkan A = > K:=matrix(3,3,[3,-,,6,5,4,0,4,9]); K 6 5 4 > L:=matrix(3,3,[6,-,4,0,,3,,,5]); 0 4 9 > K:=submatrix(K,[],[,,3]); 6 4 K : = [ 3 ] L = 0 3. 6 4 4 5 > evalm(k.l); 64 59 Gunakan metode submatriks

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks

Lebih terperinci

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) OBE dan

Lebih terperinci

MODUL IV SISTEM PERSAMAAN LINEAR

MODUL IV SISTEM PERSAMAAN LINEAR MODUL IV SISTEM PERSAMAAN LINEAR 4.. Pendahuluan. Sistem Persamaan Linear merupakan salah satu topik penting dalam Aljabar Linear. Sistem Persamaan Linear sering dijumpai dalam semua bidang penyelidikan

Lebih terperinci

BAB 4 : SISTEM PERSAMAAN LINIER

BAB 4 : SISTEM PERSAMAAN LINIER BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x

Lebih terperinci

ALJABAR LINEAR [LATIHAN!]

ALJABAR LINEAR [LATIHAN!] Pada dasarnya cara yang digunakan untuk memperoleh penyelesaian sistem persamaan linear adalah sama yaitu mengubah sistem persamaan linear menjadi matriks yang diperbesar, kemudian mengubah matriks yang

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

Aljabar Linier Elementer. Kuliah 7

Aljabar Linier Elementer. Kuliah 7 Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan

Lebih terperinci

Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR

Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR Shelvia Mandasari #1 M Subhan *2 Meira Parma Dewi *3 # Student of Mathematics Department State University of Padang Indonesia * Lecturers

Lebih terperinci

Pertemuan 14. persamaan linier NON HOMOGEN

Pertemuan 14. persamaan linier NON HOMOGEN Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat

Lebih terperinci

dimana a 1, a 2,, a n dan b adalah konstantakonstanta

dimana a 1, a 2,, a n dan b adalah konstantakonstanta Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan

Lebih terperinci

10 x 2 C 10 y 2 K 30 xk 10 yk100

10 x 2 C 10 y 2 K 30 xk 10 yk100 1.1 Selesaikan sistem dengan melakukan - inverse terhadap matriks koofisien ( x = A 1 b) > spl:={x1+3*x2+x3=4,2*x1+2*x2+x3=x1 + 2 + x3 = 4 1,2*x1+3*x2+x3=3}; 2x1 + 2x2 + x3 = 1 spl:={x1c3 x2cx3=4, 2 x1c2

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

Solusi Sistem Persamaan Linear Ax = b

Solusi Sistem Persamaan Linear Ax = b Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem

Lebih terperinci

Pertemuan 13 persamaan linier NON HOMOGEN

Pertemuan 13 persamaan linier NON HOMOGEN Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER

Lebih terperinci

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA Yuniarsi Rahayu, S.Si, M.Kom Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas

Lebih terperinci

BAB X SISTEM PERSAMAAN LINIER

BAB X SISTEM PERSAMAAN LINIER BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan

Lebih terperinci

ALJABAR LINIER. Kelas B JUMAT Ruang i.iii.3. Kelas A JUMAT Ruang i.iii.3

ALJABAR LINIER. Kelas B JUMAT Ruang i.iii.3. Kelas A JUMAT Ruang i.iii.3 ALJABAR LINIER ALJABAR LINIER Kelas B JUMAT 08.00 Ruang i.iii.3 Kelas A JUMAT 09.45 Ruang i.iii.3 Referensi Utama: Elementary Linear Algebra Howard Anton Chris Rores John Wiley, ninth edition Chapter 1

Lebih terperinci

ELIMINASI GAUSS JORDAN. Oleh: Andi Rusdi*)

ELIMINASI GAUSS JORDAN. Oleh: Andi Rusdi*) ELIMINASI GAUSS JORDAN. Oleh: Andi Rusdi*) Sejarah: Karl Friedich Gauss (977-8) adalah seorang ahli matematika dan ilmuwan dari Jerman. Gauss yang kadang-kadang dijuluki pangeran ahli matematika. Disejajarkan

Lebih terperinci

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Matriks dan Sistem Persamaan Linear

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Matriks dan Sistem Persamaan Linear Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Salah satu kajian matematika sekolah menengah yang memiliki banyak aplikasinya dalam menyelesaikan permasalahan yang ada dalam kehidupan

Lebih terperinci

Sistem Persamaan Linier dan Matriks

Sistem Persamaan Linier dan Matriks Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

ALJABAR LINEAR ELEMENTER

ALJABAR LINEAR ELEMENTER BAHAN AJAR ALJABAR LINEAR ELEMENTER Disusun oleh : Indah Emilia Wijayanti Al. Sutjijana Jurusan Matematika Fakultas MIPA Universitas Gadjah Mada Desember, 22 ii Daftar Isi Sistem Persamaan Linear dan Matriks.

Lebih terperinci

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan

Lebih terperinci

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1 Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

Adri Priadana. ilkomadri.com

Adri Priadana. ilkomadri.com Adri Priadana ilkomadri.com Pengertian Sistem Persamaan Linier Persamaan linier adalah suatu persamaan dengan bentuk umum a 1 x 1 + a 2 x 2 + + a n x n = b yang tidak melibatkan hasil kali, akar, pangkat

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah

Lebih terperinci

ALJABAR VEKTOR MATRIKS. oleh: Yeni Susanti

ALJABAR VEKTOR MATRIKS. oleh: Yeni Susanti ALJABAR VEKTOR MATRIKS oleh: Yeni Susanti Materi SPL : Definisi, Solusi, SPL Nonhomogen, SPL Homogen, Matriks Augmented, Bentuk Eselon Baris (Bentuk Eselon baris Tereduksi), Eliminasi Gauss (Eliminasi

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya

Lebih terperinci

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan

Lebih terperinci

bilqis 1

bilqis 1 http://ariefhidayathlc.wordpress.com/ http://www.kompasiana.com/ariefhidayatpwt http://ariefhidayat88.forummi.com/ bilqis PERTEMUAN bilqis TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini

Lebih terperinci

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS Arif Prodi Matematika, FST- UINAM Wahyuni Prodi Matematika, FST-UINAM Try Azisah Prodi Matematika, FST-UINAM

Lebih terperinci

Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik

Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik Bervianto Leo P - 13514047 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK Bentuk umum : dimana x, x,..., x n variabel tak diketahui, a ij, b i, i =,,..., m; j =,,..., n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN

Lebih terperinci

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo

Lebih terperinci

8 MATRIKS DAN DETERMINAN

8 MATRIKS DAN DETERMINAN 8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk

Lebih terperinci

Aljabar Linier & Matriks. Tatap Muka 2

Aljabar Linier & Matriks. Tatap Muka 2 Aljabar Linier & Matriks Tatap Muka 2 Matriks Matriks adalah susunan segi empat siku siku dari bilangan yang dibatasi dengan tanda kurung siku. Suatu matriks tersusun atas baris dan kolom, jika matriks

Lebih terperinci

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS

Lebih terperinci

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 12 November 2016 Sistem Persamaan Linear (SPL) Homogen yang akan dibahas kali

Lebih terperinci

Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 2 dari Buku J. Leon Aljabar Linear) Program Scilab

Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 2 dari Buku J. Leon Aljabar Linear) Program Scilab Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 2 dari Buku J. Leon Aljabar Linear) Program Scilab Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB email: arjunaganteng71@gmail.com

Lebih terperinci

Sistem Persamaan Linier FTI-UY

Sistem Persamaan Linier FTI-UY BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear

Lebih terperinci

02-Pemecahan Persamaan Linier (1)

02-Pemecahan Persamaan Linier (1) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:

Lebih terperinci

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) Matriks -

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

Aljabar Linear Elementer MUG1E3 3 SKS

Aljabar Linear Elementer MUG1E3 3 SKS // ljabar Linear Elementer MUGE SKS // 9:7 Jadwal Kuliah Hari I Selasa, jam. Hari II Kamis, jam. Sistem Penilaian UTS % US % Quis % // 9:7 M- ljabar Linear // Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

Perluasan Teorema Cayley-Hamilton pada Matriks

Perluasan Teorema Cayley-Hamilton pada Matriks Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan

Lebih terperinci

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah

Lebih terperinci

MENYELESAIKAN SISTEM PERSAMAAN LINIER MENGGUNAKAN ANALISIS SVD SKRIPSI. Oleh : Irdam Haidir Ahmad J2A

MENYELESAIKAN SISTEM PERSAMAAN LINIER MENGGUNAKAN ANALISIS SVD SKRIPSI. Oleh : Irdam Haidir Ahmad J2A MENYELESAIKAN SISTEM PERSAMAAN LINIER MENGGUNAKAN ANALISIS SVD SKRIPSI Oleh : Irdam Haidir Ahmad J2A 005 023 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR M AT E M AT I K A E K O N O M I MATRIKS DAN SPL TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Kesetimbangan Dua Pasar Permintaan kopi bergantung tidak hanya pada harganya tetapi juga pada harga

Lebih terperinci

BAB I MATRIKS DAN EKSPLORASINYA

BAB I MATRIKS DAN EKSPLORASINYA BAB I MATRIKS DAN EKSPLORASINYA A. Pendahuluan Aplikasi matriks banyak dijumpai dalam kehidupan sehari-hari, disadari atau tidak, penggunaan aplikasi tersebut banyak dimanfaatkan dalam menyelesaikan masalah-masalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Matriks 2.1.1 Pengertian Matriks Matriks adalah susunan segi empat siku-siku dari bilangan bilangan. Bilanganbilangan dalam susunan tersebut dinamakan entri dalam matriks (Anton,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Analisis Regresi Tidak jarang dihadapkan dengan persoalaan yang melibatkan dua atau lebih peubah atau variabel yang ada atau diduga ada dalam suatu hubungan tertentu. Misalnya

Lebih terperinci

Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher

Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher Nursyahrina - 13513060 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

Secara umum persamaan linear untuk n peubah x 1, x 2,, x n dapatdinyatakandalambentuk: dimanaa 1, a 2,, a n danbadalahkonstantakonstanta

Secara umum persamaan linear untuk n peubah x 1, x 2,, x n dapatdinyatakandalambentuk: dimanaa 1, a 2,, a n danbadalahkonstantakonstanta Persamaan linear adalah persamaan dimana peubahnyatidakmemuateksponensial, trigonometri(sepertisin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan linear

Lebih terperinci

DIAGONALISASI MATRIKS HILBERT

DIAGONALISASI MATRIKS HILBERT Jurnal UJMC, Volume 3, Nomor 2, Hal 7-24 pissn : 2460-3333 eissn : 2579-907X DIAGONALISASI MATRIKS HILBERT Randhi N Darmawan Universitas PGRI Banyuwangi, randhinumeric@gmailcom Abstract The Hilbert matrix

Lebih terperinci

Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi

Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Elvina Riama K. Situmorang 55) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR

MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh: IRMA

Lebih terperinci

Penerapan Operasi Matriks dalam Kriptografi

Penerapan Operasi Matriks dalam Kriptografi Penerapan Operasi Matriks dalam Kriptografi Muhammad Farhan Kemal 13513085 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

Penerapan Sistem Persamaan Lanjar dalam Penyetaraan Reaksi Kimia

Penerapan Sistem Persamaan Lanjar dalam Penyetaraan Reaksi Kimia Penerapan Sistem Persamaan Lanjar dalam Penyetaraan Reaksi Kimia Nugroho Satriyanto 1351038 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

IMPLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA

IMPLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA IMLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA (J.J. Siang, et al.) IMPLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA J. J. Siang Program Studi Ilmu Komputer, Fakultas MIPA, Universitas Kristen Immanuel Yogyakarta

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

HANDS-OUT PROGRAM APLIKASI KOMPUTER MATEMATIKA

HANDS-OUT PROGRAM APLIKASI KOMPUTER MATEMATIKA HANDS-OUT PROGRAM APLIKASI KOMPUTER MATEMATIKA Oleh : Dewi Rachmatin, S.Si., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 8 Identitas Mata

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

Sistem Persamaan Linier (SPL)

Sistem Persamaan Linier (SPL) Sistem Persamaan Linier (SPL) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) SPL Agustus 2015 1 / 27 Acknowledgements

Lebih terperinci

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER UNIVERSITAS GADJAH MADA FAKULTAS MIPA, JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara Yogyakarta Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER

Lebih terperinci

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)

Lebih terperinci

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3. MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar

Lebih terperinci

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Tacbir Hendro Pudjiantoro A B S T R A K Salah satu

Lebih terperinci

Modifikasi Metode Gauss atau Operasi Baris Elementer pada Solusi Sistim Persamaan Linier 3 Variabel dan 3 Persamaan

Modifikasi Metode Gauss atau Operasi Baris Elementer pada Solusi Sistim Persamaan Linier 3 Variabel dan 3 Persamaan Modifikasi Metode Gauss atau Operasi Baris Elementer pada Solusi Sistim Persamaan Linier 3 Variabel dan 3 Persamaan Edwin Julius Solaiman Fakultas Teknologi Informasi, Universitas Advent Indonesia Abstrak

Lebih terperinci

Metode Simpleks (Simplex Method) Materi Bahasan

Metode Simpleks (Simplex Method) Materi Bahasan Metode Simpleks (Simplex Method) Kuliah 03 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Rumusan Pemrograman linier dalam bentuk baku 2 Pemecahan sistem persamaan linier 3 Prinsip-prinsip metode simpleks

Lebih terperinci

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 Deskripsi: Perkuliahan ini bertujuan mengembangkan kemampuan mahasiswa memahami konsep-konsep dasar Aljabar Matriks sebagai bekal untuk mengajar matematika

Lebih terperinci