MATRIKS. Notasi yang digunakan NOTASI MATRIKS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MATRIKS. Notasi yang digunakan NOTASI MATRIKS"

Transkripsi

1 MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom. 2. Matriks adalah jajaran elemen (berupa bilangan) berbentuk empat persegi panjang. 3. Matriks adalah suatu himpunan kuantitas-kuantitas (yang disebut elemen), disusun dalam bentuk persegi panjang yang memuat baris-baris dan kolomkolom. Notasi yang digunakan Atau Atau Suatu matriks biasa diberi nama dengan menggunakan huruf besar (misalnya : A, B, X, Y, ) sedangkan elemen-elemennya diberi nama dengan huruf kecil. NOTASI MATRIKS Matriks kita beri nama dengan huruf besar seperti A, B, C, dll. Matriks yang mempunyai I baris dan j kolom ditulis (a ij ), artinya suatu matriks A yang elemenelemennya a ij dimana indeks I menyatakan baris ke I dan indeks j menyatakan kolom ke j dari elemen tersebut. Secara umum : Eri Mardiani 1

2 Matriks (a ij ), i=1, 2, 3,..m dan j=1, 2, 3,., n yang berarti bahwa banyaknya baris m dan banyaknya kolom n. - Notasi Matriks : a 11 a 12 a 1n baris 1 A = a 21 a a 2n baris 2 a m1 a m2... a mn baris m kolom 1 kolom 2 kolom n Secara umum matriks A tersebut dapat ditulis sebagai : A (mxn) = (a ij ) Dimana : A = nama matriks (mxn) = ukuran (ordo) matriks a ij = elemen-elemen matriks dengan i = 1, 2,, m dan j = 1,2,..,n Matriks yang memiliki jumlah baris dan jumlah kolom yang sama disebut matriks bujur sangkar. A 3x2 = A 2x3 = Eri Mardiani 2

3 A 2x2 = 1 2i 2i B= C= Ukuran matriks 2 x 2 2 x 1 1 x 4 Jumlah baris Jumlah kolom Matriks yang hanya mempunyai satu baris disebut MATRIKS BARIS, sedangkan matriks yang hanya mempunyai satu kolom disebut MATRIKS KOLOM. Dua buah matriks A dan B dikatakan SAMA jika ukurannya sama (mxn) dan berlaku a ij = b ij untuk setiap i dan j Latihan 2a 3 A = dan B = 1 4b -2 3c c 3+b Dan B, tentukan a,b dan c Eri Mardiani 3

4 JENIS-JENIS MATRIKS Berikut ini diberikan beberapa jenis matriks selain matriks kolom dan matriks baris a. MATRIKS NOL, adalah matriks yang semua elemennya nol Sifat-sifat : 1. A+0=A, jika ukuran matriks A = ukuran matriks 0 2. A*0=0, begitu juga 0*0. b. MATRIKS DIAGONAL, adalah matriks bujursangkar yang semua elemen diluar diagonal utamanya nol c. MATRIKS SATUAN/IDENTITY, adalah matriks diagonal yang semua elemen diagonalnya adalah Eri Mardiani 4

5 Sifat-sifat matriks identitas : 1. A*I=A 2. I*A d. MATRIKS SKALAR, adalah matriks diagonal yang semua elemennya sama tetapi bukan nol atau satu = A = 4 e. MATRIKS SEGITIGA ATAS (UPPER TRIANGULAR), adalah matriks bujursangkar yang semua elemen dibawah diagonal elemennya = f. MATRIKS SEGITIGA BAWAH (LOWER TRIANGULAR), adalah matriks bujursangkar yang semua elemen diatas diagonal elemennya = Eri Mardiani 5

6 g. MATRIKS SIMETRIS, adalah matriks bujursangkar yang elemennya simetris secara diagonal. Dapat juga dikatakan bahwa matriks simetris adalah matriks yang transposenya (A T ) sama dengan dirinya sendiri. A T dan A T = h. Matriks Balikan (Invers matrix) ialah matriks yang apabila dikalikan dengan suatu matriks bujursangkar menghasilkan sebuah matriks satuan. Matriks balikan dituliskan dengan notasi A -1 dan A. A -1 = I. A = 2 1 A 1 = 4 3 3/ 2 2 1/ 1 2 i. Matriks bujur sangkar ialah matriks yang banyak barisnya sama dengan banyak kolomnya.dalam matriks bujur sangkar ini dikenal istilah diagonal utama yaitu entrientri yang mempunyai nomor baris yang sama dengan nomor kolom. a 11 a 12 a 13 A = a 21 a 22 a 23 a 31 a 32 a 33 Eri Mardiani 6

7 Latihan Tentukan a,b,c sedemikian rupa sehingga matriks A menjadi matriks simetri miring A = a 0 2 b c 0 Penyelesaian A T = A 0 a b 1 0 c = a 0-2 -b -c 0 Disini diperoleh persamaan persamaan a=-1, b=0, c=-2 1=-a, 0=-b, 2=-c Yang berarti a=-1, b=0, c=-2 Jadi matriks simetri miring yang diperoleh adalah A = Eri Mardiani 7

Pertemuan 2 Matriks, part 2

Pertemuan 2 Matriks, part 2 Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen

Lebih terperinci

BAB I MATRIKS DEFINISI : NOTASI MATRIKS :

BAB I MATRIKS DEFINISI : NOTASI MATRIKS : BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.

Lebih terperinci

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks

Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks MATRIKS DEFINISI Matriks adalah susunan bilangan real atau bilangan kompleks (atau elemen-elemen) yang disusun dalam baris dan kolom sehinggga membentuk jajaran persegi panjang. Matriks memiliki m baris

Lebih terperinci

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom.

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Page- MATRIKS Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Notasi: Matriks dinyatakan dengan huruf besar, dan elemen elemennya

Lebih terperinci

MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT)

MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks dan Jenisnya Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan) Beberapa Aplikasi Matriks

Lebih terperinci

2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks

2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks 2. MATRIKS 1. Pengertian Matriks Matriks adalah himpunan skalar yang disusun secara empat persegi panjang menurut baris dan kolom. Matriks diberi nama huruf besar, sedangkan elemen-elemennya dengan huruf

Lebih terperinci

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij)

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij) MATRIKS a a a... a n a a a... an A a a a... a n............... am am am... a mn Matriks A dengan m baris dan n kolom (A m n). Notasi Matriks : a, dimana a adalah elemen pada baris ke i kolom ke j Kesamaan

Lebih terperinci

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j. MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun

Lebih terperinci

METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n

METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV Norma Puspita, ST MT Matriks Matriks adlah susunan bilangan (elemen) yang disusun menurut baris dan kolom sehingga berbentuk persegi panjang Matriks dinotasikan

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

Analisa Numerik. Matriks dan Komputasi

Analisa Numerik. Matriks dan Komputasi Analisa Numerik Matriks dan Komputasi M AT R I K S Matriks adalah suatu susunan angka atau bilangan, variabel, atau parameter yang berbentuk empat persegi dan biasanya ditutup dengan tanda kurung K O N

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

Matriks. Baris ke 2 Baris ke 3

Matriks. Baris ke 2 Baris ke 3 Matriks A. Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung

Lebih terperinci

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3 MATRIKS a. Konsep Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegipanjang dan diletakkan di dalam kurung biasa ( ) atau

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

P2.1 Teori. Secara umum, matriks Amxn = Pada matriks A di atas a23 menyatakan elemen matriks A pada baris ke-2 dan kolom ke Jenis-Jenis Matriks

P2.1 Teori. Secara umum, matriks Amxn = Pada matriks A di atas a23 menyatakan elemen matriks A pada baris ke-2 dan kolom ke Jenis-Jenis Matriks Pertemuan 2 Matriks Objektif: 1. Praktikan memahami konsep matriks. 2. Praktikan dapat mencari penjumlahan matriks, perkalian matriks dari 2 buah matriks. 3. Praktikan dapat membuat program tentang penjumlahan

Lebih terperinci

PENERAPAN KONSEP MATRIKS DALAM KEHIDUPAN SEHARI-HARI

PENERAPAN KONSEP MATRIKS DALAM KEHIDUPAN SEHARI-HARI PENERAPAN KONSEP MATRIKS DALAM KEHIDUPAN SEHARI-HARI Oleh : Gede Edy Priyadnya 93 VII.C Jurusan S Pendidikan Teknik Informatika Fakultas Teknik dan Kejuruan Universitas Pendidikan Ganesha Singaraja 9 PENGERTIAN

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

MATRIKS. Matriks adalah himpunan skalar (bilangan riil/kompleks) yang disusun secara empat persegi panjang (menurut baris dan kolom)

MATRIKS. Matriks adalah himpunan skalar (bilangan riil/kompleks) yang disusun secara empat persegi panjang (menurut baris dan kolom) MTRIKS DEFINISI Bentuk umum =(aij),i=,,...m J=,,...m a a a n baris a a..a n baris MTRIKS Matriks adalah himpunan skalar (bilangan riil/kompleks) yang disusun secara empat persegi panjang (menurut baris

Lebih terperinci

Vektor. Vektor. 1. Pengertian Vektor

Vektor. Vektor. 1. Pengertian Vektor Universitas Muhammadiyah Sukabumi Artikel Aljabar Vektor dan Matriks Oleh : Zie_Zie Vektor Vektor 1. Pengertian Vektor a. Definisi Vektor adalah suatu besaran yang mempunyai nilai (besar) dan arah. Contohnya

Lebih terperinci

PELATIHAN INSTRUKTUR/PENGEMBANG SMU 28 JULI s.d. 12 AGUSTUS 2003 MATRIKS. Oleh: Drs. M. Danuri, M. Pd.

PELATIHAN INSTRUKTUR/PENGEMBANG SMU 28 JULI s.d. 12 AGUSTUS 2003 MATRIKS. Oleh: Drs. M. Danuri, M. Pd. PELATIHAN INSTRUKTUR/PENGEMBANG SMU JULI s.d. AGUSTUS MATRIKS Oleh: Drs. M. Danuri, M. Pd. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN PENATARAN

Lebih terperinci

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1 6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTAT MATEMATIKA II (MATRIK) Drs. A. NABABAN PURNAWAN, S.Pd.,M.T JURUSAN PENDIDIKAN TEKNIK MESIN FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA 2004 MATRIKS I. PENGERTIAN

Lebih terperinci

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1 Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom.

1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom. Bab MATRIKS DAN OPERASINYA Memahami matriks dan operasinya merupakan langkah awal dalam memahami buku ini. Beberapa masalah real dapat direpresentasikan dalam bentuk matriks. Masalah tersebut antara lain

Lebih terperinci

TUGAS MANDIRI MATRIKS. Mata Kuliah : Matematika ekonomi

TUGAS MANDIRI MATRIKS. Mata Kuliah : Matematika ekonomi TUGAS MANDIRI MATRIKS Mata Kuliah : Matematika ekonomi NamaMahasiswa : Suriani NIM : 140610098 Kode Kelas Dosen : 141-MA112-M6 : NeniMarlinaPurbaS.Pd UNIVERSITAS PUTERA BATAM 2014 KATA PENGANTAR Puji syukur

Lebih terperinci

Aljabar Linear Elementer MUG1E3 3 SKS

Aljabar Linear Elementer MUG1E3 3 SKS // ljabar Linear Elementer MUGE SKS // 9:7 Jadwal Kuliah Hari I Selasa, jam. Hari II Kamis, jam. Sistem Penilaian UTS % US % Quis % // 9:7 M- ljabar Linear // Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

MATRIKS. Perhatikan tabel yang memuat data jumlah siswa di suatu sekolah Tabel Jumlah Siswa Kelas Laki-laki Wanita

MATRIKS. Perhatikan tabel yang memuat data jumlah siswa di suatu sekolah Tabel Jumlah Siswa Kelas Laki-laki Wanita MATRIKS A. Pengertian Matriks. Pengertian Matriks dan Ordo Matriks Perhatikan tabel yang memuat data jumlah siswa di suatu sekolah Tabel Jumlah Siswa Kelas Laki-laki Wanita Ι ΙΙ ΙΙΙ Dari tabel di atas,

Lebih terperinci

MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama.

MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama. MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital (huruf besar)

Lebih terperinci

Pengolahan Dasar Matriks Bagus Sartono

Pengolahan Dasar Matriks Bagus Sartono Pengolahan Dasar Matriks Bagus Sartono bagusco@gmail.com Departemen Statistika FMIPA IPB Notasi Dasar Matriks A mxn, m A n, [a ij ] mxn : matriks berukuran m x n (m baris, n kolom) a ij adalah elemen matriks

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan mengenai konsep dasar tentang matriks meliputi definisi matriks, jenis-jenis matriks, operasi matriks, determinan, kofaktor, invers suatu matriks, serta

Lebih terperinci

MATRIK dan RUANG VEKTOR

MATRIK dan RUANG VEKTOR MATRIK dan RUANG VEKTOR A. Matrik. Pendahuluan Sebuah matrik didefinisikan sebagai susunan persegi panjang dari bilangan bilangan yang diatur dalam baris dan kolom. Matrik ditulis sebagai berikut: a a

Lebih terperinci

Matriks Jawab:

Matriks Jawab: Matriks A. Operasi Matriks 1) Penjumlahan Matriks Jika A dan B adalah sembarang Matriks yang berordo sama, maka penjumlahan Matriks A dengan Matriks B adalah Matriks yang diperoleh dengan cara menjumlahkan

Lebih terperinci

Pertemuan 4 Aljabar Linear & Matriks

Pertemuan 4 Aljabar Linear & Matriks Pertemuan 4 Aljabar Linear & Matriks 1 Notasi : huruf besar tebal misalnya A, B, C Merupakan array dari bilangan, setiap bilangan disebut elemen matriks (entri matriks) Bentuk umum : m : jumlah baris (mendatar)

Lebih terperinci

DETERMINAN. Determinan matriks hanya didefinisikan pada matriks bujursangkar (matriks kuadrat). Notasi determinan matriks A: Jika diketahui matriks A:

DETERMINAN. Determinan matriks hanya didefinisikan pada matriks bujursangkar (matriks kuadrat). Notasi determinan matriks A: Jika diketahui matriks A: DETERMINAN Definisi Determinan Matriks Determinan matriks adalah bilangan tunggal yang diperoleh dari semua permutasi elemen matriks bujur sangkar.jika subskrip permutasi elemen matriks adalah genap (inversi

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 1 Matriks dan Operasinya MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks Jenis-jenis Matriks Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan)

Lebih terperinci

MATRIKS. Slide : Tri Harsono PENS - ITS. 1 Politeknik Elektronika Negeri Surabaya (PENS) - ITS

MATRIKS. Slide : Tri Harsono PENS - ITS. 1 Politeknik Elektronika Negeri Surabaya (PENS) - ITS MATRIKS Slide : Tri Harsono PENS - ITS 1 Sifat Matriks Perkalian dua matriks tidak komutatif Perkalian dua matriks bersifat assosiatif dan distributif tidak komutatif AB BA (AB)C = A(BC) A(B+C) = AB +

Lebih terperinci

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Repeated Measurement Dalam repeated measurement setiap perlakuan menunjukkan pengukuran terhadap satu sampel (unit eksperimen ) atau beberapa sampel yang memiliki karakter sama

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 =

MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 = NAMA : KELAS : 1 2 MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital

Lebih terperinci

& & # = atau )!"* ( & ( ( (&

& & # = atau )!* ( & ( ( (& MATRIKS ======PENGERTIAN====== Matriks merupakan Susunan bilangan-bilangan yang membentuk segi empat siku-siku. Susunan bilangan-bilangan tersebut dinamakan entri dalam matriks. Matriks dinotasikan dengan

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3. MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Bilangan Kompleks Bilangan merupakan suatu konsep dalam matematika yang digunakan untuk pencacahan dan pengukuran. Sistem bilangan yang dikenal saat ini merupakan hasil perkembangan

Lebih terperinci

MODUL E LEARNING SEKSI -1 MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA 151 : 5099 : DRA ENDANG SUMARTINAH,MA

MODUL E LEARNING SEKSI -1 MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA 151 : 5099 : DRA ENDANG SUMARTINAH,MA MODUL E LEARNING SEKSI - MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA DOSEN : : DRA ENDANG SUMARTINAH,MA TUJUAN MATA KULIAH : A.URAIAN DAN TUJUAN MATA KULIAH : Mahasiswa mempelajari Matriks, Determinan,

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

03-Pemecahan Persamaan Linier (2)

03-Pemecahan Persamaan Linier (2) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Matriks Invers Bagian : Eliminasi = Faktorisasi: A = LU Bagian : Transpos dan Permutasi Anny Bagian MATRIKS INVERS

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5 Aljabar Linear & Matriks Pert. 5 Evangs Mailoa Pengantar Determinan Menurut teorema 1.4.3, matriks 2 x 2 dapat dibalik jika ad bc 0. Pernyataan ad bc disebut sebagai determinan (determinant) dari matriks

Lebih terperinci

DIAGONALISASI MATRIKS KOMPLEKS

DIAGONALISASI MATRIKS KOMPLEKS Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 3 (2015), hal 337-346 DIAGONALISASI MATRIKS KOMPLEKS Heronimus Hengki, Helmi, Mariatul Kiftiah INTISARI Matriks kompleks merupakan matriks

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

MATRIKS Matematika Industri I

MATRIKS Matematika Industri I MATRIKS TIP FTP UB Mas ud Effendi Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu

Lebih terperinci

Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa

Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa Bab 7 Sistem Pesamaan Linier Oleh : Devie Rosa Anamisa Pendahuluan Bentuk umum dari aljabar linier sebagai berikut: a11x1 + a12a 12X2 +... + a1na 1nXn = b1b a21x1 + a22a 22X2 +... + a2na 2nXn = b2b...............

Lebih terperinci

8 MATRIKS DAN DETERMINAN

8 MATRIKS DAN DETERMINAN 8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk

Lebih terperinci

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) Matriks -

Lebih terperinci

MATRIKS Matematika Industri I

MATRIKS Matematika Industri I MATRIKS TIP FTP UB Mas ud Effendi Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu

Lebih terperinci

Konsep Dasar. Modul 1 PENDAHULUAN

Konsep Dasar. Modul 1 PENDAHULUAN Modul 1 Konsep Dasar M PENDAHULUAN Drs. Suryo Guritno, M.Stats., Ph.D. ateri yang akan dibahas dalam modul ini adalah konsep-konsep dasar aljabar matriks yang meliputi pengertian matriks, vektor dan skalar;

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR M AT E M AT I K A E K O N O M I MATRIKS DAN SPL TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Kesetimbangan Dua Pasar Permintaan kopi bergantung tidak hanya pada harganya tetapi juga pada harga

Lebih terperinci

Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}:

Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}: Definisi : Determinan dari matrik bujursangkar A berorde n adalah jumlah semua permutasi n (n!) hasil kali bertanda dari elemen-elemen matrik. Dituliskan : det(a) atau A (jr j r...j n ).a jr a j r...am

Lebih terperinci

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

Penyelesaian SPL dalam Rangkaian Listrik

Penyelesaian SPL dalam Rangkaian Listrik Penyelesaian SPL dalam Rangkaian Listrik Harry Octavianus Purba (13514050) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

Invers Tergeneralisasi Matriks atas Z p

Invers Tergeneralisasi Matriks atas Z p SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Invers Tergeneralisasi Matriks atas Z p Evi Yuliza 1 1 Fakultas MIPA Universitas Sriwijaya evibc3@yahoocom PM A-1 - Abstrak Sebuah matriks

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

MATRIKS. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII. Oleh: Hj. ITA YULIANA, S.Pd, M.

MATRIKS. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII. Oleh: Hj. ITA YULIANA, S.Pd, M. LA - WB (Lembar Aktivitas Warga Belajar) MATRIKS Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 15 Matriks Kompetensi Dasar 1. Menggunakan

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

TEKNIK INFORMATIKA FENI ANDRIANI

TEKNIK INFORMATIKA FENI ANDRIANI EKNIK INFORMIK FENI NDRINI Definisi: Matriks adalah sekumpulan bilangan yang disusun dalam sebuah empat persegi panjang, secara teratur, di dalam baris-baris dan kolom-kolom. a a... a n a a... a n... a

Lebih terperinci

02-Pemecahan Persamaan Linier (1)

02-Pemecahan Persamaan Linier (1) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:

Lebih terperinci

Aplikasi Perkalian dan Invers Matriks dalam Kriptografi Hill Cipher

Aplikasi Perkalian dan Invers Matriks dalam Kriptografi Hill Cipher Aplikasi Perkalian dan Invers Matriks dalam Kriptografi Hill Cipher Catherine Pricilla-13514004 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR 7.1 Matriks DEFINISI Susunan bilangan (fungsi) berbentuk persegi panjang yang ditutup dengan tanda kurung. Bilangan (fungsi) disebut entri-entri matriks.

Lebih terperinci

Matematika Teknik DETERMINAN

Matematika Teknik DETERMINAN DETERMINN da satu cara lagi dalam menentukan solusi SPL dengan bekerja pada matriks koefisiennya. Cara berikut hanya akan berlaku untuk matriks koefiien berupa matriks bujursangkar atau SPL mempunyai banyak

Lebih terperinci

2. Matrix, Relation and Function. Discrete Mathematics 1

2. Matrix, Relation and Function. Discrete Mathematics 1 2. Matrix, Relation and Function Discrete Mathematics Discrete Mathematics. Set and Logic 2. Relation 3. Function 4. Induction 5. Boolean Algebra and Number Theory MID 6. Graf dan Tree/Pohon 7. Combinatorial

Lebih terperinci

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo

Lebih terperinci

Matriks. Modul 1 PENDAHULUAN

Matriks. Modul 1 PENDAHULUAN Modul 1 Matriks Drs. H. Karso, M. M.Pd. M PENDAHULUAN odul pertama dari mata kuliah Aljabar Linear ini merupakan materi prasyarat untuk mempelajari konsep-konsep dalam Aljabar Linear berikutnya. Pendahuluan

Lebih terperinci

a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE

a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Untuk DIPERHATIKAN! a A c Untuk mencari Matriks INVERS ordo 2, rumus: 1 1 d b A a d b c c a b

Lebih terperinci

STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep matriks

STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep matriks Page 1 of 25 Materi Matriks yang dipelajari A. Pengertian dan Jenis Matriks B. Operasi Aljabar pada Matriks C. Determinan dan Invers Matriks D. Aplikasi Matriks dalam Penyelesaian Sistem PersamaanLinear

Lebih terperinci

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika MATRIKS FTP UB Mas ud Effendi Pokok Bahasan Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar Invers suatu matriks bujursangkar Penyelesaian set persamaan linier Nilai-eigen dan

Lebih terperinci

Materi VI. Matik memiliki notasi yang berbeda dengan determinan. Garis pembatas sedikit disikukan Contoh. matrik ini memiliki ordo (3x4)

Materi VI. Matik memiliki notasi yang berbeda dengan determinan. Garis pembatas sedikit disikukan Contoh. matrik ini memiliki ordo (3x4) Materi VI Tujuan :. Mahasiswa dapat mengenali matrik.. Mahasiswa dapat mengunakan operasi penjumlahan, pengurangan, dan perkalian matrik. Mahasiswa dapat merubah persamaan linier menjadi persamaan matrik..

Lebih terperinci

BAB IX OPERASI MATRIK

BAB IX OPERASI MATRIK 1 BAB IX OPERASI MATRIK Matrik merupakan suatu bentuk data tipe larik berdimensi dua. Data-data dalam matrik disusun dalam sejumlah baris dan kolom. Suatu elemen data atau lebih dikenal sebagai entri,

Lebih terperinci

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world).

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world). 5 II. TINJAUAN PUSTAKA 2.1. Pemodelan Matematika Definisi pemodelan matematika : Pemodelan matematika adalah suatu deskripsi dari beberapa perilaku dunia nyata (fenomena-fenomena alam) ke dalam bagian-bagian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Analisis Regresi Perubahan nilai suatu variabel tidak selalu terjadi dengan sendirinya, namun perubahan nilai variabel itu dapat disebabkan oleh berubahnya variabel lain yang berhubungan

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci