BAB 3 : INVERS MATRIKS

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 3 : INVERS MATRIKS"

Transkripsi

1 BAB 3 : INVERS MATRIKS PEMBAGIAN MATRIKS DAN INVERS MATRIKS Pada aljabar biasa, bila terdapat hubungan antara 2 besaran a dengan x sedemikian sehingga ax1, maka dikatakan x adalah kebalikan dari a dan nilainya x1/2aa -1. Dalam aljabar matriks, matriks satuan (identity) I beroperasi sebagai besaran 1 dalam aljabar biasa. Bila [A] dan [I] keduanya matriks bujursangkar dan ordenya sama maka [I][A][A][I][A]. Apabila sekarang terdapat suatu matriks bujursangkar [X] yang berorde sama sehingga [A][X][I] maka dikatakan bahwa [X] kebalikan atau invers matriks dari [A] dan dituliskan [X][A] -1. Carilah invers matriks dari A Menurut definisi invers [A][X][I]. Misalkan matriks X x 1 x 2 Maka [A][X][I] menjadi 1 0 x 3 x x 1 x 2 x 3 x 4 3/2-1/2 Didapat X A -1-2\x 1 + x x 2 + x 4 4x 1 + x 3 4 x 2 +3 x Ternyata bahwa matriks-matriks yang mempunyai invers adalah matriksmatriks yang Non Singular yaitu matriks yang determinanya 0. invers bila ada hanya satu (tunggal). Berlaku sifat : 1. (A -1 ) -1 A 2. (AB) -1 B -1 A -1 MATRIKS ADJOIN Pandang matriks Cc ij berikut C c 11 c 21 c n1 c 12...c n1 c c n2 c n2 c nn Adalah matriks kofaktor dari suatu matriks (misalkan matriks A), maka transpose dari matriks kofaktor disebut MATRIKS ADJOIN Anxn. Dalam mencari matriks adjoin, maka kita harus melakukan ekspansi baris dan kolom untuk semua elemen. Tidak seperti dalam mencari determinan dimana hanya satu baris atau kolom saja yang

2 diekspansi. Misal ada matriks bujursangkar berorde 3, maka akan ada 9 elemen yang harus dicari kofaktornya. Akan dicari matriks adjoin dari A c 11 c 12 c 13 Maka kofaktornya C A c 21 c 22 c C 11 + C 21 - C C 12 - C 22 + C c 31 c 32 c C 13 + C 23 - C Maka C A dan Adj A C A T MENCARI INVERS MATRIKS Mencari invers matriks dapat dilakukan antara lain dengan : a. Adjoin matriks, yaitu menggunakan rumus Adj A A -1, dengan syarat det (A) 0 Det (A) b. Transformasi elementer, invers matriks A dapat dicari dengan [ A I ] ~ [ I X ] [A] -1 [X] Setelah melalui transformasi elementer. Catatan : 1. Yang dapat dicari matriksnya adalah matriks-matriks bujursangkar. 2. Merupakan matriks non singular ( A 0). 3. Untuk pencarian invers dengan adjoin maka bila matriksnya berorde 2x2 bisa langsung dicari inversnya dengan menggunakan rumus 1 d -b A -1 a.d-b.c -c a

3 INVERS MATRIKS DENGAN ADJOIN Hitung A -1 jika diketahui A Terlebih dahulu kita cari kofaktor-kofaktor matriks A diatas. 4 6 C 11 + C 21 - C C 12 - C 22 + C C 13 + C 23 - C Maka C A dan Adj A C A T A A -1 Adj A A INVERS MATRIKS DENGAN TRANSFORMASI ELEMENTER Hitung A -1 jika diketahui A Terlebih dahulu dibentuk matriks [ A I ] ~ [ I X ] dengan transformasi elementer! [ A I ] ~ [ I X ] ~ x 11 x 12 x 13 x 21 x 22 x 23 x 31 x 32 x 32 Mengubah elemen a 11 1 menjadi 1 (karena sudah 1 maka tiidak perlu dikalikan lagi) dan megubah a 21 dan a 31 menjadi 0. baris 1 menjadi basis baris 1 dan 2 dikenai transformasi elementer. basis b( )+b2 b( )+b3 1(-1)+10 1(-2)+20 3(-1)+41 3(-2)+5-1 2(-1)+64 2(-2)+73 1(-1)+0-1 1(-2)+0-2 0(-1)+11 0(-2)+00 0(-1)+00 0(-2)+11

4 Menjadi Mengubah a 2 menjadi 1 (karena sudah 1 maka tidak perlu dikalikan lagi) dan mengubah a 32 menjadi 0. Baris 2 menjadi basis, baris 1 dan 3 dikenai transformasi elementer Menjadi basis b( )+b3 b( )+b1 1(1)+(-1)0 1(-3)+30 4(1)+37 4(-3) (1)+(-2)-3-1(-3)+14 1(1)+01 1(-3)+0-3 0(1)+11 0(-3)+00 Mengubah a 33 7 menjadi 1 (dikalikan 1/7) dan mengubah a 13 dan a 23 menjadi 0. Baris 3 menjadi basis, baris 1 dan 2 dikenai transformasi elementer Menjadi /7 3/7-4/7-5/7 1 0 Basis (kali 1/7) menjadi Basis b( )+b2 b( )+b1 1(-4)+40 1(10)+(-10)0-3/7(-4)+(-1)5/7-3/7(10)+4-2/7 1/7(-4)+13/7 1/7(10)+(-3)3/7 1/7(-4)+0-4/7 1/7(10)+0-4/7 ~ [ I X ] maka A -1 x -2/7 3/7-4/7-5/7 1 0 SOAL LATIHAN Carilah matriks adjoin dari A dan B Carilah x dan y dari susunan persamaan linier berikut dengan menggunakan invers dari matriks koefisien x+y1 dan 2x+y1.

5 3. Diketahui matriks A Carilah Adj A dan A Carilah invers dari A 5. Diketahui matriks A Carilah Adj A dan selidikilah bahwa Adj(Adj A)a c d 6. Carilah invers dari matriks A berikut dengan transformasi elementer atau Adjoin. A a b Carilah harga x, y, z, dan w yang memenuhi susunan persamaan linier berikut. 2x+4y+3z+2w1 3x+6y+5z+2w1 2x+5y+2z-3w0 4x+5y+14z+14w0 8. Carilah invers dari matriks-matriks berikut (bila ada). a. 5 6 b. c. d. 2 2 e Carilah adjoin dari A dan invers dari A bila a. A b. A c. A Dengan menggunakan matriks-matriks invers pada soal no.9 diatas, carilah x, y, dan z dari susunan persamaan berikut. a. x+y 3 b. x+2y+2z0 c. 4x+5z9 x+y+z0 3x+y 0 y-6z-14 2y+z 2 x+y+z 1 6x+8z14 11.Carilah invers matriks A dan B berikut jika A dan B Carilah invers matriks berikut dengan menggunakan transformasi elementer. 3 a. b

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini.

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. . INVERS MTRIKS Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. a. RNK MTRIKS Matriks tak nol dikatakan mempunyai rank r jika paling

Lebih terperinci

Syarat Cukup dan Perlu Elemen Gelanggang Merupakan Pembagi Nol Kiri maupun Kanan )(RMnn

Syarat Cukup dan Perlu Elemen Gelanggang Merupakan Pembagi Nol Kiri maupun Kanan )(RMnn Syarat Cukup dan Perlu Elemen Gelanggang Merupakan Pembagi Nol Kiri maupun Kanan )(RMnn Oleh K a r y a t i R. Rosnawati Abstrak Himpunan matriks ordo atas gelanggang nr komutatif, yang selanjutnya dinotasikan

Lebih terperinci

3 OPERASI HITUNG BENTUK ALJABAR

3 OPERASI HITUNG BENTUK ALJABAR OPERASI HITUNG BENTUK ALJABAR Pada arena balap mobil, sebuah mobil balap mampu melaju dengan kecepatan (x + 10) km/jam selama 0,5 jam. Berapakah kecepatannya jika jarak yang ditempuh mobil tersebut 00

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari BAB 2 LANDASAN TEORI 21 Analisis Komponen Utama 211 Pengantar Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari tulisan Karl Pearson pada tahun 1901 untuk peubah non-stokastik Analisis

Lebih terperinci

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi

Lebih terperinci

http://meetabied.wordpress.com

http://meetabied.wordpress.com http://meetabied.wordpress.com SMAN BoneBone, Luwu Utara, SulSel Kebahagiaan akan tumbuh berkembang manakala Anda membantu orang lain. Namun bilamana Anda tidak mencoba membantu sesama, kebahagiaan akan

Lebih terperinci

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER SILABUS NAMA SEKOLAH : SMK Negeri 1 Surabaya MATA PELAJARAN : MATEMATIKA (Kelompok Teknologi Informasi) KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

SYARAT PERLU DAN SYARAT CUKUP KEBERADAAN DAN KETUNGGALAN KESEIMBANGAN NASH CAMPURAN SEMPURNA PADA BIMATRIX GAMES

SYARAT PERLU DAN SYARAT CUKUP KEBERADAAN DAN KETUNGGALAN KESEIMBANGAN NASH CAMPURAN SEMPURNA PADA BIMATRIX GAMES Jurnal Matematika UNND Vol. 2 No. 2 Hal. 54 62 ISSN : 233 291 c Jurusan Matematika FMIP UNND SYRT PERLU DN SYRT CUKUP KEBERDN DN KETUNGGLN KESEIMBNGN NSH CMPURN SEMPURN PD BIMTRIX GMES NGGI MUTI SNI Program

Lebih terperinci

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah : 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan

Lebih terperinci

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI FUNGSI 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi Definisi Fungsi Suatu fungsi f atau pemetaan f dari himpunan A ke himpunan B adalah suatu

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

Pemanfaatan Nonnegative Matrix Factorization pada Kriptografi untuk Mengamankan Data Gambar

Pemanfaatan Nonnegative Matrix Factorization pada Kriptografi untuk Mengamankan Data Gambar Prosiding SNM 2014 Topik penelitian, hal. xx-xx. Pemanfaatan Nonnegative Matrix Factorization pada Kriptografi untuk Mengamankan Data Gambar INDRA BAYU MUKTYAS 1 1Program Studi Pendidikan Matematika, STKIP

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

BAB X FUNGSI BOOLEAN, BENTUK KANONIK, DAN BENTUK BAKU

BAB X FUNGSI BOOLEAN, BENTUK KANONIK, DAN BENTUK BAKU Buku Panduan Belajar atematika Diskrit STIK TRIGUNA DHARA BAB X FUNGSI BOOLEAN, BENTUK KANONIK, DAN BENTUK BAKU 9.1 Fungsi Boolean Pada aljabar Boolean dua-nilai B = {,1}. Peubah (variabel) x disebut peubah

Lebih terperinci

Analisis Input-Output dengan Microsoft Office Excel

Analisis Input-Output dengan Microsoft Office Excel Analisis Input-Output dengan Microsoft Office Excel Junaidi, Junaidi (Staf Pengajar Fakultas Ekonomi dan Bisnis Universitas Jambi) Tulisan ini membahas simulasi/latihan analisis Input-Output (I-O) dengan

Lebih terperinci

MODEL VEKTOR DAN MATRIKS DARI DOKUMEN SERTA SUDUT ANTARA DUA VEKTOR DAN DUA SUBRUANG UNTUK MENDUGA DINI PLAGIARISME DOKUMEN

MODEL VEKTOR DAN MATRIKS DARI DOKUMEN SERTA SUDUT ANTARA DUA VEKTOR DAN DUA SUBRUANG UNTUK MENDUGA DINI PLAGIARISME DOKUMEN MODEL VEKOR DAN MARIKS DARI DOKUMEN SERA SUDU ANARA DUA VEKOR DAN DUA SUBRUANG UNUK MENDUGA DINI PLAGIARISME DOKUMEN Prasetyaning Diah R. Lestari, R. Agustian, R. Gafriadi, A.Febriyanti, dan A.D. Garnadi

Lebih terperinci

BAB III PD LINIER HOMOGEN

BAB III PD LINIER HOMOGEN BAB III PD LINIER HOMOGEN Kompetensi Mahasiswa diharapkan. Mampu menentukan selesaian umum dari PD linier homogen orde dua dengan jenis akarakar karakteristik yang berbeda-beda. Memahami pengertian kebebaslinieran

Lebih terperinci

PENGANTAR ANALISIS FUNGSIONAL

PENGANTAR ANALISIS FUNGSIONAL PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor Bab 5 Sumber: www.in.gr Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan fungsi komposisi dalam pemecahan masalah; menggunakan konsep, sifat, dan aturan fungsi invers

Lebih terperinci

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 ALJABAR Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 Aljabar adalah salah satu cabang penting dalam matematika. Kata aljabar

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

Bab 15. Interaksi antar dua spesies (Model Kerjasama)

Bab 15. Interaksi antar dua spesies (Model Kerjasama) Bab 15. Interaksi antar dua spesies (Model Kerjasama) Dalam hal ini diberikan dua spesies yang hidup bersama dalam suatu habitat tertutup. Kita ketahui bahwa terdapat beberapa jenis hubungan interaksi

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Salah satu tahapan dalam pengadaan jaring kontrol GPS adalah desain jaring. Desain jaring digunakan untuk mendapatkan jaring yang optimal. Terdapat empat tahapan dalam

Lebih terperinci

BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR

BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR Bab III Automata Hingga Non-Deterministik 15 BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN AHD - GR TUJUAN PRAKTIKUM 1) Mengetahui apa yang dimaksud dengan Automata Hingga Non-deterministik

Lebih terperinci

Seperti yang ada dalam storyboard, multimedia pembelajaran saya terdiri dari empat menu utama yaitu:

Seperti yang ada dalam storyboard, multimedia pembelajaran saya terdiri dari empat menu utama yaitu: Belajar Matriks Mudah dan Menyenangkan (Chapter 2) Assalammualaikum.. Salam Matematika!! Pada chapter sebelumnya, saya telah sedikit memberikan penjelasan mengenai Multimedia Pembelajaran Interaktif dan

Lebih terperinci

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari

4. Bentuk sederhada dari : 3 2 ... D. E. 5. Bentuk sederhana dari . Pernyataan yang senilai dengan kalimat Jika Fatah dan Ichwan datang maka semua siswa senang adalah. A. Jika Fatah dan Ichwan tidak datang maka semua siswa tidak senang B. Jika Fatah atau Ichwan tidak

Lebih terperinci

PD Orde 2 Lecture 3. Rudy Dikairono

PD Orde 2 Lecture 3. Rudy Dikairono PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order

Lebih terperinci

TIPE DATA ABSTRAK MENGGUNAKAN BAHASA C

TIPE DATA ABSTRAK MENGGUNAKAN BAHASA C WAHJUDI ULTIMATICS VOL. 1 NO. 1, DESEMBER 2009 TIPE DATA ABSTRAK MENGGUNAKAN BAHASA C Universitas Multimedia Nusantara Tangerang - Banten Januar Wahjudi Abstrak- Tipe data abstrak(abstract data types atau

Lebih terperinci

BAB IV PERSAMAAN TAKHOMOGEN

BAB IV PERSAMAAN TAKHOMOGEN BAB IV PERSAMAAN TAKHOMOGEN Kompetensi Mahasiswa mampu 1. Menentukan selesaian khusus PD tak homogen dengan metode koefisien tak tentu 2. Menentukan selesaian khusus PD tak homogen dengan metode variasi

Lebih terperinci

MAT. 05. Relasi dan Fungsi

MAT. 05. Relasi dan Fungsi MAT. 05. Relasi dan Fungsi i Kode MAT. 05 Relasi dan fungsi BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

UN SMA IPA 2010 Matematika

UN SMA IPA 2010 Matematika UN SMA IPA 00 Matematika Kode Soal P0 Doc. Name: UNSMAIPA00MATP0 Doc. Version : 0-0 halaman 0. Akar-akar persamaan kuadrat x² + (a - ) x + =0 adalah α dan β. Jika a > 0 maka nilai a =. 8 x 0. Diketahui

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013 Dasar-Dasar Teori Graf Sistem Informasi Universitas Gunadarma 2012/2013 Teori Graf Teori Graf mulai dikenal saat matematikawan kebangsaan Swiss bernama Leonhard Euler, yang berhasil mengungkapkan Misteri

Lebih terperinci

TEORI BAHASA DAN OTOMATA

TEORI BAHASA DAN OTOMATA TEORI BAHASA DAN OTOMATA Bentuk Normal Greibach/Greibach Normal Form (GNF) adalah suatu tata bahasa bebas konteks (CFG) yang aturan produksinya berada dalam bentuk : A a a : simbol terminal(tunggal), a

Lebih terperinci

Ruang Hasil Kali Dalam

Ruang Hasil Kali Dalam Ruang Hasil Kali Dalam Hasil Kali Dalam dan Norm Wono Setya Budhi KKAG FMIPA ITB v 0.1 Maret 2015 Wono Setya Budhi (KKAG FMIPA ITB) Ruang Hasil Kali Dalam v 0.1 Maret 2015 1 / 12 Pada bab ini kita akan

Lebih terperinci

Komputasi untuk Sains dan Teknik

Komputasi untuk Sains dan Teknik Komputasi untuk Sains dan Teknik Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: supri@fisika.ui.ac.id atau supri92@gmail.com ) Edisi III Revisi terakhir tgl: 30 Agustus 2009 Departemen

Lebih terperinci

Pertemuan 1 HIMPUNAN. a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.)

Pertemuan 1 HIMPUNAN. a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.) Pertemuan 1 HIMPUNAN 1.3.1. Definisi a.himpunan Kosong Ǿ adalah himpunan yang mempunyai nol anggota(tidak mempunyai elemen.) b. Misalkan nєν Himpunan S dikatakan mempunyai n anggota jika ada suatu fungsi

Lebih terperinci

EDISI REVISI 2014 MATEMATIKA. SMA/MA SMK/MAK Kelas. Semester 1

EDISI REVISI 2014 MATEMATIKA. SMA/MA SMK/MAK Kelas. Semester 1 EDISI REVISI 04 MATEMATIKA SMA/MA SMK/MAK Kelas X Semester Hak Cipta 04 pada Kementerian Pendidikan dan Kebudayaan Dilindungi Undang-Undang MILIK NEGARA TIDAK DIPERDAGANGKAN Disklaimer: Buku ini merupakan

Lebih terperinci

BAB 5 POSET dan LATTICE

BAB 5 POSET dan LATTICE BAB 5 POSET dan LATTICE 1. Himpunan Urut Parsial Suatu relasi R pada himpunan S dikatakan urut parsial pada S, jika R bersifat : 1. Refleksif, yaitu a R a, untuk setiap a Є s 2. Anti simetris, yaitu a

Lebih terperinci

ANALISIS PEUBAH GANDA ANALISIS GEROMBOL HAZMIRA YOZZA JURUSAN MATEMATIKA UNAND LOGO

ANALISIS PEUBAH GANDA ANALISIS GEROMBOL HAZMIRA YOZZA JURUSAN MATEMATIKA UNAND LOGO ANALISIS PEUBAH GANDA ANALISIS GEROMBOL HAZMIRA YOZZA JURUSAN MATEMATIKA UNAND Kompetensi menghitung jarak antar individu Membentuk gerombol dengan menggunakan metode gerombol berhierarkhi Membentuk gerombol

Lebih terperinci

Minimumkan: Z = 4X 1 + X 2 Batasan: 3X 1 + X 2 = 3 4X 1 + 3X 2 6 X 1 + 2X 2 4

Minimumkan: Z = 4X 1 + X 2 Batasan: 3X 1 + X 2 = 3 4X 1 + 3X 2 6 X 1 + 2X 2 4 TEKNIK DUA TAHAP Tahap I. Tambahkan variable buatan sebagaimana diperlukan untuk memperoleh pemecahan awal. Bentuklah fungsi tujuan baru yang mengusahakan minimalisasi jumlah variable buatan dengan batasan

Lebih terperinci

Operasi-Operasi Dasar pada Pengolahan Citra. Bertalya Universitas Gunadarma

Operasi-Operasi Dasar pada Pengolahan Citra. Bertalya Universitas Gunadarma Operasi-Operasi Dasar pada Pengolahan Citra Bertalya Universitas Gunadarma 1 Operasi2 Dasar Merupakan manipulasi elemen matriks : elemen tunggal (piksel), sekumpulan elemen yang berdekatan, keseluruhan

Lebih terperinci

UJI CHI SQUARE ( 2 ) PRINSIP : 1. merupakan analisis data kategorial. data kualitatif (nominal) data kategorial. data semikuantitatif (ordinal)

UJI CHI SQUARE ( 2 ) PRINSIP : 1. merupakan analisis data kategorial. data kualitatif (nominal) data kategorial. data semikuantitatif (ordinal) ( 2 ) UJI CHI SQUARE ( 2 ) PRINSIP : 1. merupakan analisis data kategorial data kualitatif (nominal) data kategorial data semikuantitatif (ordinal) lebih tepat menggunakan analisis data semikuantitatif

Lebih terperinci

BAB VI. ANALISIS JEJAK ATAU SIDIK LINTAS (PATH ANALYSIS)

BAB VI. ANALISIS JEJAK ATAU SIDIK LINTAS (PATH ANALYSIS) BAB VI. ANALII JEJAK ATAU IDIK LINTA (PATH ANALYI) 6.1 Pendahuluan Telaah statistika mengatakan bahwa dalam analisis hubungan yang bertujuan untuk peramalan atau pendugaan nilai Y atas dasar nilai-nilai

Lebih terperinci

CHAPTER 6. Ruang Hasil Kali Dalam

CHAPTER 6. Ruang Hasil Kali Dalam CHAPTER 6. Ruang Hasil Kali Dalam Hasil Kali Dalam Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Orthogonal

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Untuk SMA/MA Kelas X Mata Pelajaran : Matematika (Wajib) Penerbit dan Percetakan Jl. Tengah No. 37, Bumi Asri Mekarrahayu Bandung-40218 Telp. (022) 5403533 e-mail:srikandiempat@yahoo.co.id

Lebih terperinci

BAB 6 RANGKAIAN KUTUB EMPAT

BAB 6 RANGKAIAN KUTUB EMPAT BAB 6 ANGKAAN KUTUB EMPAT 6. Pendauluan Sepasan terminal an dilalui ole arus (menuju atau meninalkan terminal disebut sebaai rankaian kutub dua (misalna pada resistor, induktor dan kapasitor). Gambar 6.

Lebih terperinci

Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment)

Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment) Hitung Perataan Kuadrat Terkecil (Least Squares Adjustment) Metoda Kuadrat Terkecil adalah salah satu metoda yang paling populer dalam menyelesaikan masalah hitung perataan. Aplikasi pertama perataan kuadrat

Lebih terperinci

KATA PENGANTAR. Semoga bermanfaat. Disusun : Memed Wachianto ( Guru Matematika SMK Negeri 10 Semarang ) Geogebra - 1

KATA PENGANTAR. Semoga bermanfaat. Disusun : Memed Wachianto ( Guru Matematika SMK Negeri 10 Semarang ) Geogebra - 1 KATA PENGANTAR Saat ini adalah era ICT (Information and Communication Technology). Seiring dengan itu saat ini SPSS dan MINITAB, yaitu software untuk statistika yang merupakan cabang dari matematika. Geogebra

Lebih terperinci

HITUNGAN PERATAAN POSISI 3D TITIK PREMARK SECARA SIMULTAN PADA SURVEI FOTO UDARA FORMAT KECIL

HITUNGAN PERATAAN POSISI 3D TITIK PREMARK SECARA SIMULTAN PADA SURVEI FOTO UDARA FORMAT KECIL HITUNGAN PERATAAN POSISI 3D TITIK PREMARK SECARA SIMULTAN PADA SURVEI FOTO UDARA FORMAT KECIL Harintaka 1, Subaryono, Ilham Pandu Wijaya 3 1, Jurusan Teknik Geodesi, FT-UGM. Jl. Grafika No. Yogyakarta

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL

KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 58 65 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL AKHIRUDDIN Program Studi Matematika, Fakultas

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BB 3 METODE PENELITIN 3.1 Desain/Kerangka Penelitian Berdasarkan dari uraian latar belakang, perumusan masalah, dan teori-teori yang telah dijelaskan sebelumnya, maka kerangka pemikiran dari penelitian

Lebih terperinci

MODUL 7 TAHANAN FONDASI TERHADAP GAYA ANGKAT KE ATAS

MODUL 7 TAHANAN FONDASI TERHADAP GAYA ANGKAT KE ATAS Program Studi Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana 7 MODUL 7 TAHANAN FONDASI TERHADAP GAYA ANGKAT KE ATAS Fondasi menara (tower) sering menerima gaya angkat ke atas

Lebih terperinci

KOREKSI METODE CONNECTED AMMI DALAM PENDUGAAN DATA TIDAK LENGKAP ABSTRAK

KOREKSI METODE CONNECTED AMMI DALAM PENDUGAAN DATA TIDAK LENGKAP ABSTRAK KOREKSI METODE CONNECTED AMMI DALAM PENDUGAAN DATA TIDAK LENGKAP I Made Sumertajaya 2 Ahmad Ansori Mattjik 3 I Gede Nyoman Mindra Jaya,2 Dosen Departemen Statistika Institut Pertanian Bogor,3 Mahasiswa

Lebih terperinci

PENERAPAN ANALISIS FAKTOR KONFIRMATORI STRUCTURAL EQUATION MODELING PADA MODEL HUBUNGAN KEBIASAAN MEROKOK DAN TEKANAN DARAH

PENERAPAN ANALISIS FAKTOR KONFIRMATORI STRUCTURAL EQUATION MODELING PADA MODEL HUBUNGAN KEBIASAAN MEROKOK DAN TEKANAN DARAH Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 34 43 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENERAPAN ANALISIS FAKTOR KONFIRMATORI STRUCTURAL EQUATION MODELING PADA MODEL HUBUNGAN KEBIASAAN MEROKOK

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI LAMPIRAN 5 BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Laporan 2 Pelaksanaan OSN-PERTAMINA 2012 69 Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Untuk menguji apakah alat ukur (instrument) yang digunakan memenuhi

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Untuk menguji apakah alat ukur (instrument) yang digunakan memenuhi BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Hasil uji itas dan Reliabilitas Untuk menguji apakah alat ukur (instrument) yang digunakan memenuhi syarat-syarat alat ukur yang baik, sehingga mengahasilkan

Lebih terperinci

BAB II CITRA DIGITAL

BAB II CITRA DIGITAL BAB II CITRA DIGITAL DEFINISI CITRA Citra adalah suatu representasi(gambaran),kemiripan,atau imitasi dari suatu objek. DEFINISI CITRA ANALOG Citra analog adalahcitra yang bersifat kontinu,seperti gambar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Daya Dukung Pondasi Tiang Pondasi tiang adalah pondasi yang mampu menahan gaya orthogonal ke sumbu tiang dengan jalan menyerap lenturan. Pondasi tiang dibuat menjadi satu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pengenalan gender pada skripsi ini, meliputi cropping dan resizing ukuran citra, konversi citra

Lebih terperinci

9. K omunikasi Bukti Bukti Secara Visual

9. K omunikasi Bukti Bukti Secara Visual 9. Komunikasi Bukti Bukti Secara 9. Komunikasi Bukti Bukti Secara Visual Pembaca akan menilai kualitas dari penelitian anda berdasarkan pentingnya klaim anda dan kekuatan dari argumen anda Sebelumnya,

Lebih terperinci

Pertemuan III,IV,V II. Metode Persamaan Tiga Momen

Pertemuan III,IV,V II. Metode Persamaan Tiga Momen Pertemuan III,IV,V II. etode Persamaan Tiga omen II. Uraian Umum etode Persamaan Tiga omen Analisa balok menerus, pendekatan yang lebih mudah adalah dengan menggunakan momen-momen lentur statis yang tak

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Diskripsi Data Kemampuan Awal 1. Data Kemampuan Awal Prestasi Belajar Matematika Data yang digunakan kemampuan awal adalah nilai UAN keltika masuk MTs mata pelajaran

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

RANGKAIAN LISTRIK II (Untuk Diploma III)

RANGKAIAN LISTRIK II (Untuk Diploma III) UNERSTS RU i RNGKN LSTRK (Untuk Diploma ) Oleh swadi HR,ST.MT 8 KMPUS BNWDY PNM, PEKNBRU 89 Bahan jar-rangkaian Listrik PERSEMBHN swadi HR (NP 947) Jurusan Teknik Elektro FT UNR Pekanbaru ii Bahan jar-rangkaian

Lebih terperinci

TKS 4209 PENDAHULUAN 4/1/2015

TKS 4209 PENDAHULUAN 4/1/2015 TKS 4209 Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PENDAHULUAN Salah satu jenis varians sistematik dalam kumpulan data hasil penelitian adalah varians antar kelompok atau disebut

Lebih terperinci

DETERMINAN dan INVERS MATRIKS

DETERMINAN dan INVERS MATRIKS // DETERMINN n INVERS MTRIKS Trnspose Mtriks () Jik mtriks mxn, mk trnspose ri mtriks ( t ) lh mtriks erukurn nxm yng iperoleh ri mtriks engn menukr ris engn kolom. Ex: t // SIFT Trnspose Mtriks () Sift:.

Lebih terperinci

Wahyu Setyawan. Pendahuluan. Lisensi Dokumen: Abstrak. Wahyu.gtx21@gmail.com http://wahyu-setyawan.blogspot.com

Wahyu Setyawan. Pendahuluan. Lisensi Dokumen: Abstrak. Wahyu.gtx21@gmail.com http://wahyu-setyawan.blogspot.com Uji Korelasi Wahyu Setyawan Wahyu.gtx1@gmail.com http://wahyu-setyawan.blogspot.com Lisensi Dokumen: m Seluruh dokumen di StatistikaPendidikan.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas

Lebih terperinci

ANALISIS SWOT. Matriks SWOT Kearns EKSTERNAL INTERNAL. Comparative Advantage. Mobilization STRENGTH WEAKNESS. Sumber: Hisyam, 1998

ANALISIS SWOT. Matriks SWOT Kearns EKSTERNAL INTERNAL. Comparative Advantage. Mobilization STRENGTH WEAKNESS. Sumber: Hisyam, 1998 ANALISIS SWOT Analisis SWOT adalah analisis kondisi internal maupun eksternal suatu organisasi yang selanjutnya akan digunakan sebagai dasar untuk merancang strategi dan program kerja. Analisis internal

Lebih terperinci

E-book Statistika Gratis... Statistical Data Analyst. Penyajian Data Statistik

E-book Statistika Gratis... Statistical Data Analyst. Penyajian Data Statistik Penyajian Data Statistik Pada penulisan kedua tentang Statistika Elementer ini, penulis akan memberikan bahasan mengenai Penyajian Data Statistik kepada para pembaca untuk mengetahui bentuk penyajian data

Lebih terperinci

BAB 2 ANALISIS VEKTOR

BAB 2 ANALISIS VEKTOR BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep

Lebih terperinci

TRANSFORMASI DATA SKALA ORDINAL KE INTERVAL DENGAN MENGGUNAKAN MAKRO MINITAB

TRANSFORMASI DATA SKALA ORDINAL KE INTERVAL DENGAN MENGGUNAKAN MAKRO MINITAB TRANSFORMASI DATA SKALA ORDINAL KE INTERVAL DENGAN MENGGUNAKAN MAKRO MINITAB The Transformation of Ordinal Data to Interval Data Using Makro Minitab Budi Waryanto 1 and Yuan Astika Millafati 2 1.Pusat

Lebih terperinci

Dasar Pemrograman. Kondisi dan Perulangan. By : Hendri Sopryadi, S.Kom, M.T.I

Dasar Pemrograman. Kondisi dan Perulangan. By : Hendri Sopryadi, S.Kom, M.T.I Dasar Pemrograman Kondisi dan Perulangan By : Hendri Sopryadi, S.Kom, M.T.I Kondisi dan Perulangan Pendahuluan Dalam sebuah proses program, biasanya terdapat kode penyeleksian kondisi, kode pengulangan

Lebih terperinci

KISI-KSI SOAL UJI KOMPETENSI AWAL SERTIFIKASI GURU TAHUN 2012

KISI-KSI SOAL UJI KOMPETENSI AWAL SERTIFIKASI GURU TAHUN 2012 Mata Pelajaran : Matematika Jenjang : SMP/SMA/SMK MTS/MA/MAK Kompetensi Pedagogik (Didaktik Matematika) KISI-KSI SOAL UJI KOMPETENSI AWAL SERTIFIKASI GURU TAHUN 2012 Kompetensi Inti Guru (Standar Kompetensi)

Lebih terperinci

HUBUNGAN RUANG. Berikut ini adalah jenis-jenis hubungan ruang : Ruang di dalam ruang. Ruang-ruang yang saling berkait. Ruang-ruang yang bersebelahan

HUBUNGAN RUANG. Berikut ini adalah jenis-jenis hubungan ruang : Ruang di dalam ruang. Ruang-ruang yang saling berkait. Ruang-ruang yang bersebelahan HUBUNGAN RUANG Berikut ini adalah jenis-jenis hubungan ruang : Ruang di dalam ruang Ruang-ruang yang saling berkait Ruang-ruang yang bersebelahan Ruang-ruang yang dihubungkan oieh sebuah ruang bersama

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Force Method

Analisis Struktur Statis Tak Tentu dengan Force Method Mata Kuliah : Analisis Struktur Kode : TSP 202 SKS : 3 SKS Analisis Struktur Statis Tak Tentu dengan Force Method Pertemuan - 7 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tak

Lebih terperinci

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1 Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler Karyati Jurusan Pendidikan Matematika Universitas Negeri Yogyakarta E-mail: yatiuny@yahoocom Abstrak Pada kajian

Lebih terperinci

PENGUMPULAN DATA PENGOLAHAN DATA

PENGUMPULAN DATA PENGOLAHAN DATA PENGUMPULAN DATA Sensus adalah cara pengumpulan data seluruh elemen populasi diselidiki satu per satu. Sensus merupakan cara pengumpulan data yang menyeluruh. Data yang diperoleh sebagai hasil pengolahan

Lebih terperinci

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11

K L P Q 1 2 10 2 2 4 13 4 3 8 18 8. Gambar 4.10 Gambar 4.11 B. Relasi Sebelum mendefinisikan produk Cartesius, terlebih dahulu Anda perlu mengenal pengertian pasangan terurut. Dalam sistem koordinat Cartesius dengan sumbu x dan sumbu y, kita mengetahui bahwa titik

Lebih terperinci

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010 Rumus-rumus Matematika 1 Sesuai SKL UN 2010 KUMPULN RUMUS MTMTIK UNTUK SMP SSUI NGN STNR KOMPTNSI LULUSN UJIN NSIONL THUN PLJRN 2009/2010 SKL Nomor 1 : Menggunakan konsep operasi hitung dan sifat-sifat

Lebih terperinci

DATA BADAN PUSAT STATISTIK BADAN PUSAT STATISTIK MENCERDASKAN BANGSA

DATA BADAN PUSAT STATISTIK BADAN PUSAT STATISTIK MENCERDASKAN BANGSA DATA MENCERDASKAN BANGSA BADAN PUSAT STATISTIK Jl. Dr. Sutomo No. 6-8 Jakarta 171, Kotak Pos 13 Jakarta 11 Telepon : (21) 3841195, 384258, 381291-4, Fax. : (21) 385746 BADAN PUSAT STATISTIK TEKNIK PENYUSUNAN

Lebih terperinci

B. Persoalan Batasan Campuran

B. Persoalan Batasan Campuran B. Persoalan Batasan Campuran Tempat kerajinan membuat tas kantor dan tas kulit. Laba tas kantor $ 400 dan laba tas koper $ 200. Tempat kerajinan tersebut harus menyediakan untuk pelanggan 30 tas setiap

Lebih terperinci

Indikator Ketercapaian Kompetensi Merumuskan. Alokas i Waktu 8x45. Tingkat Ranah. Tingkat Ranah. Materi Pembelajaran

Indikator Ketercapaian Kompetensi Merumuskan. Alokas i Waktu 8x45. Tingkat Ranah. Tingkat Ranah. Materi Pembelajaran SILABUS Nama Sekolah : SMA N 78 JAKARTA Maa Pelajaran : MATEMATIKA LANJUTAN Beban Belajar : 2 sks STANDAR KOMPETENSI: 1. Menyusun lingkaran dan garis singgungnya. Dasar 1.1 Menyusun lingkaran yang memenuhi

Lebih terperinci

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 D. (8-2 ) cm B. (4 - ) cm E. (8-4 ) cm C. (4-2 ) cm Jawaban : E Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a

Lebih terperinci

ANALISA PELAT SATU ARAH (ONE WAY SLAB) DARI TEORI M. LEVY

ANALISA PELAT SATU ARAH (ONE WAY SLAB) DARI TEORI M. LEVY ANALISA PELAT SATU ARAH (ONE WAY SLAB) DARI TEORI M. LEVY Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan melengkapi syarat untuk menempuh Ujian Sarjana Teknik Sipil (Studi Literatur) Disusun oleh:

Lebih terperinci

1. SISTEM BILANGAN. Teknik Digital Dasar 1

1. SISTEM BILANGAN. Teknik Digital Dasar 1 Teknik Digital Dasar 1 1. SISTEM BILANGAN Semua sistem bilangan dibatasi oleh apa yang dinamakan Radik atau Basis, yaitu notasi yang menunjukkan banyaknya angka atau digit suatu bilangan tersebut. Misalnya

Lebih terperinci

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id Kinerja yang perlu ditelaah pada algoritma: beban komputasi efisiensi penggunaan memori Yang perlu

Lebih terperinci

Session_02 February. - Komponen SIG - Unsur-unsur Essensial SIG. Matakuliah Sistem Informasi Geografis (SIG)

Session_02 February. - Komponen SIG - Unsur-unsur Essensial SIG. Matakuliah Sistem Informasi Geografis (SIG) Matakuliah Sistem Informasi Geografis (SIG) Oleh: Ardiansyah, S.Si GIS & Remote Sensing Research Center Syiah Kuala University, Banda Aceh Session_02 February - Komponen SIG - Unsur-unsur Essensial SIG

Lebih terperinci

Penyelesaian. n Persamaan. Metode Tabel Metode Biseksi Metode Regula Falsi

Penyelesaian. n Persamaan. Metode Tabel Metode Biseksi Metode Regula Falsi Penyelesaian n Persamaan Non Linier 1 Pengantar Penyelesaian Pers. Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Muhammad Zen S. Hadi, ST. MSc. Pengantar Penyelesaian Persa amaan Non Linier

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 SINYAL DASAR ATAU FUNGSI SINGULARITAS Sinyal dasar atau fungsi singularitas adalah sinyal yang dapat digunakan untuk menyusun atau mempresentasikan sinyal-sinyal yang lain. Sinyal-sinyal

Lebih terperinci

ANALISA SINYAL DAN SISTEM TE 4230

ANALISA SINYAL DAN SISTEM TE 4230 ANALISA SINYAL DAN SISTEM TE 430 TUJUAN: Sinyal dan Sifat-sifat Sinyal Sistem dan sifat-sifat Sisterm Analisa sinyal dalam domain Waktu Analisa sinyal dalam domain frekuensi menggunakan Tools: Transformasi

Lebih terperinci

BAB 6 Array Dua Dimensi

BAB 6 Array Dua Dimensi BAB 6 Array Dua Dimensi Di dalam pascal Array dapat berdimensi lebih dari satu yang disebut dengan array dimensi banyak (Multidimensional array), disini akan dibahas array 2 dimensi saja. Array 2 dimensi

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. 1 FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi dari A ke B kita

Lebih terperinci