PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES"

Transkripsi

1 Jural Matematika UNAND Vol. 3 No. 4 Hal ISSN : c Jurusa Matematika FMIPA UNAND PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES MEUTIA FIKHRI, FERRA YANUAR, YUDIANTRI ASDI Program Studi Matematika, Fakultas Matematika da Ilmu Pegetahua Alam, Uiversitas Adalas, Kampus UNAND Limau Mais Padag, Idoesia, Abstrak. Pedugaa titik dari sebuah parameter populasi adalah sebuah ilai yag diperoleh dari cotoh da diguaka sebagai peduga dari parameter yag ilaiya tidak diketahui. Pedugaa titik dapat ditetuka dega beberapa metode pedugaa, yaitu metode Mome, metode Maksimum Likelihood Estimatio (MLE) da metode Bayes. Tujua dari peelitia ii adalah utuk meetuka pedugaa titik pada distribusi Poisso utuk satu parameter dega metode Maksimum Likelihood Estimatio (MLE) da metode Bayes da membadigka kedua metode dalam meduga parameter distribusi Poisso. Distribusi Prior utuk metode Bayes yag diguaka pada peelitia ii adalah distribusi prior Gamma. Perbadiga kedua metode dilakuka melalui simulasi data pada berbagai kodisi parameter da ukura sampel, kemudia dilihat ketakbiasa, kekosistea, da keefisiea. Hasil simulasi data meujukka bahwa metode Bayes lebih kosiste dibadigka dega metode Maksimum Likelihood Estimatio (MLE) dalam meduga parameter distribusi Poisso. Kata Kuci: Distribusi Poisso, Distribusi Gamma, Metode Mamum Likelihood Estimatio (MLE), Metode Bayes, Metode Evaluasi Pedugaa. Pedahulua Statistika adalah suatu ilmu yag berisi sejumlah atura da prosedur utuk megumpulka data, meyajika data, megaalisa data, serta megiterpretasikaya. Metode statistika terbagi dua, yaitu statistika deskriptif da statistika iferesi. Statistika iferesi dapat dikelompokka ke dalam dua bidag utama, yaitu pedugaa parameter da pegujia hipotesis. Pedugaa parameter merupaka suatu cara utuk memprediksi karakteristik dari suatu populasi berdasarka cotoh yag diambil. Terdapat dua jeis pedugaa parameter dalam statistika, yaitu pedugaa titik da pedugaa selag. Pedugaa titik dari sebuah parameter populasi adalah sebuah ilai yag diperoleh dari cotoh da diguaka sebagai peduga dari parameter yag ilaiya tidak diketahui. Beberapa metode pedugaa titik yag diguaka utuk meduga parameter diataraya metode mome, metode Mamum Likelihood Estimatio (MLE) da metode Bayes. Metode mome meduga parameter dega cara meyamaka mome cotoh ke-k dega mome populasi ke-k da meyelesaika sistem persamaa 52

2 Pedugaa Parameter dari Distribusi Poisso dega Metode MLE da Bayes 53 yag dihasilka. Selajutya metode MLE merupaka suatu metode pedugaa parameter yag memaksimumka fugsi kemugkia. Kemudia metode Bayes merupaka metode pedugaa yag meggabugka distribusi prior da distribusi cotoh. Distribusi prior adalah distribusi awal yag memberi iformasi tetag parameter. Distribusi cotoh yag digabug dega distribusi prior aka meghasilka suatu distribusi baru yaitu distribusi posterior yag selajutya mejadi dasar utuk pedugaa parameter di dalam metode Bayes. Pada saat sekarag ii, telah bayak peelitia yag dilakuka megeai pedugaa parameter dega megguaka berbagai metode dari berbagai distribusi. Dalam peelitia ii dilakuka pegkajia megeai pedugaa parameter dari distribusi Poisso dega metode Mamum Likelihood Estimatio (MLE) da metode Bayes. Hasil pedugaa parameter dari distribusi Poisso dega metode MLE da metode Bayes ii aka dibadigka dega megguaka simulasi, kemudia dilihat ketakbiasa, keefisiea da kekosistea pada kedua metode. 2. Pedugaa Parameter Distribusi Poisso Megguaka Metode Mamum Likelihood Estimatio (MLE) Misalka X, X 2,..., X adalah cotoh acak Poisso (µ), maka fugsi kemugkia-ya adalah L(µ) f(x, x 2,, x ; µ) f(x i ; µ) i e µ µ i x i! e µ µ x i Logaritma atural dari fugsi kemugkiaya adalah l L(µ) l e µ µ x i l e µ + l µ x i l x i! i µ l e + x i l µ l x i! i

3 54 Meutia Fikhri dkk. Dega mediferesialka terhadap µ, maka diperoleh d l L(µ) dµ + µ µ µ. Selajutya aka dilakuka uji turua kedua utuk meujukka bahwa µ bearbear memaksimumka fugsi kemugkia L(µ) d 2 l L(µ) d 2 µ µ 2 <. Karea µ memaksimumka fugsi kemugkia L(µ), maka peduga utuk parameter µ megguaka metode Mamum Likelihood Estimatio (MLE) adalah µ MLE. (2.) 3. Pedugaa Parameter Distribusi Poisso Megguaka Metode Bayes Misalka X, X 2,, X adalah peubah acak dari distribusi Poisso (µ). Fugsi kemugkia dari distribusi Poisso (µ) adalah L(µ) f(x, x 2,, x ; µ) f(x i ; µ), L(µ) i e µ µ i x i! e µ µ x i i x. i! Prior sekawa utuk distribusi Poisso dega parameter µ aka memiliki betuk yag sama sebagai fugsi kemugkia, yaitu memiliki betuk L(µ) e µ µ Σ. Distribusi yag memiliki betuk seperti ii adalah distribusi Gamma (α, ), yag memiliki betuk fugsi kepekata peluag : f(µ; α, ) α Γ(α) µα e dega α Σx i, da α Γ(α) adalah faktor yag dibutuhka utuk membuat fugsi kepekata peluag tersebut. µ,

4 Pedugaa Parameter dari Distribusi Poisso dega Metode MLE da Bayes 55 Dalam teorema Bayes setelah data diambil da prior telah ditetuka, maka kemudia dicari distribusi posteriorya, yaitu f(µ x) f(µ)f(x µ) f(µ)f(x µ)dµ. (3.) Jika X P oisso(µ) da distribusi prior µ GAM(α, ), maka distribusi posterior dapat diyataka sebagai fugsi bersyarat dari µ dega x diketahui, sehigga berdasarka Defiisi dapat ditulis dega f(µ x) f(µ, x) f(x). (3.2) Karea f(µ, x) dapat diyataka dega f(x)f(µ x) atau f(µ)f(x µ), maka f(µ)f(x µ) µα e µ e µµσx i α Γ(α) µ α +Σ e µ(+ ) α Γ(α) (3.3) Selajutya perhatika f(x), dimaa f(x) merupaka fugsi margial dari x, sebagai berikut. f(x) f(µ, x)dµ f(µ)f(x µ)dµ µ α +Σ e µ(+ ) α Γ(α) i x dµ i! α Γ(α) i x µ α +Σ e µ(+ ) dµ i! α Γ(α) Γ(α + Σx i)(( + ) ) α+σx i (3.4) Dega persamaa (3.2), (3.3), da (3.4), distribusi posterior dapat ditulis sebagai f(µ x) f(µ x) f(µ)f(x µ) f(µ)f(x µ)dµ µ α +Σ e µ(+ ) α Γ(α) Γ(α + Σx i )(( + ) ) α+σ α Γ(α) e µ(+ ) µ α +Σ Γ(α + Σx i )(( + ) ) α+σ (3.5) Berdasarka persamaa (3.5) dapat diketahui bahwa distribusi posterior diatas merupaka distribusi Gamma dega parameterya α + Σx i da ( + ) atau µ GAM(α + Σx i, ( + ) ).

5 56 Meutia Fikhri dkk. Nilai rata-rata posterior dijadika sebagai peduga parameter µ dalam metode Bayes [8]. Berdasarka Teorema diyataka bahwa jika X GAM(α, ) maka µ E(X) α. Dega demikia peduga Bayes utuk parameter µ, yag diyataka dega µ B adalah µ B α + Σx i + (3.6) 4. Evaluasi Sifat Peduga 4.. Sifat Tak Bias dari Nilai Dugaa µ dega Megguaka metode Mamum Likelihood Estimatio (MLE) Jika X, X 2,, X adalah cotoh acak Poisso (µ) da diketahui peduga MLE ya adalah µ MLE Σ, maka ilai harapa µ adalah E( µ MLE ) E( ΣX i ) E(ΣX i) ΣE(X i) Σµ µ µ Karea E( µ MLE ) µ, maka µ MLE merupaka peduga tak bias bagi µ Sifat Tak Bias dari Nilai Dugaa µ dega Megguaka Metode Bayes Misalka X, X 2,, X adalah cotoh acak Poisso (µ). Diketahui µ B α+σ + merupaka pedugaa Bayes utuk parameter µ, maka ilai harapa dari pedugaa Bayes µ B adalah E( µ B ) E( α + ΣX i + ) + E(α + ΣX i ) + E(α) + E(ΣX i ) + E(α) + ΣE(X i ) + (α + µ)

6 Pedugaa Parameter dari Distribusi Poisso dega Metode MLE da Bayes 57 Karea E( µ B ) µ, maka µ B merupaka peduga bias bagi µ. Tetapi secara asimtotik tidak bias karea lim E( µ) µ lim + α + µ (α + µ) lim + lim lim µ µ α + µ + / α + µ + 5. Membadigka sifat peduga parameter µ atara metode Mamum Likelihood Estimatio (MLE) da metode Bayes Peduga yag diperoleh dega megguaka metode Mamum Likelihood Estimatio (MLE) da metode Bayes aka dibadigka megguaka simulasi. Simulasi data dilakuka dega program R, yaitu membagkitka data berdistribusi Poisso dega µ.5, µ.5, µ, serta lima macam ukura sampel yaitu 25,5,,5,. Kemudia dilakuka perulaga sebayak 5 kali. Selajutya dihitug ilai rata-rata da ilai Mea Square Error (MSE) dari kedua metode. Nilai rata-rata da ilai Mea Square Error (MSE) ditampilka pada tabel da tabel 2 Tabel. Rata-rata ilai dugaa dega Metode Mamum Likelihood Estimatio (MLE) da Metode Bayes Tabel da 2 meujukka ilai rata-rata da ilai MSE yag berbeda dari

7 58 Meutia Fikhri dkk. Tabel 2. Nilai Mea Square Error (MSE) dega Metode Mamum Likelihood Estimatio (MLE) da Metode Bayes masig-masig metode. Terlihat bahwa semaki besar ukura cotoh, ilai ratarata pada kedua metode semaki medekati ilai µ, da ilai MSE yag dihasilka semaki kecil da medekati. Metode Bayes meghasilka ilai MSE yag lebih kecil dibadigka dega metode MLE. 6. Kesimpula Kesimpula yag dapat diambil dari peelitia yag telah dilakuka atara lai:. a. Peduga parameter µ dega metode Mamum Likelihood Estimatio (MLE) utuk distribusi Poisso (µ) jika diyataka sebagai µ dapat dirumuska sebagai µ b. Peduga parameter µ dega metode Bayes utuk distribusi Poisso (µ) jika diyataka sebagai µ B dapat dirumuska sebagai µ B α + Σx i + 2. Secara teoritis, pedugaa parameter dega metode MLE adalah peduga tak bias da metode Bayes adalah peduga bias bagi parameter µ dari distribusi Poisso. Namu peduga Bayes adalah peduga tak bias asimtotik bagi parameter µ. Karea kedua peduga adalah peduga tak bias da peduga bias, sehigga tidak bisa dibadigka keefisiea dari peduga kedua metode, karea keefisiea peduga berlaku utuk peduga yag tak bias. Pada tabel da 2, terlihat bahwa semaki besar ukura cotoh, ilai rata-rata pada kedua metode semaki medekati ilai µ, da ilai MSE yag dihasilka semaki kecil da medekati. Metode Bayes meghasilka ilai MSE yag lebih kecil dibadigka dega metode MLE. Sehigga pedugaa parameter µ dari distribusi Poisso dega metode Bayes lebih kosiste dibadigka dega metode MLE.

8 Pedugaa Parameter dari Distribusi Poisso dega Metode MLE da Bayes Ucapa Terima kasih Peulis megucapka terima kasih kepada Bapak Dr. Dodi Deviato, Ibu Dr. Maiyastri, da Ibu Dr. Lyra Yuliati yag telah memberika masuka da sara sehigga paper ii dapat diselesaika dega baik. Daftar Pustaka [] Al-Kutubi HS, Ibrahim NA. 29. Bayes Estimator for Expoetial Distributio with Extesio of Jeffrey Prior Iformatio. Malaysia Joural of Mathematical Scieces. 3(2): [2] Bai, L.J ad Egelhardt, M Itroductio to Probability ad Mathematical Statistics Secod Editio. Duxbury Press, Califoria. [3] Bolstad, W.M. 27. Itroductio to Bayesia Statistics Secod Editio. A Joh Wiley da Sos Ic Publicatio, America. [4] Casella, G ad R.L. Berger. 2. Statistical Iferece Secod Editio. Pacific Grove, Califoria. [5] Nurlaila Dwi, Dada Kusadar, da Evy Sulistiaigsih. 23. Perbadiga Metode Mamum Likelihood Estimatio (MLE) da Metode Bayes dalam Pedugaa Parameter Distribusi Ekspoesial. Buleti Ilmiah Mat.Stat da terapaya. [6] Pradha B, Kudu D. 28. Bayes Estimatio ad Predictio of the Two- Parameter Gamma Distributio. Applied Mathematical Scieces. 2(5): [7] Walpole, R.E Pegatar Statistika Edisi ke-3. PT Gramedia Pustaka Utama, Jakarta. [8] Walpole, R.E da Myers, R.H Ilmu Peluag da Statistika utuk Isiyur da Ilmuwa. ITB, Badug.

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK

PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK Jural Matematika UNAND Vol. 2 No. 2 Hal. 71 75 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND PEMBUKTIAN TEOREMA HUKUM LEMAH BILANGAN BESAR DENGAN MENGGUNAKAN FUNGSI KARAKTERISTIK SUCI SARI WAHYUNI,

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

TRANSFORMASI BOX-COX PADA ANALISIS REGRESI LINIER SEDERHANA

TRANSFORMASI BOX-COX PADA ANALISIS REGRESI LINIER SEDERHANA Jural Matematika UNAND Vol. 2 No. 2 Hal. 115 122 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND TRANSFORMASI BOX-COX PADA ANALISIS REGRESI LINIER SEDERHANA ELVI YATI, DODI DEVIANTO, YUDIANTRI ASDI Program

Lebih terperinci

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling Jural Gradie Vol No Juli 5 : -5 Perbadiga Power of Test dari Uji Normalitas Metode Bayesia, Uji Shapiro-Wilk, Uji Cramer-vo Mises, da Uji Aderso-Darlig Dyah Setyo Rii, Fachri Faisal Jurusa Matematika,

Lebih terperinci

Perbandingan Beberapa Metode Pendugaan Parameter AR(1)

Perbandingan Beberapa Metode Pendugaan Parameter AR(1) Jural Vokasi 0, Vol.7. No. 5-3 Perbadiga Beberapa Metode Pedugaa Parameter AR() MUHLASAH NOVITASARI M, NANI SETIANINGSIH & DADAN K Program Studi Matematika Fakultas MIPA Uiversitas Tajugpura Jl. Ahmad

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA Jural Matematika UNAND Vol. 3 No. Hal. 7 34 ISSN : 33 9 c Jurusa Matematika FMIPA UNAND REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA EKA RAHMI KAHAR, DODI DEVIANTO Program

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

PROSIDING ISBN:

PROSIDING ISBN: S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA KOEFISIE VARIASI DA KOEFISIE KURTOSIS PADA SAMPLIG GADA Heru Agriato *, Arisma Ada, Firdaus Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN BAB 4 METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN Estimasi reliabilitas membutuhka pegetahua distribusi waktu kerusaka yag medasari dari kompoe atau sistem yag dimodelka Utuk memprediksi

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan

ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan JMP : Vol. 8 No., Des. 016, al. 33-40 ISSN 085-1456 ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI Novita Eka Cadra Uiversitas Islam Darul Ulum Lamoga ovitaekacadra@gmail.com Masriai Mayuddi Uiversitas

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

PENDUGA SELANG KEPERCAYAAN NILAI TENGAH DENGAN PENDEKATAN KLASIK, BAYES, DAN BOOTSTRAP *

PENDUGA SELANG KEPERCAYAAN NILAI TENGAH DENGAN PENDEKATAN KLASIK, BAYES, DAN BOOTSTRAP * PENDUGA SELANG KEPERCAYAAN NILAI TENGAH DENGAN PENDEKATAN KLASIK, BAYES, DAN BOOTSTRAP Adji Achmad Rialdo Ferades, SSi, MSc ABSTRAK Pada suatu peelitia, terkadag diamati karakteristik dari sebuah populasi

Lebih terperinci

MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL

MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL Karmila 1*, Hasriati 2, Haposa Sirait 2 1 Mahasiswa Program S1 Matematika 2 Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, , Desember 2003, ISSN : INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, , Desember 2003, ISSN : INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, 118-70, Desember 003, ISSN : 1410-8518 INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL Akhmad Fauzy Statistika FMIPA UII Yogyakarta & siswa Ph.D

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

ANALISIS REGRESI BAYES LINEAR SEDERHANA DENGAN PRIOR NONINFORMATIF

ANALISIS REGRESI BAYES LINEAR SEDERHANA DENGAN PRIOR NONINFORMATIF E-Jural Matematika Vol. 3, No.2 Mei 204, 38-44 ISSN: 2303-75 ANALISIS REGRESI BAYES LINEAR SEDERHANA DENGAN PRIOR NONINFORMATIF ANAK AGUNG ISTRI AGUNG CANDRA ISWARI, I WAYAN SUMARJAYA 2, I GUSTI AYU MADE

Lebih terperinci

Kiki Reskianti, Nurtiti Sunusi dan Nasrah Sirajang

Kiki Reskianti, Nurtiti Sunusi dan Nasrah Sirajang ESTIMASI PARAMETER BAYESIAN PADA ANALISIS DATA KETAHANAN HIDUP BERDISTRIBUSI EKSPONENSIAL MELALUI PENDEKATAN SELF. STUDI KASUS : ANALISIS KETAHANAN HIDUP FLOUROPHORES. Kiki Reskiati, Nurtiti Suusi da Nasrah

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU Rahma Dodi 1, Musraii M 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

ESTIMASI PARAMETER REGRESI LOGISTIK MULTINOMIAL DENGAN METODE BAYES

ESTIMASI PARAMETER REGRESI LOGISTIK MULTINOMIAL DENGAN METODE BAYES JURNAL GAUSSIAN, Volume, Nomor, Tahu 03, Halama 79-88 Olie di: http://ejoural-s.udip.ac.id/idex.php/gaussia ESTIMASI PARAMETER REGRESI LOGISTIK MULTINOMIAL DENGAN METODE BAYES Wayaig Apsari, Hasbi Yasi,

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

PENERAPAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA REGRESI POISSON

PENERAPAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA REGRESI POISSON E-Jural Matematika Vol., No., Mei 013, 6-10 ISSN: 303-1751 PENERAPAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA REGRESI POISSON PUTU SUSAN PRADAWATI 1, KOMANG GDE SUKARSA, I GUSTI AYU MADE

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik

Lebih terperinci

BAB I PENDAHULUAN. X Y X Y X Y sampel

BAB I PENDAHULUAN. X Y X Y X Y sampel BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Aalisis regresi merupaka metode aalisis data yag meggambarka hubuga atara variabel respo dega satu atau beberapa variabel prediktor. Aalisis regresi tersebut

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE

ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE 2 ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE Sri Purwati 1, Johaes Kho 2, Aziskha 2 1 Mahasiswa Program S1 Matematika FMIPA Uiversitas Riau email : srii_purwatii@yahoo.co.id

Lebih terperinci

Taksiran Interval bagi Rata-rata Parameter Distribusi Poisson Interval Estimate for The Average of Parameter Poisson Distribution

Taksiran Interval bagi Rata-rata Parameter Distribusi Poisson Interval Estimate for The Average of Parameter Poisson Distribution Prosidig Statistika ISSN: 460-6456 Taksira Iterval bagi Rata-rata Parameter Distribusi Poisso Iterval Estimate for The Average of Parameter Poisso Distributio 1 Putri Aggita Nuraei, Teti Sofia Yati, 3

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4]

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4] PENAKIRAN Peaksira Titik Peaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk σ MA 8 Aalisis Data Utriwei Mukhaiyar Oktober 00 008 by UP & UM METODE PENAKIRAN. Peaksira Titik Nilai tuggal dari suatu

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2

EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2 EMPAT CARA UNTUK MENENTUKAN NLA NTEGRAL POSSON Novrialma *, Sri Gemawati, Agusi Mahasiswa Program Studi S Matematika Dose Jurusa Matematika Fakultas Matematika da lmu Pegetahua Alam Uiversitas Riau Kampus

Lebih terperinci

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T

Lebih terperinci

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2 Samplig Process ad Samplig Distributio Iferece : Poit ad Iterval Estimates Pertemua 1 CAKUPAN MATERI: Pemahama tetag Samplig Sampel Acak Sederhaa (Simple Radom Samplig SRS) Estimasi Titik (Poit Estimatio)

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

Distribusi Sampel & Statistitik Terurut

Distribusi Sampel & Statistitik Terurut Distribusi Sampel & Statistitik Terurut Sampel Acak, Rataa sampel, X-bar, Variasi sampel, S, Teorema Limit Pusat, Distribusi t,, F Statistik Terurut MA 3181 Teori Peluag 11 November 014 Utriwei Mukhaiyar

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP tik@udip.ac.id

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

BAB III MENENTUKAN MODEL KERUSAKAN DAN INTERVAL WAKTU PREVENTIVE MAINTENANCE OPTIMUM SISTEM AXIS PADA MESIN CINCINNATI MILACRON DOUBLE GANTRY TIPE-F

BAB III MENENTUKAN MODEL KERUSAKAN DAN INTERVAL WAKTU PREVENTIVE MAINTENANCE OPTIMUM SISTEM AXIS PADA MESIN CINCINNATI MILACRON DOUBLE GANTRY TIPE-F BAB III MENENUKAN MODEL KERUSAKAN DAN INERVAL WAKU PREVENIVE MAINENANCE OPIMUM SISEM AXIS PADA MESIN CINCINNAI MILACRON DOUBLE GANRY IPE-F 3.1 Pedahulua Pada Bab II telah dijelaska beberapa teori yag diguaka

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

Sebaran Penarikan Contoh. Dept Statistika FMIPA IPB

Sebaran Penarikan Contoh. Dept Statistika FMIPA IPB Sebara Pearika Cotoh Dept Statistika FMIPA IPB Statistik: karakteristik umerik yag diperoleh dari data cotoh Dari sebuah populasi dapat diperoleh bayak cotoh acak. Dari setiap cotoh acak, dapat dihitug

Lebih terperinci

V. METODE PENELITIAN. Alam Universitas Lampung. Metode yang digunakan dalam penelitian ini adalah

V. METODE PENELITIAN. Alam Universitas Lampung. Metode yang digunakan dalam penelitian ini adalah V. METODE PENELITIAN Peelitia ii dilakuka pada Semester IV Tahu Akademik 4/5, bertempat di Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Lampug. Metode yag diguaka dalam peelitia

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

PERBANDINGAN HASIL PENGUJIAN INTERCEPT

PERBANDINGAN HASIL PENGUJIAN INTERCEPT IdoMS Joural o Statistics Vol., No. (3), Page 35-47 PERBANDINGAN HASIL PENGUJIAN INTERCEPT PADA UJI SATU ARAH MAKSIMUM DAN MINIMUM PADA UJI-UJI TERKAIT NON-SAMPLE PRIOR INFORMATION PADA MODEL REGRESI SEDERHANA

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI I PENDAHULUAN 1 Latar belakag Model pertumbuha Solow-Swa (the Solow-Swa growth model) atau disebut juga model eoklasik (the eo-classical model) pertama kali dikembagka pada tahu 195 oleh Robert Solow da

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

PEMILIHAN UJI NONPARAMETRIK TERBAIK UNTUK DUA SAMPEL BEBAS MELALUI METODE SIMULASI

PEMILIHAN UJI NONPARAMETRIK TERBAIK UNTUK DUA SAMPEL BEBAS MELALUI METODE SIMULASI PEMILIHAN UJI NONPARAMETRIK TERBAIK UNTUK DUA SAMPEL BEBAS MELALUI METODE SIMULASI Sugiyato 1, Etik Zukhroah 2 1,2 Jurusa Matematika FMIPA-UNS, e-mail : 1 Sugiy@yahoo.co.id, 2 etikzukhroah@yahoo.co.id

Lebih terperinci

DISTRIBUSI KHUSUS YANG DIKENAL

DISTRIBUSI KHUSUS YANG DIKENAL 0 DISTRIBUSI KHUSUS YANG DIKENAL Kita sudah membahas fugsi peluag atau fugsi desitas, baik defiisiya maupu sifatya. Fugsi peluag atau fugsi desitas ii merupaka ciri dari sebuah distribusi, artiya fugsi

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 23 28 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD FEBY RIDIANI Program

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD)

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD) Prosidig Statistika ISSN: 2460-6456 Pegedalia Proses Megguaka Diagram Kedali Media Absolute Deviatio () 1 Haida Lestari, 2 Suliadi, 3 Lisur Wachidah 1,2,3 Prodi Statistika, Fakultas Matematika da Ilmu

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

STATISTIKA MATEMATIKA

STATISTIKA MATEMATIKA Praktikum STATISTIKA MATEMATIKA Adi Setiawa Uiversitas Kriste Satya Wacaa Salatiga 2006 i Cotets : Statistik Cukup 2 Latiha Soal Statistik Cukup 6 3 : Estimasi Titik 7 4 Latiha Soal Estimasi Titik 37 5

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

PENGGUNAAN METODE BAYESIAN SUBYEKTIF DALAM PENGKONSTRUKSIAN GRAFIK PENGENDALI-p

PENGGUNAAN METODE BAYESIAN SUBYEKTIF DALAM PENGKONSTRUKSIAN GRAFIK PENGENDALI-p PENGGUNAAN METODE BAYESIAN SUBYEKTIF DALAM PENGKONSTRUKSIAN GRAFIK PENGENDALI-p Sekar Sukma Asmara 1, Adi Setiawa 2, Tudjug Mahatma 3 1 Mahasiswa Program Studi Matematika Fakultas Sais da Matematika Uiversitas

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci