Pendugaan Parameter. Debrina Puspita Andriani /

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pendugaan Parameter. Debrina Puspita Andriani /"

Transkripsi

1 Pedugaa Parameter 7 Debria Puspita Adriai /

2 Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter: Kasus Sampel Proporsi Pedugaa Parameter: Kasus sampel salig bebas & berpasaga selisih rataa dua populasi Pedugaa Parameter: Kasus Sampel Selisih Proporsi 5/07/5

3 3 Pedahulua () 5/07/5

4 Pedahulua () 4 Pedugaa adalah proses yag megguaka sampel statistik utuk meduga atau meaksir hubuga parameter populasi yag tidak diketahui. Pedugaa merupaka suatu peryataa megeai parameter populasi yag diketahui berdasarka iformasi dari sampel radom yag diambil dari populasi bersagkuta. Pedugaa = Peaksira Peduga adalah suatu statistik (harga sampel) yag diguaka utuk meduga suatu parameter. Dega peduga, dapat diketahui seberapa jauh suatu parameter populasi yag tidak diketahui berada di sekitar sampel (statistik sampel) Secara umum, parameter diberi lambag θ da peduga diberi lambag xxx 5/07/5

5 Pedahulua (3) 5 Kriteria peduga yag baik Tidak bias Efisie Kosiste Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi PENDUGA à TAK BIAS DAN MEMPUNYAI RAGAM MINIMUM 5/07/5

6 Pedahulua (4) 6 STATISTIK merupaka PENDUGA bagi PARAMETER Dua jeis pedugaa parameter TARGET PENDUGA TITIK PENDUGA SELANG Peduga titik tidak selalu tepat meduga parameter populasi maka diguaka pedugaa dalam betuk selag iterval Dalam setiap pedugaa megadug PELUANG kesalaha peduga selag à kosep probability à SELANG KEPERCAYAAN (CONFIDENCE INTERVAL) 5/07/5

7 Pedugaa Titik () 7 Pedugaa tuggal atau titik (poit estimate) ialah pedugaa yag terdiri dari satu ilai saja. Memberika ilai yag kemugkia besar berbeda dari ilai parameter yag sebearya. TARGET PENDUGA TITIK 5/07/5

8 Pedugaa Titik () 8 x 5/07/5

9 Pedugaa Titik (3) 9 Satu Populasi Dua Populasi µ p σ µ µ p p σ σ x pˆ s x x pˆ p ˆ s s 5/07/5

10 Pedugaa Iterval () 0 Pedugaa tuggal yag terdiri dari satu agka tidak memberika gambara megeai berapa jarak/selisih ilai peduga tersebut terhadap ilai sebearya. Jika kita megigika suatu pegukura yag obyektif tetag derajat kepercayaa kita terhadap ketelitia pedugaa, maka kita sebaikya megguaka pedugaa iterval (iterval estimatio). Pedugaa ii aka memberika ilai-ilai statistik dalam suatu iterval da buka ilai tuggal sebagai peduga parameter. Pedugaa iterval (selag) : pedugaa berupa iterval, dibatasi dua ilai (batas bawah da batas atas) Pedugaa iterval : iterval kepercayaa atau iterval keyakia (cofidece iterval) yag dibatasi oleh batas keyakia atas (upper cofidece limit) da batas keyakia bawah (lower cofidece limit) Utuk membuat pedugaa iterval harus ditetuka terlebih dahulu koefisie keyakia atau tigkat keyakia yag diberi simbol - α TARGET PENDUGA TITIK PENDUGA SELANG 5/07/5

11 Pedugaa Iterval () < 5/07/5

12 Koefisie Keyakia atau Tigkat Keyakia () Misalya : - α = 0,90 α = 0,0 = 0 %. α/ = 0,05 jadi Z α/ = Z 0,05 = (Z P = 0,5 - α/) = Z 0,5 0,05 = Z 0,45 =,645 (lihat Tabel Normal). Misalya : - α = 0,98 da = 5 α = 0,0 α/ = 0,0 jadi t α/ ; v = t α/ ; = t 0,0 ; 5 = t 0,0 ; 4 =,49 ( lihat tabel Distribusi t). 5/07/5

13 Koefisie Keyakia atau Tigkat Keyakia () 3 69) = /07/5

14 Meaksir Rataa 4 Pedugaa Titik utuk Rataa Populasi Pedugaya µ x σ x σ s = cederug aka mejadi peduga µ yag amat tepat, jika (ukura sampel) besar 5/07/5

15 5 5/07/5

16 6 5/07/5

17 7 5/07/5

18 8 5/07/5

19 CONTOH 9 Lihat di tabel dega ilai -0,05 =0,9750 à z =,96 5/07/5

20 CONTOH 0 Dari soal sebelumya, tetuka selag kepercayaa 99% utuk rataa ilai matematika semua mahasiswa tigkat sarjaa sebelumya 5/07/5

21 5/07/5

22 Pedugaa Parameter: Kasus Satu Sampel Rataa Populasi 5/07/5

23 µ σ x s x 3 Rataa cotoh merupaka PENDUGA tak bias bagi µ s merupaka peduga tak bias bagi σ.96 σ.96 x σ x µ SAMPLING ERROR 5/07/5

24 Dugaa Selag 4 Syarat : kodisi σ diketahui Tidak diketahui σ diduga dega s x t s ) < < x + t α ( µ α ( ) s x z α σ < µ < x + z α σ Berlaku juga utuk sampel kecil ( < 30) 5/07/5

25 Cotoh 5 Survei dilakuka terhadap 0 RT disuatu kota utuk meduga besarya rata-rata biaya pedidika (juta Rp/th/RT). Dataya diperoleh sebagai berikut: RT Biaya (juta Rp),30 4,50 4,00 5,00 3,80 7,0 6,5 5,75 6,70 7,80 RT Biaya (juta Rp) 6,80 5,30 8,00 5,0 3,0 4,50,00 4,70 5,75 0,0 a. Dugalah rata-rata biaya pedidika per RT per tahu b. Buatlah selag kepercayaa 95%, asumsika biaya pedidika megikuti sebara ormal. 5/07/5

26 Peyelesaia 6 a. Peduga rata-rata biaya pedidika ˆ = 6.44 µ = x b. Selag kepercayaa 95% Nilai s Dicari dari rumus S = Σ(xi xbar) / - s t x = s / = ( 0,05/ ; db= 9) = 3,754/,093 0 = 0, ,44,093x0,73 4,905 µ 7,970 µ 6,44 +,093x0,73 5/07/5

27 7 Pedugaa Parameter: Kasus Satu Sampel Proporsi 5/07/5

28 p pˆ Proporsi pˆ cotoh merupaka PENDUGA tak bias bagi P 8.96 σ.96 pˆ σ pˆ p SAMPLING ERROR 5/07/5

29 Dugaa Selag / iterval 9 Selag kepercayaa (-α)00% bagi p Sampel Besar pˆ z α pˆ( pˆ) < P < pˆ + z α pˆ( pˆ) Sampel Kecil ˆp t ( α ; ) ˆp( ˆp) < P < ˆp + t ( α ; ) ˆp( ˆp) 5/07/5

30 Cotoh 30 Dari sampel dega = 00 mahasiswa PTS ABC. Teryata 5 mahasiswa memiliki IPK 3. Buatlah dugaa utuk proporsi mahasiswa PTS ABC yag memiliki IPK 3 dega iterval keyakia 95%. Peyelesaia : Iterval duga: p(0,06 < P < 0,335) 5/07/5

31 3 Pedugaa Parameter: Kasus Dua sampel salig bebas Selisih rataa dua populasi 5/07/5

32 µ - µ 3 x x.96 σ x x.96 σ x x µ -µ SAMPLING ERROR 5/07/5

33 Dugaa Selag 33 Syarat : σ & σ Tidak diketahui ( x diketahui σ σ x) zα + < µ µ < ( x x) + zα + σ σ σ & σ sama Formula Tidak sama Formula 5/07/5

34 a. Formula : Jika σ da σ tdk diketahui da diasumsika sama: + + < < + ) ( ) ( ) ( ) ( s t x x s t x x gab v gab v α α µ µ da ) ( ) ( + = + + = v s s s gab 34 b. Formula : Jika σ da σ tdk diketahui da diasumsika tidak sama: + + < < + ) ( ) ( ) ( ) ( s s t x x s s t x x v v α α µ µ ( ) ( ) + + = s s s s v 5/07/5 Note: Berlaku juga utuk sampel kecil

35 Cotoh 35 Iterval Kepercayaa Selisih Rata-Rata Populasi (σ diketahui) Dua buah mesi A da B dibadigka dlm kosumsi BBMya. Radom samplig mesi A sejumlah 50 da B sejumlah 75 dipakai. Teryata rata-rata kosumsi BBM mesi A adalah 36 mil/galo da mesi B 4 mil/galo. Carilah iterval kepercayaa 96% bagi μ B - μ A bilamaa diketahui stadard deviasi populasi bagi A= 6 mil/galo da B = 8 mil/galo 5/07/5

36 Peyelesaia 36 Diket. X sa =36, X sb = 4; A =50 da B =75. σ A =6 da σ B =8 Iterval kepercayaa 96% bagi μ B - μ A : ( x B x A ) z σ σ A B < ( µ B µ A) < ( xb xa ) A B + z 0.0 σ A A σ + B B ( 4 36).05 + < ( µ B µ A) < (4 36) < μ B - μ A < Jadi beda rata kosumsi BBM atara mesi A da mesi B berkisar atara 3.43 sampai 8.57 mil/galo 5/07/5

37 Latiha 37 Dua buah perusahaa yag salig bersaig dalam idustri kertas karto salig megklaim bahwa produkya yag lebih baik, dalam artia lebih kuat meaha beba. Utuk megetahui produk maa yag sebearya lebih baik, dilakuka pegambila data masig-masig sebayak 0 lembar, da diukur berapa beba yag mampu ditaggug tapa merusak karto. Dataya adalah : Persh. A Persh. B Dugalah beda kekuata karto kedua perusahaa dega selag kepercayaa 95% 5/07/5

38 38 Pedugaa Parameter: Kasus dua sampel berpasaga Selisih rataa dua populasi 5/07/5

39 Ditimbag kodisi awal : bobot kelici Diberi paka tertetu Ditimbag kodisi akhir : bobot kelici 39 Setelah periode tertetu Perubaha akibat pemberia paka : selisih bobot akhir bobot awal 5/07/5

40 Dugaa Selag 40 µ d Selag kepercayaa (-α)00% bagi µ d d t sd ) < D < d + t α ( µ α ( ) s d d 5/07/5

41 Cotoh 4 5/07/5

42 Cotoh 4 d Jumlah: /07/5

43 Peyelesaia 43 5/07/5

44 44 Pedugaa Parameter: Kasus Dua sampel Selisih dua proporsi 5/07/5

45 p - p 45 pˆ p ˆ.96 σ p ˆ p ˆ.96 σ p ˆ p ˆ p -p SAMPLING ERROR 5/07/5

46 Dugaa Selag 46 Selag kepercayaa (-α)00% bagi p - p Sampel Besar ( pˆ pˆ ) z pˆ ( pˆ ) + pˆ ( pˆ ) < P P < ( pˆ pˆ ) + z pˆ ( α α pˆ ) + pˆ ( pˆ ) Sampel Kecil ( ˆp ˆp ) t α ;+ ˆp ( ˆp ) + ˆp ( ˆp ) < P P < ( ˆp ˆp )+ t α ;+ ˆp ( ˆp ) + ˆp ( ˆp ) 5/07/5

47 Cotoh 47 BKKBN melakuka peelitia di dua daerah (D da D ) utuk megetahui apakah ada perbedaa atara persetase peduduk yag setuju KB di daerah tersebut. Kemudia aka dibuat pedugaa iterval megeai besarya selisih/perbedaa persetase tersebut. Di daerah D da D masig-masig dilakuka wawacara terhadap 0 orag, atara lai meayaka apakah mereka setuju KB atau tidak. Dari D ada 90 orag da dari D ada 78 orag yag setuju KB. Buatlah pedugaa iterval dari perbedaa persetase tetag pedapat peduduk yag setuju dega KB, di kedua daerah tersebut,dega tigkat keyakia sebesar 90%. 5/07/5

48 Peyelesaia 48 p^ = X = 90 0 p^ p^ = 0, 75, p^ = 0, 75 0, 65 = 0,0 = X = 78 0 = 0, 65 ( ˆ ˆ pˆ qˆ pˆ qˆ pˆ qˆ p p) zα + < p p < ( p p) + zα + 0,5 0,5 ˆ ˆ pˆ qˆ 0,,64 (0,059) < (P P ) < 0, +,64 (0,059) 0,003 < (P P) < 0,97 5/07/5

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH

PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH PENDUGAAN PARAMETER METSTAT ANIK DJURAIDAH PENDUGAAN PARAMETER Populai : Parameter Sampel : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ebara cotoh PENDUGA TAK BIAS DAN MEMPUNYAI

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

Statistika Inferensia: Pengujian Hipotesis. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pengujian Hipotesis. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pegujia Hipotesis Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : = 0 Butuh pembuktia berdasarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : x 5 Hal itu merupaka

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand

TEKNIK SAMPLING PCA SISTEMATIK. Hazmira Yozza Izzati Rahmi HG. Jurusan Matematika FMIPA - Unand Hazmira Yozza Izzati Rahmi HG TEKNIK SAMPLING PCA SISTEMATIK Jurusa Matematika FMIPA - Uad Defiisi Samplig sistematik adalah metode pearika cotoh yag dilakuka dega cara memilih secara acak satu eleme dari

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN 8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Pengujian Hipotesis untuk selisih dua nilai tengah populasi

Pengujian Hipotesis untuk selisih dua nilai tengah populasi Pegujia Hipotei utuk eliih dua ilai tegah populai Hipotei Hipotei atu arah: H 0 : - 0 v H : - < 0 H 0 : - 0 v H : - > 0 Hipotei dua arah: H 0 : - = 0 v H : - 0 Statitik uji z h ( ( ) ) 0 Formula klik diketahui

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

Analisa Data Statistik. Ratih Setyaningrum, MT

Analisa Data Statistik. Ratih Setyaningrum, MT Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2 Samplig Process ad Samplig Distributio Iferece : Poit ad Iterval Estimates Pertemua 1 CAKUPAN MATERI: Pemahama tetag Samplig Sampel Acak Sederhaa (Simple Radom Samplig SRS) Estimasi Titik (Poit Estimatio)

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

Sebaran Penarikan Contoh. Dept Statistika FMIPA IPB

Sebaran Penarikan Contoh. Dept Statistika FMIPA IPB Sebara Pearika Cotoh Dept Statistika FMIPA IPB Statistik: karakteristik umerik yag diperoleh dari data cotoh Dari sebuah populasi dapat diperoleh bayak cotoh acak. Dari setiap cotoh acak, dapat dihitug

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

Metode Statistika Pertemuan IX-X

Metode Statistika Pertemuan IX-X /7/0 Metode Statitika Pertemua IX-X Statitika Ifereia: Pedugaa Parameter Populai : Parameter Cotoh : Statitik Statitik merupaka PENDUGA bagi parameter populai Pegetahua megeai ditribui amplig PENDUGA TAK

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter Pedahulua Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

Bab 6 PENAKSIRAN PARAMETER

Bab 6 PENAKSIRAN PARAMETER Bab 6 PENAKSIRAN PARAMETER Stadar Kompetesi : Setelah megikuti kuliah ii, mahasiswa dapat memahami hubuga ilai sampel da populasi da meetuka distribusi samplig yag tepat utuk diguaka Kompetesi Dasar :

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

Metode Statistika Pertemuan XI-XII

Metode Statistika Pertemuan XI-XII /4/0 Metode Statitika Pertemua XI-XII Statitika Ifereia: Pegujia Hipotei Populai : = 0 Butuh pembuktia berdaarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : 5 Ok, itu adalah pegujia hipotei,

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Lokasi da Waktu Pegambila Data Pegambila data poho Pius (Pius merkusii) dilakuka di Huta Pedidika Guug Walat, Kabupate Sukabumi, Jawa Barat pada bula September 2011.

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

PERTEMUAN 6-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 6-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 6-MPC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK PPS Cluster Samplig Misalka suatu daerah terdiri dari N cluster yag masig-masig cluster terdiri dari eleme. Dari populasi tersebut,

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan di Puskesmas Limba B terutama masyarakat

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan di Puskesmas Limba B terutama masyarakat 38 3.1 Lokasi da Waktu Peelitia 3.1.1 Lokasi Peelitia BAB III METODE PENELITIAN Lokasi peelitia ii dilakuka di Puskesmas Limba B terutama masyarakat yag berada di keluraha limba B Kecamata Kota Selata

Lebih terperinci

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA OUTLINE LANJUTAN Peetua garis duga regresi dega Metode OLS kostata a da koefisie b Aalisis Varias komposisi variasi sekitar garis r da r Stadard

Lebih terperinci

BAB III MATERI DAN METODE. Ettawa Berdasarkan Bobot Lahir dan Bobot Sapih Cempe di Satuan Kerja

BAB III MATERI DAN METODE. Ettawa Berdasarkan Bobot Lahir dan Bobot Sapih Cempe di Satuan Kerja 8 BAB III MATERI DAN METODE Peelitia tetag Pedugaa Keuggula Pejata Kambig Peraaka Ettawa Berdasarka Bobot Lahir da Bobot Sapih Cempe di Satua Kerja Sumberejo Kedal dilakuka di Satua Kerja Sumberejo Kedal.

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai 1. Pegertia Statistika PENDAHULUAN Statistika berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah. Statistika peyajia DATA utuk memperoleh

Lebih terperinci

BAB III METODE PENELITIAN. Dalam melakukan penelitian, terlebih dahulu menentukan desain

BAB III METODE PENELITIAN. Dalam melakukan penelitian, terlebih dahulu menentukan desain BAB III METODE PENELITIAN 3.1 Desai Peelitia Dalam melakuka peelitia, terlebih dahulu meetuka desai peelitia yag aka diguaka sehigga aka mempermudah proses peelitia tersebut. Desai peelitia yag diguaka

Lebih terperinci

BAB IV APLIKASI METODE CALLBACK. Dalam bab sebelumnya telah dibahas mengenai cara mengatasi

BAB IV APLIKASI METODE CALLBACK. Dalam bab sebelumnya telah dibahas mengenai cara mengatasi BAB IV APLIKASI METODE CALLBACK Dalam bab sebelumya telah dibahas megeai ara megatasi orespo yaitu dega melakuka allbak pada respode yag tidak merespo. Callbak pada peelitia ii dibatasi haya sampai t =

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur 0 III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai Mei 03. B. Populasi da Sampel Populasi dalam peelitia

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Inflasi dan Indeks Harga I

Inflasi dan Indeks Harga I PERTEMUAN 1 Iflasi da Ideks Harga I 1 1 TEORI RINGKAS A Pegertia Agka Ideks Agka ideks merupaka suatu kosep yag dapat memberika gambara tetag perubaha-perubaha variabel dari suatu priode ke periode berikutya

Lebih terperinci

BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi)

BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi) Pertemua0 BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuaku Tambusai Bagkiag 7. PENAKSIRAN ( Taksira Iterval utuk rataa, varia da proporsi) 7.1 Pedahulua Pada pembahasa sebelumya adalah meletakka

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Lokasi da objek peelitia Lokasi peelitia dalam skripsi ii adalah area Kecamata Pademaga, alasa dalam pemiliha lokasi ii karea peulis bertempat tiggal di lokasi tersebut sehigga

Lebih terperinci

DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA5182 Topik dalam Statistika I: Statistika Spasial 6 September 2012 Utriweni Mukhaiyar

DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA5182 Topik dalam Statistika I: Statistika Spasial 6 September 2012 Utriweni Mukhaiyar INFERENSI STATISTIKA DISTRIBUSI SAMPEL PENAKSIRAN UJI HIPOTESIS MA518 Topik dalam Statistika I: Statistika Spasial 6 September 01 Utriwei Mukhaiyar DISTRIBUSI SAMPEL Beberapa defiisi Suatu populasi terdiri

Lebih terperinci

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan

PENDUGAAN PARAMETER. Ledhyane Ika Harlyan PENDUGAAN PARAMETER Ledhyae Ika Harlya Jurua Pemafaata Sumberdaya Perikaa da Kelauta Uiverita Brawijaya 03 Statitik Ifereia Mecakup emua metode yag diguaka dalam pearika keimpula atau geeraliai megeai

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Madiun, untuk mendapatkan gambaran kondisi tempat penelitian secara umum,

BAB III METODOLOGI PENELITIAN. Madiun, untuk mendapatkan gambaran kondisi tempat penelitian secara umum, 32 BAB III METODOLOGI PENELITIAN 3.1 Objek Peelitia Peelitia dilakuka di PT. INKA yag terletak di Jl. Yos Sudarso o 71 Madiu, utuk medapatka gambara kodisi tempat peelitia secara umum, termasuk kegiata-kegiata

Lebih terperinci

Tetapi apabila n < 5% N maka digunakan :

Tetapi apabila n < 5% N maka digunakan : Jei- jei pedugaa Iterval:. Pedugaa Parameter dega ampel bear (>30) a. Pedugaa terhadap parameter rata-rata Diketahui; z Maka; Z Z Tetapi apabila tadard deviai populai tidak diketahui, maka diguaka tadar

Lebih terperinci

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R PENAKSIRAN P E N A K S I R A N T I T I K P E N A K S I R A N S E L A N G S E L A N G K E P E R C A Y A A N U N T U K R A T A A N S E L A N G K E P E R C A Y A A N U N T U K V A R I A N S I M A 0 8 S T

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1.Tempat da Waktu Peelitia ii dilakuka di ligkuga Kampus Aggrek da Kampus Syahda Uiversitas Bia Nusatara Program Strata Satu Reguler. Da peelitia dilaksaaka pada semester

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012 5/6/0 Distribusi Peluag BERBAGAI MACAM DISTRIBUSI SAMPEL Distribusi peluag, P( x), adalah kumpula pasaga ilai-ilai variabel acak Cotoh: Jika dua buah koi dilempar bersamaa. Kejadia bayakya mucul agka.

Lebih terperinci

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua BAB IV METODE PENELITlAN 4.1 Racaga Peelitia Racaga atau desai dalam peelitia ii adalah aalisis komparasi, dua mea depede (paired sample) yaitu utuk meguji perbedaa mea atara 2 kelompok data. 4.2 Populasi

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

Pendugaan Parameter 1

Pendugaan Parameter 1 Topik Bahaa: Pedugaa Parameter 1 (Selag Pedugaa, Pedugaa Selag 1 Rata-Rata) Pertemua ke II 1 Ilutrai Statitika Ifereia : Mecakup emua metode yag diguaka utuk pearika keimpula atau geeraliai megeai populai

Lebih terperinci

BAB III METODOLOGI DAN PELAKSANAAN PENELITIAN. Perumusan - Sasaran - Tujuan. Pengidentifikasian dan orientasi - Masalah.

BAB III METODOLOGI DAN PELAKSANAAN PENELITIAN. Perumusan - Sasaran - Tujuan. Pengidentifikasian dan orientasi - Masalah. BAB III METODOLOGI DAN PELAKSANAAN PENELITIAN 3.1. DIAGRAM ALIR PENELITIAN Perumusa - Sasara - Tujua Pegidetifikasia da orietasi - Masalah Studi Pustaka Racaga samplig Pegumpula Data Data Primer Data Sekuder

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi

Pendugaan Parameter: Kasus Dua sampel saling bebas. Selisih rataan dua populasi Pedugaa Parameter: Kau Dua amel alig beba Seliih rataa dua oulai - x x.96 x x.96 x x - SAMPLING ERROR Dugaa Selag bagi µ - µ ( x x z ( x x z Formula klik diketahui ama & Syarat : & Tidak ama Formula klik

Lebih terperinci

Penarikan Sampel Acak Sederhana

Penarikan Sampel Acak Sederhana Tekik Samplig Pearika Sampel Acak Sederhaa Hazmira Yozza- Jur. Matematika Uad 17/11/014 Tujua Pearika Sampel Megambil kesimpula megeai populasi berdasarka iformasi yag terkadug pada sampel Ukura sampel

Lebih terperinci