f ( x ) 0 maka disebut PD tak homogen.

Ukuran: px
Mulai penontonan dengan halaman:

Download "f ( x ) 0 maka disebut PD tak homogen."

Transkripsi

1 II LANDASAN TEORI Defiisi (Tuua Fugsi f ) Tuua fugsi f pada biaga a diyataka dega f ( a) adaah f ( a+ h) f ( a) f ( a) = im () h h jika imit ii ada (Keyszig 993) Defiisi (Tuua Pasia) Misaka f adaah fugsi dua vaiabe x da y dega x adaah vaiabe yag beubah-ubah da y adaah vaiabe tetap Dimisaka y = b dega b adaah suatu kostata sedemikia sehigga fugsi vaiabe tugga x adaah g ( x ) = f ( x Jika g mempuyai tuua di a maka tuua pasia dai f tehadap x di ( ab ) diyataka dega f x ( ab ) Jadi f ( ab ) g ( a) x = () dega g ( x ) = f ( x Meuut pesamaa () maka pesamaa () mejadi f ( a+ h f ( a f ( a = im (3) x h h Jika dimisaka titik ( ab ) beubah-ubah daam pesamaa (3) maka f x mejadi fugsi dua vaiabe Jika f adaah fugsi dua vaiabe tuua pasiaya adaah fugsi f x yag didefiisika oeh f ( x + h y ) f ( x y ) f x ( x y ) = im h h (Stewat 993) Pesamaa Difeesia Biasa (PDB) Liea Suatu Pesamaa Difeesia Biasa (PDB) ode ke- adaah iea ketika pesamaa tesebut dapat dituiska daam betuk d y d y a ( x ) + a ( x ) dx dx + dy + a ( x ) + a ( x ) y dx = f ( x ) a x ( ) Fugsi a ( x ) a ( x ) a ( x ) disebut koefisie pada pesamaa difeesia jika f ( x ) maka disebut PD tak homoge Sedagka pesamaa difeesia dikataka homoge jika f ( x ) = Ketika koefisie adaah fugsi kosta pesamaa difeesia dapat dikataka memiiki koefisie kosta Kecuai jika keadaa sebaikya haus seau diasumsika bahwa koefisie adaah fugsi kotiu da a ( x ) di setiap iteva pada suatu pesamaa adaah tedefiisi Jika suatu PDB ode ke- tidak dapat dituis pada betuk umum di atas maka disebut PDB takiea ode ke- (Faow 994) Sousi PDB Liea Ode Dua Pesamaa difeesia iea ode ke-dua mempuyai betuk ay + by + cy = dega a b da c kostata da a Pesamaa a + b + c = disebut pesamaa kaakteistik dai pesamaa difeesia di atas Aka-aka da dapat dicai dega b± b 4ac megguaka umus = a Sifat ( b 4ac > ) Jika aka-aka da dai pesamaa kaakteistik adaah ea da bebeda maka sousi umum dai ay + by + cy = adaah x x y = ce + ce Sifat ( b 4ac = ) Jika pesamaa kaakteistik mempuyai satu aka ea maka sousi umum dai ay + by + cy = adaah x x y = ce + c xe Sifat 3 ( b 4ac < ) Jika aka-aka pesamaa kaakteistik adaah biaga kompeks = α + iβ da = α iβ maka sousi umum dai ay + by + cy = adaah αx y = e ( c cos β x + c si β x ) c da c adaah kostata ea (Faow 994) PDP Liea Ode Dua Betuk umum pesamaa difeesia pasia ode dua daam dua vaiabe diyataka daam Auxx + Buxy + Cuyy + Dux + Euy + Fu = G (4)

2 3 dega A BC DEFG adaah kostata ea da u adaah fugsi dai x da y yag dibeika Jeis (Pesamaa Eiptik) Jika pesamaa difeesia pasia di atas memeuhi B 4AC < maka pesamaa (4) memiiki tipe eiptik Jeis (Pesamaa Paaboik) Jika pesamaa difeesia pasia di atas memeuhi B 4AC = maka pesamaa (4) memiiki tipe paaboik Jeis 3 (Pesamaa Hipeboik) Jika pesamaa difeesia pasia di atas memeuhi B 4AC > maka pesamaa (4) memiiki tipe hipeboik (Faow 994) Niai da Vekto Eige Jika A adaah matiks maka vekto tako x di daam R diamaka vekto eige (eige vecto) dai A jika Ax adaah keipata skaa dai x yaitu Ax = λx utuk suatu skaa λ Skaa λ diamaka iai eige (eigevaue) dai A da x dikataka vekto eige yag besesuaia dega λ (Ato 988) Titik Biasa da Titik Sigua Titik x = x disebut sebagai titik biasa pada pesamaa difeesia y + P x y + Q x y = P x da jika Q x masig-masig aaitik di x = x Setiap titik yag buka titik biasa pada pesamaa di atas maka disebut sebagai titik sigua (Goode 99) Titik Sigua Regua da Tak-Regua Titik x = x disebut sebagai titik sigua egua pada pesamaa difeesia y + P( x ) y + Q( x ) y = jika da haya jika diikuti dua kodisi yag memeuhi : x adaah titik sigua pada pesamaa di atas p x = x x P x da Fugsi ( ) q( x ) ( x x ) Q ( x ) x = x = aaitik di Titik sigua yag tidak memeuhi () disebut sebagai titik sigua tak-egua (Goode 99) Deet Tayo Adaika f adaah suatu fugsi dega + f x ada utuk tuua ke- ( + ) yaitu setiap x pada suatu seag buka I yag megadug a Maka utuk setiap x di I beaku f ( a) f ( x ) = f ( a) + f ( a)( x a) + ( x a )! ( f ) ( a) + + ( x a ) + R ( x ) dega sisa ( + f ) ( c)! R x dibeika oeh umus ( + ) R x = x a! + da c suatu titik ataa x da a (Puce 987) Deet Fobeius Asumsika bahwa x = adaah titik sigua egua pada pesamaa difeesia daam betuk P( x) y ( x) + Q( x) y ( x) + R( x) y( x) = (5) Suatu deet Fobeius daam betuk + = = y x = x c x = c x dega c suatu kostata dapat diguaka utuk meyeesaika pesamaa difeesia Paamete haus dipiih sedemikia sehigga ketika deet tesebut disubstitusi ke daam pesamaa difeesia koefisie pagkat tekeci pada x adaah o Ha tesebut diamaka sebagai Pesamaa Ideks (Goode 99) Pesamaa Ideks Misaka tedapat PD homoge ode ke- y + a( x ) y + b( x ) y = dega asumsi bahwa x = meupaka titik sigua egua Dibeika deet Fobeius daam betuk + = = y x = x c x = c x dega koefisie c c da ditetuka sehigga deet tesebut memeuhi pesamaa difeesia Diasumsika c Peuua pada deet Fobeius aka dihasika

3 4 y = + c x + = + ( ) y = + + c x = Substitusi y y da y ke daam PD homoge ode ke- yag dibeika + ( )( ) cx = ( + ) + = ax cx bx cx = = Pesamaa di atas dapat dituis sebagai beikut ( ) = c x ( + ) + = xa x c x x b x c x = = (6) Kaea x = meupaka titik sigua x b x memiiki egua maka xa( x ) da peuasa deet pagkat daam betuk 3 xa x = α + α x + α x + α x + 3 x b x = β + β x + β x + β x Substitusi peuasa deet pagkat di atas ke daam pesamaa (6) aka meghasika ( ) + α + β Cx + ( + ) C+ + α C + αc + β C + βc x + = ] (7) [Lihat Lampia ] Pesamaa tesebut aka memeuhi jika da haya jika koefisie pagkat x tekeci sama dega o Daam ha ii ( ) + α + β C = kaea asumsi c maka + α + β = Pesamaa kuadat pada disebut sebagai pesamaa kuadatik / pesamaa ideks pada PD homoge ode ke- (Adews 99) Opeato Lapace Suatu opeato yag diyataka sebagai u u u = + x y disebut opeato Lapace dua dimesi daam koodiat katesia Sedagka u u u u = + + θ disebut opeato Lapace dua dimesi daam koodiat poa [Lihat Lampia ] (Habema 987) Pesamaa Hemhotz Pesamaa Hemhotz memiiki betuk φ + λφ = dega adaah opeato Lapace λ adaah kostata da φ adaah suatu fugsi 3 yag tedefiisi pada uag Eucid R dimesi atau 3 Pesamaa Hemhotz temasuk pada pesamaa difeesia pasia eiptik (Habema 987) Pesamaa Besse Suatu pesamaa difeesia iea ode kedua yag diyataka sebagai w v + v + v = s s dega s tedefiisi pada [ ] da w adaah kostata takegatif disebut sebagai pesamaa Besse ode ke-w (Faow 994) Defiisi 3 (Fugsi Gamma) Fugsi Gamma didefiisika sebagai p t Γ p = t e dt p > Lemma (Fugsi Gamma) Utuk semua p > Γ p + = pγ p Bukti: ( p ) Γ + = p t t e dt p t p t = t e + p t e dt = pγ ( p ) (Goode 99) (Goode 99) Metode Pemisaha Peubah Misaka dibeika PDP ode kedua dimesi u u u = c + (8) t x y Metode pemisaha peubah dimuai dega meujukka bahwa peubah waktu t dapat dipisahka dai peubah x da y dega pemisaha pekaia daam betuk u( x y t) = h( t) φ ( x y ) (9) φ ( x y ) adaah fugsi yag beum diketahui pada peubah x da y

4 5 Substitusi pesamaa (9) ke daam pesamaa (8) didapatka d h φ φ φ ( x y ) = c h ( t) + dt x y Seteah pemisaha peubah aka dipeoeh d h φ φ = + λ = c h dt φ x y Utuk h( t ) da φ ( x y ) masig-masig aka dipeoeh PDB da PDP beikut d h φ φ = λc h da + = λφ dt x y Utuk pesamaa PDP yag dipeoeh dapat dipisahka agi ataa peubah x da y dega caa yag sama sepeti metode pemisaha peubah waktu t dega peubah x da y u x y t = h t φ x y Dega demikia adaah peyeesaia dai u tt c ( uxx uyy ) = + (Habema 987) Metode d Aembet Metode d Aembet diiustasika utuk sebuah sousi pesamaa geombag - dimesi Lagkah awa adaah membuat kuadat padaa pesamaa geombag - dimesi sehigga dai kuadat padaa tesebut didapatka pesamaa kaaktestik Seajutya metasfomasi sousi pesamaa kaakteistik dega memisaka ξ = x ct da η = x + ct yag kemudia aka dipeoeh tasfomasi akhi utuk u( x t) = ω ( ξη ) Lagkah beikutya adaah meuuka pesamaa u( x t) = ω ( ξη ) secaa pasia da mesubtitusikaya ke daam pesamaa geombag -dimesi sehigga hasi akhi aka dipeoeh u( x t) = F ( x ct) + G ( x + ct) Dega F da G adaah fugsi sembaag yag dapat dituuka dua kai (Adews 99) Metode Fouie Sousi PDP ode dua dapat beupa sousi deet Fouie Beikut ii sousi deet Fouie dipeoeh dega iustasi sebuah pesamaa geombag Misaka diketahui pemasaaha iai awa da iai batas homoge beikut utt a uxx = u( x ) = ϕ( x ) ut ( x ) = ψ ( x ) u t = u t = x t Lagkah : Peetua peyeesaia khusus dai PDP dega pemisaa pekaia u( x t) = X ( x ) T ( t) Substitusi ke daam PD didapat X ( x ) T ( t) a X ( x ) T ( t) = Seteah pemisaha peubah aka dipeoeh X T = X a T = λ kostata Utuk masig-masig X ( x ) da T ( t ) dipeoeh PDB beikut X x λ X x T t λ a T t = = dega peyeesaiaya adaah X ( x ) da T ( t ) Dega demikia u = X T adaah peyeesaia dai u tt = a uxx Lagkah : Dega memasukka peyeesaia ke daam syaat batas dipeoeh X T ( t ) = X ( ) T ( t ) = utuk semua t Utuk X dipeoeh pesamaa iai eige X λ X = dega syaat iai batas X = X ( ) = Peyeesaia tak tiva haya didapatka utuk iai eige π λ = ( = 3 ) yaitu fugsi π eige X ( x ) = Csi x Utuk λ = λ didapatka peyeesaia pesamaa difeesia bagi T yaitu πa πa T ( t) = A cos t B si t Dega medefiisika kostata C A da C B sebagai A da B kembai dipeoeh ( ) cos π a si π u x t A t B a t si π = + x sebagai peyeesaia pesamaa difeesia homoge utt a uxx = dega syaat iai u t = u t = batas Lagkah 3: Pemeuha syaat iai awa utuk peyeesaia dega betuk deet beikut ( ) = ( ) u x t u x t = πa πa π = Acos t + Bsi t si x = ()

5 6 pada syaat iai awa u x = ϕ x u x = ψ x dega t pemiiha kostata A da B yag sesuai dipeoeh π πa π Asi x = ϕ( x) Bsi x = ψ( x) = = Dega demikia didapat πa A da B ϕ x da sebagai koefisie deet fouie dai ψ ( x ) pada pembetuka deet Fouie bagi pembetuka fugsi eige si π a x Utuk ϕ x da mempeoeh umus ii misaka ψ ( x ) adaah fugsi gaji dega peiode kemudia dega megguaka umus koefisie Fouie dipeoeh π A = ϕ( x) si x dx π B = ψ ( x) si x dx πa () Dega demikia pesamaa () dega koefise A da B sepeti pada pesamaa () adaah peyeesaia masaah iai awa da iai batas homoge yag dicai (Nugahai 5)

PEMODELAN GELOMBANG BUNYI DALAM AIR DAN SOLUSINYA DWI PUSPA ANGGRAINI G

PEMODELAN GELOMBANG BUNYI DALAM AIR DAN SOLUSINYA DWI PUSPA ANGGRAINI G PEMODELAN GELOMBANG BUNYI DALAM AIR DAN SOLUSINYA DWI PUSPA ANGGRAINI G533 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR ABSTRACT DWI PUSPA ANGGRAINI

Lebih terperinci

PERSAMAAN DIFERENSIAL PARSIAL (PDP) MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG

PERSAMAAN DIFERENSIAL PARSIAL (PDP) MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG PERSAMAAN DIFERENSIAL PARSIAL PDP MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG PDP: Persamaa ag pada suku-sukua megadug betuk turua diferesia parsia aitu turua terhadap ebih dari satu variabe

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN Dose Pegampu : Pof. D. Si Wahyui DISUSUN OLEH: Nama : Muh. Zaki Riyato Nim : 02/156792/PA/08944 Pogam Studi : Matematika JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD)

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) Muhamad Zaki Riyato NIM: 02/156792/PA/08944 E-mail: zaki@mail.ugm.ac.id http://zaki.math.web.id Dose Pembimbig: Pof. D. Si Wahyui Pedahulua Sebelum melagkah

Lebih terperinci

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan.

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan. METODE PEMISAHAN PEUBAH (The Method of Separatio of Variales) Metode ii dapat diguaka pada PDP liier, khususya PDP dega koefisie kosta Tujua Istruksioal : Setelah megikuti perkuliaha mahasiswa dapat: 1

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh,

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh, Deet Bolak-balik Alteatig Seies Deet bolak-balik adalah deet yag suku-sukuya begati tada. Sebagai cotoh, + 4 + + + Deet bolak-balik beikut: = + a, dega a positif, kovege jika memeuhi dua syaat i. Setiap

Lebih terperinci

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1 4. KOMBINATORIKA 4. Atua Utuk Suatu Peistiwa Evet sesuatu yag tejadi. Jika peistiwa A dapat tejadi dalam m caa da peistiwa B dapat tejadi dalam N caa, maka tedapat (m, ) caa kedua peistiwa tejadi besama-sama.

Lebih terperinci

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel BAB III PENAKSIR DERET FOURIER 3. Peaksi Dalam saisika, peaksi adalah sebuah saisik (fugsi dai daa sampel obsevasi) yag diguaka uuk meaksi paamee populasi yag idak dikeahui (esimad) aau fugsi yag memeaka

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

Pemetaan Linear Yang Mengawetkan Invers Drazin Matriks Atas Lapangan

Pemetaan Linear Yang Mengawetkan Invers Drazin Matriks Atas Lapangan Pemetaa Liea Yag Megawetka Ives azi Matiks Atas Lapaga ibeika matiks x atas lapaga Sutopo Juusa Matematika Fakultas Matematika da Pegetahua Alam Uivesitas Gadjah Mada sutopo_mipa@ugm.ac.id Abstact F lapaga

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Regresi 4/13/2015 REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NONLINEAR HUBUNGAN LEBIH DARI DUA VARIABEL REGRESI LINEAR BERGANDA

Regresi 4/13/2015 REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NONLINEAR HUBUNGAN LEBIH DARI DUA VARIABEL REGRESI LINEAR BERGANDA 4/3/05 REGRESI LINER BERGND DN REGRESI (TREND) NONLINER Oleh : Fauza mi Sei, 3 pil 05` GDL (07.30-0.50) Regesi Dai deajat (pagkat) tiap peuah eas Liie (ila pagkatya ) No-liie (ila pagkatya uka ) Dai ayakya

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

EKSISTENSI INVERS GRUP DARI MATRIKS BLOK. Mahasiswa Program S1 Matematika 2

EKSISTENSI INVERS GRUP DARI MATRIKS BLOK. Mahasiswa Program S1 Matematika 2 ESSTENS NVERS GRU DR TRS LO Riaa Wedya Rola ae usaii ahasiswa ogam S atematika Dose Juusa atematika Fakultas atematika da lmu egetahua lam ampus iawidya ekabau 89 doesia email: iaa_wedya@yahoocom STRCT

Lebih terperinci

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi II. TINJAUAN PUSTAKA Pada bab ii aka dibeika bebeapa kosep dasa, istilah istilah da defiisi yag eat kaitaya dega masalah yag haus dibahas yaitu megeai bayakya caa megkostuksi Dyck path dega pajag k upstokes

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

UNIVERSITAS GUNADARMA POLA, BARISAN DAN DERET BILANGAN BAHAN AJAR. Oleh : Muhammad Imron H. Modul Barisan dan Deret Hal. 1

UNIVERSITAS GUNADARMA POLA, BARISAN DAN DERET BILANGAN BAHAN AJAR. Oleh : Muhammad Imron H. Modul Barisan dan Deret Hal. 1 BAHAN AJAR POLA, BARISAN DAN DERET BILANGAN Oleh : Muhammad Imo H 0 Modul Baisa da Deet Hal. BARISAN DAN DERET A. POLA BILANGAN. Pegetia Baisa Bilaga Baisa bilaga adalah uuta bilaga-bilaga dega atua tetetu.

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

KUNCI JAWABAN UJI KOPETENSI SEMESTER 1 A.

KUNCI JAWABAN UJI KOPETENSI SEMESTER 1 A. KUNCI JWN UJI KOPETENSI SEMESTER. Piliha Gada. Jawaba: b Titik da G mempuyai fase sama sebab aahya sama (ke atas) da beada di atas gais setimbag (sb x).. Jawaba: d Gelmbag elektmagetik adalah gelmbag yag

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

Menentukan Pembagi Bersama Terbesar dengan Algoritma

Menentukan Pembagi Bersama Terbesar dengan Algoritma Meetuka Pembagi Besama Tebesa dega Algoitma Macelius Hey M. (135108) Pogam Studi Tekik Ifomatika Sekolah Tekik Elekto da Ifomatika Istitut Tekologi Badug, Jl. Gaesha 10 Badug 4013, Idoesia 135108@std.stei.itb.ac.id

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

p q r sesuai sifat operasi hitung bentuk pangkat

p q r sesuai sifat operasi hitung bentuk pangkat Adi Nuhidayat, S.Pd PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERUMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN TAHUN PELAJARAN

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

C (z m) = C + C (z m) + C (z m) +...

C (z m) = C + C (z m) + C (z m) +... 4.. DERET PANGKAT Deret pagkat dari (x-m) merupaka deret tak higga yag betuk umumya adalah : i= i i C (z m) = C + C (z m) + C (z m) +... ( 4- ) C, C,... = kostata disebut koefisie deret m = kostata disebut

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI I PENDAHULUAN 1 Latar belakag Model pertumbuha Solow-Swa (the Solow-Swa growth model) atau disebut juga model eoklasik (the eo-classical model) pertama kali dikembagka pada tahu 195 oleh Robert Solow da

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka Itegral etu Jika fugsi kotiu yag didefiisika utuk, kita bagi selag mejadi selag bagia berlebar sama Misalka berupa titik ujug selag bagia ii da pilih titik sampel di dalam selag bagia ii, sehigga terletak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Model Pertumbuha Betuk ugsi pertumbuha satu jeis spesies pada umumya megguaka otasi ugsi aalitik yag diyataka dalam satu persamaa. Secara umum ugsi pertumbuha meyataka hubuga

Lebih terperinci

MOMEN, KEMIRINGAN, DAN KURTOSIS

MOMEN, KEMIRINGAN, DAN KURTOSIS 00 MOMEN, KEMIRINGAN, DAN KURTOSIS Achmad Samsudi, S.Pd., M.Pd. Juusa Pedidika Fisika FPMIPA Uivesitas Pedidika Idoesia /8/00 MODUL MOMEN, KEMIRINGAN, DAN KURTOSIS Achmad Samsudi, S.Pd., M.Pd. Pedahulua

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd KELUARGA EKSPONENSIAL Utuk Memeuhi Tugas Mata Kuliah Statistika Iferesial Dose Pegampu: Nedra Mursetya Somasih Dwipa, M.Pd Disusu Oleh : V A4 Kelompok. Nuuk Rohaigsih (444009). Rochayati (444000) 3. Siam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Optimasi 2.1.1. Pegertia Optimasi Optimasi (Optimizatio) adalah aktivitas utuk medapatka hasil terbaik di bawah keadaa yag diberika. Tujua akhir dari semua aktivitas tersebut

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

PERSAMAAN DIFERENSIAL

PERSAMAAN DIFERENSIAL PERSAMAAN DIFERENSIAL A. Persamaa Diferesial Liier Tigkat Satu Betuk umum ersamaa diferesial liier tigkat satu adalah sebagai berikut: P( ) y Q( ) d atau y P( ) y Q( ) Rumus eyelesaia umum utuk ersamaa

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

DISTRIBUSI KHUSUS YANG DIKENAL

DISTRIBUSI KHUSUS YANG DIKENAL 0 DISTRIBUSI KHUSUS YANG DIKENAL Kita sudah membahas fugsi peluag atau fugsi desitas, baik defiisiya maupu sifatya. Fugsi peluag atau fugsi desitas ii merupaka ciri dari sebuah distribusi, artiya fugsi

Lebih terperinci

Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama

Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama Solusi Soal OSN Matematika SMA/MA Hari Pertama Soal 1. Buktika bahwa utuk sebarag bilaga asli a da b, bilaga adalah bilaga bulat geap tak egatif. = F P B (a, b) + KP K (a, b) a b Solusi. Pertama aka dibuktika

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

LAMPIRAN 1 PEMBENTUKAN FUNGSI PERIODIZER

LAMPIRAN 1 PEMBENTUKAN FUNGSI PERIODIZER LAMPIRAN LAMPIRAN PEMBENUKAN FUNGSI PERIODIZER Fugsi p c x x, merupaka fugsi garis lurus simetris dega variabel bebas x, mejadi fugsi dasar pembetuka gelombag sawtooth. Fugsi p c x ii yag aka disubstitusi

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas.

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas. BAB 1 PENDAHUUAN 1.1 atar Belakag Pada dasarya masalah optimisasi adalah suatu masalah utuk membuat ilai fugsi tujua mejadi maksimum atau miimum dega memperhatika pembatas pembatas yag ada. Dalam aplikasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Bicriteria Liear Programmig (BLP) Pesoala optimisasi dega beberapa fugsi tujua memperhitugka beberapa tujua yag koflik secara simulta, secara umum Multi objective programmig (MOP)

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

Jl. Ganesha No. 10 Bandung, Telp. (022) , , Fax. (022) Homepage :

Jl. Ganesha No. 10 Bandung, Telp. (022) , , Fax. (022) Homepage : INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA Jl. Gaesha No. 0 Badug, 4032 Telp. (022) 2500834, 253427, Fax. (022) 2506452 Homepage : http://www.fi.itb.ac.id

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pegayaa Matematika Edisi 11 Maret Peka Ke-, 2007 Nomor Soal: 101-110 101. Bilaga desimal 0,7777 diyataka dalam hasil bagi bilaga rasioal sebagai a b, dega a da b relatif prima. Nilai dari ab A.

Lebih terperinci

PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dega caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia adalah

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

Ruang Vektor. Modul 1 PENDAHULUAN

Ruang Vektor. Modul 1 PENDAHULUAN Modul Ruag Vektor Dr. Irawati D PENDAHULUAN alam buku materi okok Aljabar II ii kita secara erlaha-laha mulai megubah edekata kita dari edekata secara komutasi mejadi edekata yag lebih umum. Yag dimaksud

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN Sedagka itegrasi ruas kaa utuk ersamaa (3b) diperoleh ds / = S... (36) Dega demikia pesamaa yag harus dipecahka adalah l 1 1 u u = S (37) Dari ersamaa (37) diperoleh persamaa utuk u u S = exp S 1exp S...

Lebih terperinci

Bab IV Metode Alternating Projection

Bab IV Metode Alternating Projection Bab IV Metode Alteratig Projectio Metode alteratig projectio megubah masalah feasibility o koveks mejadi masalah feasibility koveks Pada bab ii aka dicari matriks defiit positif da simetri X,Y yag diguaka

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan:

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan: BAB II PEMBAHASAN A. Keadaa Makro da Keadaa Mikro Masalah utama yag dihadapi dalam mekaika statistik adalah meetuka sebara yag mugki dari partikel- partikel kedalam tigkat- tigkat eergi da keadaa- keadaa

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

BAB 5 OPTIK FISIS. Prinsip Huygens : Setiap titik pada muka gelombang dapat menjadi sumber gelombang sekunder. 5.1 Interferensi

BAB 5 OPTIK FISIS. Prinsip Huygens : Setiap titik pada muka gelombang dapat menjadi sumber gelombang sekunder. 5.1 Interferensi BAB 5 OPTIK FISIS Prisip Huyges : Setiap titik pada muka gelombag dapat mejadi sumber gelombag sekuder. 5. Iterferesi - Iterferesi adalah gejala meyatuya dua atau lebih gelombag, membetuk gelombag yag

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

PIRAMIDA PASCAL: SUATU PENGEMBANGAN SEGITIGA PASCAL

PIRAMIDA PASCAL: SUATU PENGEMBANGAN SEGITIGA PASCAL PIRAMIDA PASCAL: SUATU PENGEMBANGAN SEGITIGA PASCAL I Waya Pua Astawa SMKN Abag, Kab. Kaagasem, Bali Abstact. The ability to expad ad geealize is oe of the most impotat facilities a teache ca help a studet

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci