Komputasi Aliran Panas pada sebuah Batang Logam Dengan Menggunakan Algoritma Numerov dan Bahasa Pemrograman Borland Delphi 6.0

Ukuran: px
Mulai penontonan dengan halaman:

Download "Komputasi Aliran Panas pada sebuah Batang Logam Dengan Menggunakan Algoritma Numerov dan Bahasa Pemrograman Borland Delphi 6.0"

Transkripsi

1 Berkala Fisika ISSN : Vol. 6, No. 3, Juli 003, al Komputasi Alira Paas pada sebua Batag Logam Dega Megguaka Algoritma Numerov da Baasa Pemrograma Borlad Delpi 6.0 Sumaria, K. Sofa Firdausi da Dwi Mulati. Laboratorium Istrumetasi da Elektroika Jurusa Fisika UNDIP. Laboratorium Optik da Laser Jurusa Fisika UNDIP Abstrak Tela dibuat program komputasi alira paas sebua batag logam atau plat dega megguaka algoritma Numerov da baasa pemrograma Borlad Delpi 6.0. Program komputasi alira paas sebua batag logam atau plat merupaka peelesaika permasalaa sarat batas da ilai eige utuk kasus S(x) = 0 dari Persamaa Diferesial Orde II ag d dx mempuai betuk persamaa + k ( x) = S( x). Program ii megguaka Algoritma Numerov ag merupaka pejabara dari Deret Talor. da baasa pemrograma Delpi 6.0. Algoritma tersebut merupaka metode beda igga. Peelesaia Persamaa Diferesial orde II utuk S(x) = 0 berupa grafik fugsi eige ag secara fisis merupaka alira paas sebua batag logam atau plat. Hasil komputasi alira paas sebua batag logam atau plat berupa fugsi eige ag besara sama atau berimpit utuk fugsi eige aalitik da umerik (program). PENDAHULUAN Permasalaa sarat batas da ilai eige baak dijumpai dalam berbagai bidag terutama dalam permasalaa fisis maupu matematis. Sedagka utuk sarat batas baak diperluka terutama dalam permasalaapermasalaa ag melibatka persamaa-persamaa diferesial dalam peelesaiaa. Jika dikaji utuk permasalaa fisis sediri maka sarat batas da ilai eige baak diguaka pada feomea elektromagetik, idrodiamika, alira paas, da gravitasi ag diselesaika dari betuk sederaa persamaa Laplace. Kajia sarat batas da ilai eige secara kusus ditemuka pada persamaa Poisso da Helmolt (persamaa gelombag ag tak tergatug waktu) baik itu gelombag elektromagetik maupu gelombag mekaik. Dikareaka persamaa-persamaa matematis dalam fisika itu sagat kompleks (dalam aplikasia) maka peelesaia peritugaa dega megguaka batua komputer. Sarat batas da ilai eige dapat diselesaika secara umerik dari persamaa diferesial orde II ag berbetuk d + k ( x) = S( x) () dx dega S adala sebua betuk o omoge da k adala bilaga kompleks seigga k merupaka sebua fugsi real. Sedagka dalam peelitia ii tela diselesaika PD orde II tersebut utuk S(x) =0 pada kasus distribusi alira paas pada plat logam dega megguaka batua Algoritma Numerov da peragkat luak seigga peelesaia sarat batas da ilai eige aka lebi cepat da lebi muda teratasi dari perituga secara maual. ALIRAN PANAS PADA SEBUAH BATANG LOGAM ATAU PLAT Persamaa alira paas adala u = α u. () t 7

2 Sumaria, K. Sofa F., Dwi Mulati Komputasi Alira α Dega u adala temperatur da adala sebua kostata karakteristik dari materi saat paas megalir. Sedagka bagia radial dari persamaa (.8) berbetuk F + k F = 0 atau d F + k F = 0. (3) dx (Utuk permasalaa satu dimesi, F aa sebagai fugsi x ). Peelesaia aalitik dari (3) adala si kx F( x) =. (4) cos kx Dapat dibadigka alira paas ag melalui plat dega ketebala l. Diasumsika bawa permukaa plat sagat luas seigga dapat diabaika beberapa al da megaggap bawa alira paas aa pada jarak x (liat gambar ). Permasalaa ii idetik dega alira paas pada batag logam ag disekat dega pajag l ag juga terjadi aa pada jarak x. Aggap plat terjadi pada distribusi suu stead state pada x = 0 suu 0 da x = l suu 00. Pada saat t = 0 da x = l suu pada didig (seperti suu pada didig x = 0 ) 0. Natia aka didapatka distribusi suu sepajag sumbu x. 0 x l Gambar Alira paas ag terjadi pada batag logam dega x = 0 da x = l pada suu 0º igga 00º (Boas, 983). ALGORITMA NUMEROV Metode kusus ag sederaa utuk meelesaika persamaa () adala dega Numerov atau metode Cowlig. Dega memperkiraka turua keduaa utuk tiga ilai ag berbeda : 0 + (5) dega adala turua kedua dari fugsi ag diguaka, adala fugsi pada beda igga mudur, 0 adala fugsi pada beda igga tega, adala fugsi pada beda igga maju, adala besara lebar lagka ag diambil, seigga + + = O (6) ( ) O dapat ditulis secara eksplisit ag didapatka dari ekspasi Talor ag berbetuk betuk error ( ) 3 x x ( x) = 0 + x + +! 3! + K (7) ± = ( x = ± ) = 0± ± + O( ). (8) 6 Dari persamaa diferesial itu sediri aka didapatka d = ( k + S ) x= x dx 7

3 Berkala Fisika ISSN : Vol. 6, No. 3, Juli 003, al = ( k ) ( k ) + ( k ) +. (9) S+ S + S + + O( ) Jika disubstitusika ke dalam persamaa (9) maka setela beberapa pegatura aka dapat ditulis mejadi (Kooi, 986) + k k + + k = + (0) Jika ilai k = 0 maka persamaa (0) aka mejadi: 6 ( S + 0S + S ) + O( ) 3 + = () sedagka bila ilai S ag berilai ol maka aka didapatka persamaa: 6 ( S + S + S ) O( ) + = + k + + k 5 k + O 6 ( ). () METODE PENELITIAN Pada peelitia ii diguaka metode dega megkaji pustaka serta da megguaka batua komputer utuk medapatka asil akir ag diarapka dega pembuata program dari baasa pemrograma Borlad Delpi 6.0 ag berpedoma pada taapa peelesaia Algoritma Numerov. Diagram blok Utuk lebi jelasa proses ag perlu ditempu utuk medapatka asil akir dapat diliat pada diagram blok pada gambar utuk permasalaa sarat batas da ilai eige. Permasalaa Algoritma PD Orde II Numerov Program Peelesaia Delpi Nilai Gambar Diagram blok peelesaia sarat batas da ilai eige. Batas Gambar. Diagram Blok Peelitia Permasalaa-permasalaa fisis ag berbetuk persamaa diferesial orde II diuba mejadi betuk umerik dega megguaka Algoritma Numerov. Kemudia aka dibuat programa dega baasa pemrograma Borlad Delpi 6.0 dega memberika ilaiilai batasa. Peelesaia ag didapatka aka dikalibrasi dega baasa pemrograma Pascal. Pada peelesaia aka didapatka arga fugsia utuk kasus k (x)=0. ag merupaka distribusi alira paas pada plat logam. Permasalaa-permasalaa fisis utuk kasus S(x) = 0 ag aka dikaji dalam peelitia ii adala alira 73

4 Sumaria, K. Sofa F., Dwi Mulati Komputasi Alira paas pada sebua batag logam atau plat. Pada peelesaia programa aka didapatka ilai eigea atau alira paasa. Metode uji Sebagai pegkalibrasi aka diguaka: Perituga secara aalitik Peelesaia dega megguaka baasa pemrograma Pascal Keluara dari pemrograma Delpi aka dibadigka asila dega megguaka perituga secara aalitik da/atau dega baasa pemrograma Pascal. Dari perbadiga iila aka diketaui keakurata dari asil ag tela diperole dari baasa pemrograma Delpi igga aka dapat diketaui pula bear tidaka program Delpi ag tela dibuat. Diagram alir program pada S(x)=0 Pada kasus komputasi alira paas aka mempuai arga S(x) = 0. Diagram alir program utuk kasus lira paas da partikel bebas ag mempuai S(x) = 0 diagram alir programa seperti pada gambar 3. START Masukka: Tebaka awal K= Iterval K (DK)= Batas_awal= Batas_akir= C C PHIM=0 PHIZ=0.0 CON = (K*K*H*H)/ For x := to N- do PHIP = *(-5*CON)*PHIZ - (+CON)*PHIM PHIP = PHIP/(+CON) PHIM = PHIZ PHIZ = PHIP iterasi = 0 PHIOLD = PHIP = A Abs(DK) > TOLK iterasi = iterasi + K = K + DK E D 74

5 Berkala Fisika ISSN : Vol. 6, No. 3, Juli 003, al E D For x := to N- do PHIP = *(-5*CON)*PHIZ - (+CON)*PHIM PHIP = PHIP/(+CON) PHIM = PHIZ PHIZ = PHIP PHIP = B Yes PHIP * PHIOLD > 0 (B * A) > 0 No K = K - DK DK = DK/ Cetak : K = END Gambar 3 Diagram alir program pada S(x) = 0. Keteraga: K = ilai eige DK = iterval K N = jumla iterval sepajag batasa ag diberika H = lebar lagka dalam rage batasa ag ada Tiga iteraksi dari atau ilai fugsia ag perlu ditijau meliputi: PHIM = ag merupaka ilai fugsi sebelum sesuggua PHIZ = ag merupaka ilai fugsi sesuggua PHIP = + ag merupaka ilai fugsi setela sesuggua PHIOLD = ilai fugsi ag lama atau pertama diperole TOLK = tolerasi dari ilai eige ag disimbolka dega K Dilakuka peebaka arga awal K setela dilakuka pemasuka data-data utuk Batas_awal, Batas_akir, N, da DK. Selajuta dalam prosedur argaarga tersebut aka diola utuk medapatka arga PHIP. Harga PHIOLD = PHIP ag diaggap sama dega A. Selama Abs(DK) > TOLK maka arga K = K + DK kemudia aka diproses lagi dalam prosedur ag sama igga didapatka PHIP ag diaggap sama dega B. Jika PHIP * PHIOLD > 0 atau B*A > 0 maka arga K=K+DK tetapi jika tidak terpeui maka arga K=K DK dega DK = DK/. Maka pada akir program sebagai outputa dapat diketaui K dega disertai iterasia. 75

6 Sumaria, K. Sofa F., Dwi Mulati Komputasi Alira HASIL DAN PEMBAHASAN Dari asil program komputasi alira paas pada sebua batag logam atau plat aka dibaas ilai eige ag tela diperole da fugsi eige ag meertaia. Program mecari ilai eige Alira paas pada sebua batag logam aka sesuai dega persamaa diferesial orde II jika S(x) = 0. Pada kasus S(x) = 0 aka didapatka ilai eige dari perituga secara aalitik dega umerik ag dataa ada pada tabel berikut utuk batas 0 < x. Tabel. Nilai eige secara aalitik da umerik utuk batas 0 < x No. Nilai eige Ralat Aalitik Numerik Dari tabel dapat diketaui bawa ilai eige ag didapatka secara aalitik da umerik mempuai selisi arga ag kecil seigga ralata juga kecil. Fugsi eige Fugsi eige ag diperole secara aalitik da umerik utuk batas 0<x ag diguaka sebagai coto adala tiga ilai eige pertama aitu 3.486, 6.857, da Utuk meliat perbedaa atara ketiga grafik pada batas ag sama tersebut maka dibuat grafik gabugaa pada gambar 4. Karea perbedaa atara perituga aalitik da umerik memberika ralat ag relatif sagat kecil, maka asil tampila grafik pada gambar 4. terliat fugsi eige aalitik dega umerik ampir berimpit. Hal ii dapat juga diliat pada data tabela bawa atara kedua fugsi eige mempuai datadata ag ampir sama seigga ralatralata pu selalu berkisar pada arga sekitar ol. Pada grafik di atas dapat diketaui juga bawa pada ilai eige ag berilai π (=3.486) aka mempuai grafik dega satu pucak, ilai eige ag berilai π (=6.857) aka mempuai grafik dega dua pucak atau membetuk satu gelombag, da pada ilai eige ag berilai 3π (=9.4857) aka mempuai grafik dega tiga pucak. Grafik-grafik ag ada tersebut sesuai dega betuk persamaa gelombag sius aitu si kx dega k merupaka ilai eige ag tela diperole da x merupaka iterval dari batasa ag kita guaka. KESIMPULAN. Tela dibuat program utuk meelesaika permasalaa sarat batas da ilai eige dari Persamaa Diferesial Orde II ag mempuai betuk persamaa d x + k ( x) = S( x) d utuk S(x)=0. a. Besara ralat meujukka besara perbedaa peelesaia secara umerik dega aalitik.. Komputasi alira paas pada sebua batag logam atau plat diperole. a. Nilai eige ag didapatka secara aalitik da umerik mempuai selisi arga ag kecil seigga ralata juga kecil. b. Fugsi eige aalitik da umerik mempuai ralat ag sagat kecil seigga terliat berimpit pada grafika. 76

7 Berkala Fisika ISSN : Vol. 6, No. 3, Juli 003, al DAFTAR PUSTAKA Boas, Mar L, 983, Matematical Metods i te Psical Scieces, Edisi ke-, Jo Wile ad Sos, New York. Cote, Samuel D, 99, Dasar-dasar Aalisis Numerik (Suatu Pedekata Algoritma),Edisi ke-3, Peerbit Erlagga, Jakarta. Kooi, Steve E, 986, Computatioal Psics, Addiso-Wesle Publisig Compa, Ic, Yogakarta. Krae, Keet S, 99, Fisika Moder, Peerbit Uiversitas Idoesia, Jakarta. Kreit, Frak, 986, Prisip-prisip Perpidaa Paas, Edisi ke-3, Peerbit Erlagga, Jakarta. Kreszig, Erwi, 993, Advaced Egieerig Matematic, Edisi ke-7, Jo Wile ad Sos, New York. Pramoo, Djoko, 999, Muda Meguasai Delpi 3, Jilid I da II, PT. Elex Media Komputido, Jakarta. Praata, Ato, 000, Pemrograma Borlad Delpi, Edisi ke-3, Peerbit ANDI Yogakarta, Yogakarta. Sceid, Fracis, 99, Seri Buku Scaum (Teori da Soal-soal) Aalisis Numerik, Peerbit Erlagga, Jakarta. Soedojo, Peter, 995, Asas-asas Matematika Fisika da Tekik, Gadja Mada Uiversit Press, Yogakarta. 77

8 Sumaria, K. Sofa F., Dwi Mulati Komputasi Alira Fugsi eige Aalitik Numerik -.00 Aalitik Numerik -.50 Aalitik x Numerik Gambar 3 Diagram alir program pada S(x) = 0. 78

METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR

METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR Buleti Ilmia Mat. Stat. da Terapaa (Bimaster) Volume 0, No. (0), al 07 6. METODE ADAMS-BASHFORTH-MOULTON DALAM PENYELESAIAN PERSAMAAN DIFERENSIAL NON LINEAR Apriadi, Bau Priadoo, Evi Noviai INTISARI Metode

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM09 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pada metode ii, utuk

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM07 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM07 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pd metode ii, utuk meetuka

Lebih terperinci

h h h n 2! 3! n! h h h 2! 3! n!

h h h n 2! 3! n! h h h 2! 3! n! Dieresiasi Numerik Sala satu perituga kalkulus yag serig diguaka adala turua/ dieresial. Coto pegguaa dieresial adala utuk meetuka ilai optimum (maksimum atau miimum) suatu ugsi y x mesyaratka ilai turua

Lebih terperinci

B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK

B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK 8 B A B 7 DIFERENSIASI DAN INTEGRASI NUMERIK A. D I F E R E N S I A S I N U M E R I K Misal diberika set data Diketaui set data (, ), (, ), (, ),., (, ) ag memeui relasi = f() Aka ditetuka d/d dalam iterval,

Lebih terperinci

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA

BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA BAB III PERUMUSAN PENDUGA DAN SIFAT SIFAT STATISTIKNYA 3. Perumusa Peduga Misalka N adala proses Poisso o omoge pada iterval [, dega fugsi itesitas yag tidak diketaui. Fugsi ii diasumsika teritegralka

Lebih terperinci

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan POSITRON, Vol. II, No. (0), Hal. -5 ISSN : 30-4970 Peetua Eergi Osilator Kuatum Aharmoik Megguaka Teori Gaggua Iklas Saubary ), Yudha Arma ), Azrul Azwar ) )Program Studi Fisika Fakultas Matematika da

Lebih terperinci

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal BAB. Limit Fugsi Ole : Bambag Supraptoo, M.Si. Referesi : Kalkulus Edisi 9 Jilid (Varberg, Purcell, Rigdom) Hal 56 - Defiisi: Pegertia presisi tetag it Megataka bawa f ( ) L berarti bawa utuk tiap yag

Lebih terperinci

BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial

BAB II LANDASAN TEORI. persamaan yang mengandung diferensial. Persamaan diferensial 5 BAB II LANDASAN TEORI A. Persamaa Diferesial Dari ata persamaa da diferesial, dapat diliat bawa Persamaa Diferesial beraita dega peelesaia suatu betu persamaa ag megadug diferesial. Persamaa diferesial

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL DENGAN METODE ADAMS BASHFORTH MENGGUNAKAN MATLAB

PENYELESAIAN PERSAMAAN DIFERENSIAL DENGAN METODE ADAMS BASHFORTH MENGGUNAKAN MATLAB Jural Ilmia Tekologi da Iformasi ASIA Vol. 3 No. April 009 PENYELESAIAN PERSAMAAN DIFERENSIAL DENGAN METODE ADAMS BASHFORTH MENGGUNAKAN MATLAB Rati Ayuigemi, S. ST Pratyaksa Kepakisa ABSTRAKSI Bayak metode

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

PENYELESAIAN INTEGRASI NUMERIK DENGAN MATLAB. Ratna Widyati Jurusan Matematika, FMIPA Universitas Negeri Jakarta

PENYELESAIAN INTEGRASI NUMERIK DENGAN MATLAB. Ratna Widyati Jurusan Matematika, FMIPA Universitas Negeri Jakarta Kode Makala M-6 PENYELESAIAN INTEGRASI NUMERIK DENGAN MATLAB Rata Widyati Jurusa Matematika, FMIPA Uiversitas Negeri Jakarta ABSTRAK Metode umerik dapat diguaka utuk megampiri itegrasi yag dapat meyelesaika

Lebih terperinci

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik

Lebih terperinci

METODE MILNE DAN METODE HAMMING UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL NON LINIER BERBANTUAN MATLAB SKRIPSI. Oleh : SITI AMINAH NIM :

METODE MILNE DAN METODE HAMMING UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL NON LINIER BERBANTUAN MATLAB SKRIPSI. Oleh : SITI AMINAH NIM : METODE MILNE DAN METODE HAMMING UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL NON LINIER BERBANTUAN MATLAB SKRIPSI Ole : SITI AMINAH NIM : 57 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA ADAPTIF CLUSTER

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA ADAPTIF CLUSTER PEAKI AIO UTUK ATA-ATA POPUAI PADA AMPIG ACAK BETATA ADAPTIF CUTE Dita Ardii uam Efedi Buami Maasisa Program Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetaua Alam Uiversitas iau Kampus

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN Sedagka itegrasi ruas kaa utuk ersamaa (3b) diperoleh ds / = S... (36) Dega demikia pesamaa yag harus dipecahka adalah l 1 1 u u = S (37) Dari ersamaa (37) diperoleh persamaa utuk u u S = exp S 1exp S...

Lebih terperinci

PENGARUH JENIS TUMPUAN TERHADAP FREKUENSI PRIBADI PADA GETARAN BALOK LENTUR

PENGARUH JENIS TUMPUAN TERHADAP FREKUENSI PRIBADI PADA GETARAN BALOK LENTUR PENGARUH JENIS TUMPUAN TERHADAP FREKUENSI PRIBADI PADA GETARAN BALOK LENTUR Naharuddi 1 1 Staf Pegajar Jurusa Tekik Mesi, Utad Abstrak. Tujua peelitia ii adalah utuk meetuka ilai frekuesi pribadi getara

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h

BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM. ) menyatakan banyaknya kejadian pada interval [ 0, n ] dan h BAB IV SEBARAN ASIMTOTIK PENDUGA DENGAN MENGGUNAKAN KERNEL SERAGAM 4.1 Peduga dega Kerel Seragam Pada bab ii diguaka peduga dega kerel eragam. Hal ii karea aya belum berail memperole ebara aimtotik dari

Lebih terperinci

ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan

ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI. Novita Eka Chandra Universitas Islam Darul Ulum Lamongan JMP : Vol. 8 No., Des. 016, al. 33-40 ISSN 085-1456 ESTIMASI DENSITAS KERNEL ADJUSTED: STUDI SIMULASI Novita Eka Cadra Uiversitas Islam Darul Ulum Lamoga ovitaekacadra@gmail.com Masriai Mayuddi Uiversitas

Lebih terperinci

Analisa Komputasi Metode Dua Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear

Analisa Komputasi Metode Dua Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear Prosidig Semirata FMIPA Uiversitas Lampug 03 Aalisa Komputasi Metode Dua Lagkah Bebas Turua Utuk Meelesaika Persamaa Noliear Supriadi Putra MSi Jurusa Matematika FMIPA Uiversitas Riau E-mail:sputra@uriacid

Lebih terperinci

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jural Matematika Muri da Terapa εpsilo Vol.8 No.2 (24) Hal. 39-45 APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama, Yui Yulida, Thresye Program Studi Matematika

Lebih terperinci

TURUNAN FUNGSI. absis titik C dan absis titik C sama dengan h, maka x 3 = x 1 + h, sehingga gradien garis AC sama dengan

TURUNAN FUNGSI. absis titik C dan absis titik C sama dengan h, maka x 3 = x 1 + h, sehingga gradien garis AC sama dengan TURUNAN FUNGSI. Gardie Garis siggug Kurva Peratika graik ugsi pada gambar berikut. 8 B 6 C A Gambar Titik A, B, da C terletak pada graik, bila absisa berturut-turut,, da, maka koordiat titik A,, B,, da

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

BAB V PENUTUP. Berdasarkan pembahasan pada bab-bab sebelumnnya baik secara matematis maupun dalam studi kasus, diperoleh kesimpulan sebagai berikut:

BAB V PENUTUP. Berdasarkan pembahasan pada bab-bab sebelumnnya baik secara matematis maupun dalam studi kasus, diperoleh kesimpulan sebagai berikut: BAB V PENUTUP 5. Kesimpula Berdasarka pembaasa pada bab-bab sebelumya baik secara matematis maupu dalam studi kasus, diperole kesimpula sebagai berikut:. Dari asil studi kasus pada 74 sugai di Idoesia

Lebih terperinci

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng

MODUL 1.03 DINAMIKA PROSES. Oleh : Ir. Tatang Kusmara, M.Eng MODUL 1.03 DINMIK PROSES Ole : Ir. Tatag Kusmara, M.Eg LBORTORIUM OPERSI TEKNIK KIMI JURUSN TEKNIK KIMI UNIVERSITS SULTN GENG TIRTYS CILEGON BNTEN 2008 2 Modul 1.03 DINMIK PROSES I. Pedaulua Dalam bidag

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU Rahma Dodi 1, Musraii M 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital

Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital Aplikasi Iterpolasi Biliier pada Pegolaha Citra Digital Veriskt Mega Jaa - 35408 Program Studi Iformatika Sekolah Tekik Elektro da Iformatika Istitut Tekologi Badug, Jl. Gaesha 0 Badug 403, Idoesia veriskmj@s.itb.ac.id

Lebih terperinci

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Vol.1 No.1 (16) Hal. 38-45 METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Siar Ismaya, Yui Yulida *, Na imah Hijriati Program Studi Matematika Fakultas MIPA

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

PERSAMAAN DIFERENSIAL PARSIAL (PDP) MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG

PERSAMAAN DIFERENSIAL PARSIAL (PDP) MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG PERSAMAAN DIFERENSIAL PARSIAL PDP MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG PDP: Persamaa ag pada suku-sukua megadug betuk turua diferesia parsia aitu turua terhadap ebih dari satu variabe

Lebih terperinci

Karakteristik Dinamik Elemen Sistem Pengukuran

Karakteristik Dinamik Elemen Sistem Pengukuran Karakteristik Diamik Eleme Sistem Pegukura Kompetesi, RP, Materi Kompetesi yag diharapka: Mahasiswa mampu merumuskaka karakteristik diamik eleme sistem pegukura Racaga Pembelajara: Miggu ke Kemampua Akhir

Lebih terperinci

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan.

(The Method of Separation of Variables). Metode ini dapat digunakan pada PDP linier, khususnya PDP dengan koefisien konstan. METODE PEMISAHAN PEUBAH (The Method of Separatio of Variales) Metode ii dapat diguaka pada PDP liier, khususya PDP dega koefisie kosta Tujua Istruksioal : Setelah megikuti perkuliaha mahasiswa dapat: 1

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh BAB III METODOLOGI 3.1 Tempat da Waktu Peelitia Pegambila data peelitia dilakuka di areal revegetasi laha pasca tambag Blok Q 3 East elevasi 60 Site Lati PT Berau Coal Kalimata Timur. Kegiata ii dilakuka

Lebih terperinci

Analisis dan Visualisasi Representasi Deret Fourier Gelombang Sinyal Periodik Menggunakan MATLAB

Analisis dan Visualisasi Representasi Deret Fourier Gelombang Sinyal Periodik Menggunakan MATLAB ELECRICIAN Jural Rekayasa da ekologi Elektro Aalisis da Visualisasi Represetasi Deret Fourier Gelombag Siyal Periodik Megguaka MALAB Ahmad Saudi Samosir Jurusa ekik Elektro Uiversitas Lampug, Badar Lampug

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat BAB IV HASIL DAN PEMBAHASAN 4.1 Kebutuha Sistem Sebelum melakuka deteksi da trackig obyek dibutuhka peragkat luak yag dapat meujag peelitia. Peragkat keras da luak yag diguaka dapat dilihat pada Tabel

Lebih terperinci

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling Jural Gradie Vol No Juli 5 : -5 Perbadiga Power of Test dari Uji Normalitas Metode Bayesia, Uji Shapiro-Wilk, Uji Cramer-vo Mises, da Uji Aderso-Darlig Dyah Setyo Rii, Fachri Faisal Jurusa Matematika,

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

Fitting Kurva Dengan Menggunakan Spline Kubik

Fitting Kurva Dengan Menggunakan Spline Kubik R. S. Lasio Fittig Kurva Dega Megguaka Slie Kubik Itisari Metode iterolasi slie kubik adala sala satu cara utuk fittig kurva ada data ekserimetal yag betuk dari fugsiya mauu turuaya tidak diketaui. Metode

Lebih terperinci

BAB IV PEMBAHASAN DAN ANALISIS

BAB IV PEMBAHASAN DAN ANALISIS BAB IV PEMBAHASAN DAN ANALISIS 4.1. Pembahasa Atropometri merupaka salah satu metode yag dapat diguaka utuk meetuka ukura dimesi tubuh pada setiap mausia. Data atropometri yag didapat aka diguaka utuk

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Studi Plasma Immersion Ion Implantation (PIII) dengan menggunakan Target Tak Planar

Studi Plasma Immersion Ion Implantation (PIII) dengan menggunakan Target Tak Planar JURNAL FISIKA DAN APLIKASINYA VOLUME 6, NOMOR JUNI,1 Studi Plasma Immersio Io Implatatio PIII dega megguaka Target Tak Plaar Yoyok Cahyoo Jurusa Fisika, FMIPA-Istitut Tekologi Sepuluh Nopember ITS Kampus

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pegertia Turua Fugsi Defiisi Turua fugsi f adala fugsi f yag ilaiya di c adala f c f c f c 0 asalka it ii ada. Coto Jika f 3 + +4, maka turua f di adala f f f 0 3 4 3.. 4 0 34 4 4 4

Lebih terperinci

Formulasi Numerik Arus Sejajar Pantai (Kasus Pantai Lurus)

Formulasi Numerik Arus Sejajar Pantai (Kasus Pantai Lurus) Formulasi Numerik Arus Seaar Patai (Kasus Patai Lurus) Ichsa Setiawa Jurusa Ilmu Kelauta Koordiatorat Kelauta da Perikaa Uiversitas Siah Kuala ichsa.setiawa@usiah.et Abstrak. Feomea arus seaar patai diselesaika

Lebih terperinci

BAB II TEORI MOTOR LANGKAH

BAB II TEORI MOTOR LANGKAH BAB II TEORI MOTOR LANGKAH II. Dasar-Dasar Motor Lagkah Motor lagkah adalah peralata elektromagetik yag megubah pulsa digital mejadi perputara mekais. Rotor pada motor lagkah berputar dega perubaha yag

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

PENGGUNAAN ARTIFICIAL NEURAL NETWORK UNTUK PREDIKSI TEGANGAN PADA BALOK KASTELA HEKSAGONAL BENTANG 1 METER (001S)

PENGGUNAAN ARTIFICIAL NEURAL NETWORK UNTUK PREDIKSI TEGANGAN PADA BALOK KASTELA HEKSAGONAL BENTANG 1 METER (001S) PENGGUNAAN ARTIFICIAL NEURAL NETWORK UNTUK PREDIKSI TEGANGAN PADA BALOK KASTELA HEKSAGONAL BENTANG METER (00S) Ahmad Muhtarom Jurusa Tekik Sipil, Uiversitas Sriwijaya, Jl. Raya Palembag-Prabumulih KM.3

Lebih terperinci

KEAKURATAN SOLUSI PADA PERSAMAAN DIFUSI MENGGUNAKAN SKEMA CRANK-NICOLSON

KEAKURATAN SOLUSI PADA PERSAMAAN DIFUSI MENGGUNAKAN SKEMA CRANK-NICOLSON KEAKURATAN SOLUSI PADA PERSAMAAN DIFUSI MENGGUNAKAN SKEMA CRANK-NICOLSON Afidah Karimatul Laili, Ari Kusumastuti 2 Mahasiswa Jurusa Matematika, Fakultas Sais da Tekologi, UIN Maulaa Malik Ibrahim Malag

Lebih terperinci

Modifikasi Metode Chebyshev-Halley tanpa Turunan Kedua dengan Orde Konvergensi Delapan

Modifikasi Metode Chebyshev-Halley tanpa Turunan Kedua dengan Orde Konvergensi Delapan Prosidig SI MaNIs Semiar Nasioal Itegrasi Matematika da Nilai Islami Vol. No. Juli 7 Hal. 8- p-issn: 8-96; e-issn: 8-6X Halama 8 Modiikasi Metode Chebshev-Halle tapa Turua Kedua dega Orde Kovergesi Delapa

Lebih terperinci

APLIKASI STATISTIK EKSTRIM DAN SIMULASI MONTE CARLO DALAM PENENTUAN BEBAN RENCANA PADA STRUKTUR DENGAN UMUR GUNA TERTENTU

APLIKASI STATISTIK EKSTRIM DAN SIMULASI MONTE CARLO DALAM PENENTUAN BEBAN RENCANA PADA STRUKTUR DENGAN UMUR GUNA TERTENTU Dimesi Tekik Sipil, Vol. 3, No., September 00, 84-88 ISSN 40-9530 Techical Note APLIKASI STATISTIK EKSTRIM DAN SIMULASI MONTE CARLO DALAM PENENTUAN BEBAN RENCANA PADA STRUKTUR DENGAN UMUR GUNA TERTENTU

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

FUNGSI BANYAK VARIABEL DAN PENERAPANNYA

FUNGSI BANYAK VARIABEL DAN PENERAPANNYA FUNGSI BANYAK VAIABEL DAN PENEAPANNYA KATA PENGANTA Segala puji sukur peulis pajatka haa utuk Allah SWT ag telah memberika rahmat da hidaaha, sehigga atas izi Allah, Alhamdulillah buku ag cukup sederhaa

Lebih terperinci

PENGARUH JARI-JARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN

PENGARUH JARI-JARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN PENGARUH JARIJARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN Aji Wira Tama, M. Arief Bustomi, M.Si. Jurusa Fisika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

PENYELESAIAN PERSAMAAN RICCATI DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN TUGAS AKHIR

PENYELESAIAN PERSAMAAN RICCATI DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN TUGAS AKHIR PENYEESAIAN PERSAMAAN RICCATI DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN TUGAS AKHIR Diajuka Sebagai Salah Satu Sarat Utuk Memperoleh Gelar Sarjaa Sais Pada Jurusa Matematika oleh : U K M A N 5565 FAKUTAS

Lebih terperinci

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA Joas Lodewyk H 1, Zulkarai 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika

Lebih terperinci

Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta

Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta Oleh: Bambag Widodo, SPd SMA Negeri 9 Yogyakarta PETA KONSEP Prisip Superposisi Liier Sefase π π beda faseya : 0,2, 4,. beda litasa : 0,,2, 3,. terjadi iterferesi Kostruktif/ salig meguatka, amplitudo

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

Sidang Tugas Akhir Teknik Manufaktur

Sidang Tugas Akhir Teknik Manufaktur Sidag Tugas Akhir Tekik Maufaktur Aplikasi pegguaa Metode Butterorth Lopass Filter dega Edge Detectio Ca-Roberts utuk megetahui Karakteristik stress-strai Material berbasis Image Processig Oleh : HANIF

Lebih terperinci

Meetuka Parameter Model Cauchy utuk A (1,587) Kosta Baha Polistirea Dzarril Maulidiyah 1, D. J. Djoko H Satjojo 1, Mauludi A Pamugkas 1, Ubaidillah 1 1) Jurusa Fisika FMIPA Uiv. Brawijaya Email: mdzarril@gmail.com

Lebih terperinci

SUATU TINJAUAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DU-FORT FRANKEL

SUATU TINJAUAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DU-FORT FRANKEL KNM XVII 11-14 Jui 2014 ITS, Surabaya SUATU TINJAUAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DU-FORT FRANKEL JEFFRY KUSUMA 1, KHAERUDDIN 2, SYAMSUDDIN

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

MODEL FISIK BANGUNAN PENGAMAN PILAR JEMBATAN AKIBAT ALIRAN DEBRIS

MODEL FISIK BANGUNAN PENGAMAN PILAR JEMBATAN AKIBAT ALIRAN DEBRIS Jural Sais da Pedidika. No. (4) 5-8 MODEL FISIK BANGUNAN PENGAMAN PILAR JEMBATAN AKIBAT ALIRAN DEBRIS Awar Maasiswa Program Magister Tekik Sipil, Program Pascasarjaa, Uiversitas Lampug Abstract: Alira

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur 0 III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai Mei 03. B. Populasi da Sampel Populasi dalam peelitia

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI 5 I PENDAHULUAN Latar Belakag Persaaa diferesial adalah suatu persaaa ag egadug sebuah fugsi ag tak diketahui dega satu atau lebih turuaa [Stewart, 3] Persaaa diferesial dapat dibedaka eurut ordea, salah

Lebih terperinci

METODE ITERASI BERTIPE NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN ORDE KONVERGENSI SEBARANG BILANGAN BULAT. Ayunda Putri 1, Aziskhan 2

METODE ITERASI BERTIPE NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN ORDE KONVERGENSI SEBARANG BILANGAN BULAT. Ayunda Putri 1, Aziskhan 2 METODE ITERASI BERTIPE NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN ORDE KONVERGENSI SEBARANG BILANGAN BULAT Ayuda Putri 1, Aziskha 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan

BAB II LANDASAN TEORI. Pada bab ini akan dibahas dasar-dasar teori yang akan digunakan BAB II LANDASAN TEORI Pada bab ii aka dibaa daar-daar teori yag aka diguaka dalam peulia kripi ii, yaitu megeai metode peakira maximum likeliood, metode peakira oit maximum likeliood da fier iformatio..1

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Lokasi da Waktu Pegambila Data Pegambila data poho Pius (Pius merkusii) dilakuka di Huta Pedidika Guug Walat, Kabupate Sukabumi, Jawa Barat pada bula September 2011.

Lebih terperinci

(A.6) PENENTUAN CADANGAN ASURANSI DISESUAIKAN MELALUI METODE OHIO PADA PRODUK GABUNGAN ASURANSI JIWA DAN PENDIDIKAN BERPASANGAN

(A.6) PENENTUAN CADANGAN ASURANSI DISESUAIKAN MELALUI METODE OHIO PADA PRODUK GABUNGAN ASURANSI JIWA DAN PENDIDIKAN BERPASANGAN Prosidig Semiar Nasioal Statistika Uiversitas Padjadjara, 3 November 2 (A.6) PENENTUAN CADANGAN ASURANSI DISESUAIKAN MELALUI METDE HI PADA PRDUK GABUNGAN ASURANSI JIWA DAN PENDIDIKAN BERPASANGAN Puput

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 36 BAB III METODE PENELITIAN A. Racaga Peelitia 1. Pedekata Peelitia Peelitia ii megguaka pedekata kuatitatif karea data yag diguaka dalam peelitia ii berupa data agka sebagai alat meetuka suatu keteraga.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Persamaa Diferesial Defiisi. Persamaa diferesial adalah suatu persamaa diatara derivatif-derivatif ag dispesifikasika pada suatu fugsi ag tidak diketahui, ilaia, da diketahui jumlah

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN Supriadi Putra, M,Si Laboratorium Komputasi Numerik Jurusa Matematika FMIPA Uiversitas Riau e-mail : spoetra@yahoo.co.id ABSTRAK Makalah ii

Lebih terperinci

LATIHAN SOAL-SOAL STANDAR

LATIHAN SOAL-SOAL STANDAR Soy Sugema College SSC LATIAN SAL-SAL STANDAR 5. Nuklida U memiliki. A. elektro, eutro da proto B. proto, eutro da elektro C. 5 elektro, proto da eutro D. elektro,5 proto da eutro E. elektro, proto da

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci