Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta

Ukuran: px
Mulai penontonan dengan halaman:

Download "Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta"

Transkripsi

1 Oleh: Bambag Widodo, SPd SMA Negeri 9 Yogyakarta

2 PETA KONSEP

3 Prisip Superposisi Liier Sefase π π beda faseya : 0,2, 4,. beda litasa : 0,,2, 3,. terjadi iterferesi Kostruktif/ salig meguatka, amplitudo maksimum Berlawaa fase beda fase :,3,5,. π π beda litasa : ½,3/2, 5/2 π terjadi iterferesi distruktif/ salig melemahka, amplitudo ol

4 Iterferesi cahaya Sumber gelombag harus kohere kedua gelombag selalu memiliki beda fase tetap (boleh ol tetapi tidak harus ol ), frekuesi sama Amplitudo hampir sama Cara meghasilka pasaga sumber cahaya kohere 1. Siari dua atau lebih celah sempit dega cahaya yag berasal dari celah tuggal, thomas youg 2. Dapatka sumber-sumber kohere maya dari sebuah cahaya dari pematula saja, fresel 3. Guaka siar laser sebagai peghasil cahaya kohere

5 Iterferesi celah gada ( Thomas youg) pita gelap, destruktif pita terag, kostruktif

6 Aalisis kuatitatif iterferesi terjadi karea adaya beda litasa ( S ) yag ditempuh oleh cahaya S1 da S2 ke layar ( P ) S S2 P S1P S2R si θ S 2 R S2R S S 1 2 d si θ S d si θ S2R d

7 Iterferesi maksimum (pita terag) S d si θ 0,,2,3 S d si θ 1,2,3,... 0: terag pusat 1: pita terag ke -1 2: pita terag ke - 2 3: pita terag ke - 3

8 Iterferesi miimum ( Pita gelap) S S d si θ d si θ 1,2,3,... 1, 2, 3, pita pita pita 1 3 5,, ( ) 2 gelap ke -1 gelap ke - 2 gelap ke -3, dst

9 Jarak pita terag atau pita gelap ke- dari terag pusat karea jarak celah da layar sagat jauh dibadig dega jarak atara kedua celah ( L>>>d ) maka sudut θ berilai kecil sehigga siθ taθ y L d siθ d taθ d y L pita terag d si y d ( L θ ) yd L 1,2,3,...

10 Pita gelap 1 dsiθ ( ) 2 y 1 d( ) ( ) L 2 yd 1 ( ) L 2 1,2,3,... Jarak atara pita terag da pita gelap yag berdekata L y 1 2d Jarak diatara dua pita terag beruruta y L d

11 Hubuga atara ideks bias medium dega mula-mula medium atara celah da layar memiliki ideks bias 1 da diperoleh lebar pita y1, jika medium atara celah da layar digati dega ideks bias 2 maka diperoleh lebar pita y2. dapat diyataka y y y

12 Sepasag celah dega jarak 0,2 mm disiari tegak lurus. Garis terag ketiga terletak 7,5 mm dari garis terag ke ol pada layar yag jarakya 1 m dari celah. Pajag gelombag siar yag dipakai adalah.. ( 5 x 10-4 mm ) Suatu berkas cahaya mookromatis setelah melalui sepasag celah sempit yag jarakya 0,3 mm membetuk pola iterferesi pada layar yag jarakya 0,9 m dari celah. Bila jarak atara garis gelap kedua terhadap pusat pola 3 mm, maka pajag gelombag cahaya adalah.. ( 6,7 x 10-7 m ) Dua celah yag berjarak 1 mm disiari cahaya merah dega pajag gelombag 6,5 x 10-7 m. Garis gelap terag dapat diamati pada layar yag berjarak 1 m dari celah. Jarak atara gelap ketiga da terag ke lima adalah.. ( 1,62 mm )

13 1. dua celah sempit yag dipisahkasejauh 1,5 mm diteragi cahaya lampu atrium yag memiliki pajag gelombag 589 m. Pita- pita iterferesi teramati pada layar sejauh 3 m. carilah jarak pita- pita dilayar.( y/) 1,18 mm 2. dua celah sempit yag dipisahka pada jarak 1 mm diteragi cahaya dega pajag gelombag 600 m, da pola iterferesi dipadag pada layar berjarak 2 m jauhya. Hitug jumlah pita terag percetimeter dilayar. ( /y) 8,33 pita/cm 3. Dega megguaka alat celah gada kovesioal da cahaya yag pajag gelombagya 589 m, 28 pita-pita terag percetimeter teramati pada layar yag berjarak 3 m jauhya. Berapakah jarak pisah celahya.4,95 mm

14 Seberkas cahaya mookromatis jatuh pada lapisa tipis traspara ABC dipatulka oleh permukaa atas ABDEF dipatulka lapisa bawah Berkas cahaya patul kohere

15 Utuk mempermudah aalisis kuatitatif aggap cahaya mookromatis datag tegak lurus pada lapisa tipis, sehigga beda litasa S ABDEF ABC t tebal lapisa tipis 2 t

16 Persamaaa matematis utuk satu perubaha fase akibat pematula Syarat agar pada suatu lapisa tipis terjadi iterferesi melemah/destruktif ( gelap ) ( terjadi apabila perbedaaa litasa 2t 0 atau bilaga bulat dari pajag gelombag dalam lapisa tipis ) S 2 t m m ' dalam lapisa tipis ' 0,1,2,3,... pajag gelombag

17 Syarat agar pada suatu lapisa tipis terjadi iterferesi meguat/kostruktif( terag ) ( terjadi apabila perbedaa litasa merupaka bilaga gajil dari ½ pajag gelombag dalam lapisa tipis 1 S 2 t ( m + ) 2 m 0,1,2,3,... ' dalam lapisa tipis pajag gelombag '

18 Jika yag diketahui pajag gelombag diudara Sehigga iterferesi kostruktif 1 ' 2t (m + ) t (m + ) t (m + ) 2 Iterferesi destruktif ' atau ( u ) (1) ' ideks bias lapisa tipis 2 t 2 t m ' m

19 Cahaya polychromatis, hasil wara pelagi

20 selaput tipis air sabu disiari dalam arah tegak lurus dega megguaka cahaya atrium dega pajag gelombag 589,3m. Jika ideks bias air sabu adalah 1,33 tetuka a. ketebala miimum selaput air sabu yag tampak terag b. ketebala miimum selaput air sabu yag tampak gelap Lapisa udara berbetuk seperti kampak ( taji )dibuat dega eempatka Lapisa udara berbetuk seperti kampak ( taji )dibuat dega eempatka sepotog kertas kecil diatara dua potog kaca rata. Cahaya dega pajag gelombag 500 m datag secara ormal pada plat kaca, da pola iterferesi diamati dega pematula. Jika sudut yag dibetuk atara kedua plat 3 x 10-4 rad. Berapa bayakya pita iterferesi per cm yag teramati ( m/x. )

21 Geaga miyak dega idek bias 1,3 megapug di atas permukaa air. Cahaya dega pajag gelombag A jatuh hampir tegak lurus terhadap lapisa tipis tersebut sehigga terjadi iterferesi salig melemahka. Tetuka tebal miimum lapisa miyak tersebut. Suatu lapisa tipis besi ( 1,40) megapug di atas permukaa kaca ( 1,50). Siar Matahari jatuh hampir tegak lurus pada lapisa tipis da mematulkaya ke mata Ada. Walaupu siar Matahari adalah siar putih yag megadug berbagai wara, tetapi lapisa tipis tampak berwara kuig. Ii karea iterferesi destruktif pada lapisa meghilagka wara biru( biru di udara 468 m) dari cahaya yag dipatulka ke mata Ada. Tetuka ketebala miimum t (t 0) dari lapisa tipis ii.

22 Jika lapisa tebal yag beragam disiari dega cahayamookromatik aka teramati pita atau garis terag gelap secara selag selig ( frige/pita )

23 Iterferesi kostruktif/ terag r r 2 t t 1 1 ' (m + ) R ( m + ) R 2 2 jari jari ligkara terag ke R jari - jari lesa cembug datar

24 Iterferesi destruktif/ gelap r r 2 g g ' m R m R jari jari ligkara gelap ke

25 Pada percobaa iterferesi cici ewto diguaka cahaya dega pajag gelombag 5700 A 0. hasil pegamata meujukka jari-jari ligkara gelap ke sepuluh adalah 6 mm. hitug jari-jari kelegkuga lesa

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

BAB IV PEMANDU-GELOMBANG OPTIK TERPADU

BAB IV PEMANDU-GELOMBANG OPTIK TERPADU BAB IV PEMANDU-GELOMBANG OPTIK TERPADU Tujua Istruksioal Umum Pada bab ii aka dibahas megeai pemadugelombag yag bayak diguaka utuk metrasfer cahaya di atara kompoe-kompoe jariga, megeai bermacam-macam

Lebih terperinci

Untuk terang ke 3 maka Maka diperoleh : adalah

Untuk terang ke 3 maka Maka diperoleh : adalah JAWABAN LATIHAN UAS 1. INTERFERENSI CELAH GANDA YOUNG Dua buah celah terpisah sejauh 0,08 mm. Sebuah berkas cahaya datang tegak lurus padanya dan membentuk pola gelap terang pada layar yang berjarak 120

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

INTERFERENSI DAN DIFRAKSI

INTERFERENSI DAN DIFRAKSI INTERFERENSI DAN DIFRAKSI Materi yang akan dibahas : 1. Interferensi Interferensi Young Interferensi Selaput Tipis 2. Difraksi Difraksi Celah Tunggal Difraksi Fresnel Difraksi Fraunhofer Difraksi Celah

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr materio.r Statistika A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka).

Lebih terperinci

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis materio.r A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka). B. PENYAJIAN

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG Cahaya

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG Cahaya 1. EBTANAS-06-22 Berikut ini merupakan sifat-sifat gelombang cahaya, kecuali... A. Dapat mengalami pembiasan B. Dapat dipadukan C. Dapat dilenturkan D. Dapat dipolarisasikan E. Dapat menembus cermin cembung

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

II. TUJUAN PERCOBAAN 1. Dapat memahami cara menentukan konsentrasi larutan gula 2. Dapat memahami prinsip dan fungsi setiap komponen alat Polarimeter

II. TUJUAN PERCOBAAN 1. Dapat memahami cara menentukan konsentrasi larutan gula 2. Dapat memahami prinsip dan fungsi setiap komponen alat Polarimeter I. NAMA PERCOBAAN Nama percobaa : C1 Polarimeter II. TUJUAN PERCOBAAN 1. Dapat memahami cara meetuka kosetrasi laruta gula 2. Dapat memahami prisip da fugsi setiap kompoe alat Polarimeter III. ALAT DAN

Lebih terperinci

BAB GELOMBANG ELEKTROMAGNETIK

BAB GELOMBANG ELEKTROMAGNETIK BAB GELOMBANG ELEKTROMAGNETIK I. SOAL PILIHAN GANDA Diketahui c = 0 8 m/s; µ 0 = 0-7 Wb A - m - ; ε 0 = 8,85 0 - C N - m -. 0. Perhatikan pernyataan-pernyataan berikut : () Di udara kecepatannya cenderung

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Optika Fisis - Latihan Soal Doc Name: AR12FIS0399 Version : 2012-02 halaman 1 01. Gelombang elektromagnetik dapat dihasilkan oleh. (1) Mauatan listrik yang diam (2) Muatan listrik

Lebih terperinci

Halaman (2)

Halaman (2) Halaman (1) Halaman (2) Halaman (3) Halaman (4) Halaman (5) Halaman (6) Halaman (7) SOAL DIFRAKSI PADA CELAH TUNGGAL INTERFERENSI YOUNG PADA CELAH GANDA DAN DIFRAKSI PADA CELAH BANYAK (KISI) Menentukan

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bitaro Sektor 7, Bitaro Jaa Tagerag Selata 154 PENDAHULUAN Megapa mempelajari kekuata taah? Keamaa

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Kuliah 3.Ukuran Pemusatan Data

Kuliah 3.Ukuran Pemusatan Data Kuliah 3.Ukura Pemusata Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. Prodi Perikaa Fakultas Perikaa da Ilmu Kelauta Uiversitas Padjadjara Cotet (1) modus Media Rata-rata Telada peerapa Cotet (2)

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Setiap pria da waita sukses adalah pemimpipemimpi besar. Mereka berimajiasi tetag masa depa mereka, berbuat sebaik mugki dalam setiap hal,

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih -- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

5. KARAKTERISTIK RESPON

5. KARAKTERISTIK RESPON 5. ARATERISTI RESPON Adalah ciri-ciri khusus perilaku diamik (spesifikasi performasi) Taggapa (respo) output sistem yag mucul akibat diberikaya suatu siyal masuka tertetu yag khas betukya (disebut sebagai

Lebih terperinci

PELUANG. Kegiatan Belajar 1 : Kaidah Pencacahan, Permutasi dan kombinasi

PELUANG. Kegiatan Belajar 1 : Kaidah Pencacahan, Permutasi dan kombinasi PELUANG Kegiata Belajar : Kaidah Pecacaha, Permutasi da kombiasi A. Kaidah Pecacaha. Prisip Dasar Membilag Jika suatu operasi terdiri dari tahap, tahap pertama dapat dilakuka dega m cara yag berbeda da

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah siswa kelas VIII (delapan) semester ganjil di

III. METODE PENELITIAN. Populasi dalam penelitian ini adalah siswa kelas VIII (delapan) semester ganjil di 4 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah siswa kelas VIII (delapa) semester gajil di SMP Xaverius 4 Badar Lampug tahu ajara 0/0 yag berjumlah siswa terdiri dari

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

STABILITAS LERENG runi_ runi asma _ ran asma t ran t ub.ac.id

STABILITAS LERENG runi_ runi asma _ ran asma t ran t ub.ac.id STABILITAS LERENG rui_asmarato@ub.ac.id ANALISA STABILITAS LERENG Dalam bayak kasus, para isiyur sipil/pegaira diharapka mampu membuat perhituga stabilitas lereg gua memeriksa keamaa suatu kodisi : Lereg

Lebih terperinci

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si.

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si. ANUITAS 9/19/2012 MK. Aktuaria Darmato,S.Si. 1 OVERVIEW Auitas adl suatu pembayara dalam jumlah tertetu, yag dilakuka setiap selag waktu da lama tertetu, secara berkelajuta. Suatu auitas yg pasti dilakuka

Lebih terperinci

BAB III KAPASITAS DUKUNG

BAB III KAPASITAS DUKUNG BAB III KAASITAS DUKUNG KELOMOK TIANG ANALISIS KELOMOK TIANG Kelompok tiag merupaka kumpula dari beberapa tiag yag bekerja sebagai satu kesatua, diguaka apabila beba yag diterima fodasi sagat besar. Secara

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Secara umum metode peelitia diartika sebagai cara ilmiah utuk medapatka data dega tujua da keguaa tertetu. Cara ilmiah berarti kegiata peelitia itu didasarka pada ciri-ciri keilmua,

Lebih terperinci

ANALISIS SURUT ASTRONOMIS TERENDAH DI PERAIRAN SABANG, SIBOLGA, PADANG, CILACAP, DAN BENOA MENGGUNAKAN SUPERPOSISI KOMPONEN HARMONIK PASANG SURUT

ANALISIS SURUT ASTRONOMIS TERENDAH DI PERAIRAN SABANG, SIBOLGA, PADANG, CILACAP, DAN BENOA MENGGUNAKAN SUPERPOSISI KOMPONEN HARMONIK PASANG SURUT ANALISIS SURUT ASTRONOMIS TERENDAH DI PERAIRAN SABANG, SIBOLGA, PADANG, CILACAP, DAN BENOA MENGGUNAKAN SUPERPOSISI KOMPONEN HARMONIK PASANG SURUT Oleh: Gadig Putra Hasibua C64104081 PROGRAM STUDI ILMU

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 39 JAKARTA

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 39 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 9 JAKARTA Jl. RA Fadillah Cijantung Jakarta Timur Telp. 840078, Fax 87794718 REMEDIAL ULANGAN TENGAH SEMESTER

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

Barisan, Deret, dan Notasi Sigma

Barisan, Deret, dan Notasi Sigma Barisa, Deret, da Notasi Sigma B A B 5 A. Barisa da Deret Aritmetika B. Barisa da Deret Geometri C. Notasi Sigma da Iduksi Matematika D. Aplikasi Barisa da Deret Sumber: http://jsa007.tripod.com Saat megedarai

Lebih terperinci

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain

III. METODE PENELITIAN. Pembangunan Daerah (BAPPEDA) Provinsi NTB, BPS pusat, dan instansi lain III. METODE PENELITIAN 3.1 Jeis da Sumber Data Data yag diguaka pada peelitia ii merupaka data sekuder yag diperoleh dari Bada Pusat Statistik (BPS) Provisi NTB, Bada Perecaaa Pembagua Daerah (BAPPEDA)

Lebih terperinci

ANALISIS TENTANG GRAF PERFECT

ANALISIS TENTANG GRAF PERFECT Aalisis Tetag Graf Perfect ANALISIS TENTANG GRAF PERFET Nurul Imamah AH Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Pesatre Tiggi Darul Ulum Jombag urul.imamah86@gmail.com Abstrak Seirig perkembaga

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar.

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar. Getara (Vibratio) Dalam kehidupa sehari-hari terdapat bayak beda yag bergetar. Sear gitar yag serig ada maika, Soud system, Garpu tala, Demikia juga rumah ada yag bergetar dasyat higga rusak ketika terjadi

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

HUKUM DASAR KIMIA. 2CuO. 28gram nitrogen 52 gram magnesium nitrida 3 Mg + N 2 Mg 3 N 2

HUKUM DASAR KIMIA. 2CuO. 28gram nitrogen 52 gram magnesium nitrida 3 Mg + N 2 Mg 3 N 2 HUKUM DASAR KIMIA ) Hukum Kekekala Massa ( Hukum Lavoisier ). Yaitu : Dalam sistem tertutup, massa zat sebelum da sesudah reaksi adalah sama. 40 Ca + 6 O 56 CaO C + 3 O 44 CO Cotoh soal : Pada wadah tertutup,

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

OPTIK GEOMETRI. 2) Sebuah titik di letakkan diantara 2 cermin yang membentuk sudut Jumlah bayangan yang terjadi

OPTIK GEOMETRI. 2) Sebuah titik di letakkan diantara 2 cermin yang membentuk sudut Jumlah bayangan yang terjadi OPTIK GEOETRI A. Pematula i r i r B. Cermi Datar ) Sebuah beda diletakka di depa cermi datar Siat bayaga : a. (jarak beda didepa cermi = jarak bayaga dibelakag cermi) b. (tiggi/bear beda = tiggi/bear bayaga)

Lebih terperinci

BAB IV PEMECAHAN MASALAH

BAB IV PEMECAHAN MASALAH BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

SANGAT RAHASIA. 30 o. DOKUMEN ASaFN 2. h = R

SANGAT RAHASIA. 30 o. DOKUMEN ASaFN 2. h = R DOKUMEN ASaFN. Sebuah uang logam diukur ketebalannya dengan menggunakan jangka sorong dan hasilnya terlihat seperti pada gambar dibawah. Ketebalan uang tersebut adalah... A. 0,0 cm B. 0, cm C. 0, cm D.

Lebih terperinci

1. Uji Dua Pihak. mis. Contoh :

1. Uji Dua Pihak. mis. Contoh : . Uji Dua Pihak H 0 H a : : Cotoh : mis : mea kelas Lab mea kelas tapa lab Ho : Tidak ada perbedaa kemampua hasil belajar biologi siswa atara yag belajar melalui media laboratorium dega yag tidak. Ha :

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

Perancangan Reflektor Cahaya untuk Sistem Pencahayaan Alami Berbasis Optik Geometri

Perancangan Reflektor Cahaya untuk Sistem Pencahayaan Alami Berbasis Optik Geometri JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Prit) 1 Peracaga Reflektor utuk Sistem Pecahayaa Alami Berbasis Optik Geometri Joko Nugroho, Gatut Yudoyoo, da Suyato Fisika, Fakultas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Maajeme risiko merupaka salah satu eleme petig dalam mejalaka bisis perusahaa karea semaki berkembagya duia perusahaa serta meigkatya kompleksitas aktivitas perusahaa

Lebih terperinci

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik Aalisis Sektor Kuci Dimaa : KLBj aij = Keterkaita lagsug ke belakag sektor j = Usur matriks koefisie tekik (b). Keterkaita Ke Depa (Forward Ligkage) Forward ligkage meujukka peraa suatu sektor tertetu

Lebih terperinci

STATISTIK DAN STATISTIKA STATISTIK, PENGERTIAN DAN EKSPLORASI DATA ILUSTRASI

STATISTIK DAN STATISTIKA STATISTIK, PENGERTIAN DAN EKSPLORASI DATA ILUSTRASI STATISTIK, PENGERTIAN DAN EKSPLORASI DATA 1. Populasi da Sampel. Statistik da Statistika 3. Jeis-jeis Observasi 4. Statistika Deskriptif Sari Numerik Peyajia Data 008 by USP & UM ; last edited Aug 10 MA

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 3. METODE PENELITIAN 3.1. Waktu da Lokasi Peelitia Peelitia ii megguaka data primer da sekuder. Data primer diambil dari kegiata peelitia skala laboratorium. Peelitia dilakuka pada bula Februari-Jui 2011.

Lebih terperinci

Karakteristik Dinamik Elemen Sistem Pengukuran

Karakteristik Dinamik Elemen Sistem Pengukuran Karakteristik Diamik Eleme Sistem Pegukura Kompetesi, RP, Materi Kompetesi yag diharapka: Mahasiswa mampu merumuskaka karakteristik diamik eleme sistem pegukura Racaga Pembelajara: Miggu ke Kemampua Akhir

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

KUMPULAN SOAL UJIAN NASIONAL DAN SPMB

KUMPULAN SOAL UJIAN NASIONAL DAN SPMB . Cahaya adalah gelombang elektromagnetik yang mempunyai sifatsifat. ) merupakan gelombang medan listrik dan medan magnetik ) merupakan gelombang longitudinal ) dapat dipolarisasikan ) rambatannya memerlukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. STABILITAS LERENG Suatu permukaa taah yag mirig yag membetuk sudut tertetu terhadap bidag horisotal disebut sebagai lereg (slope). Lereg dapat terjadi secara alamiah atau dibetuk

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Penyelesaian Asymmetric Travelling Salesman Problem dengan Algoritma Hungarian dan Algoritma Cheapest Insertion Heuristic.

Penyelesaian Asymmetric Travelling Salesman Problem dengan Algoritma Hungarian dan Algoritma Cheapest Insertion Heuristic. Peyelesaia Asymmetric Travellig Salesma Problem dega Algoritma Hugaria da Algoritma Cheapest Isertio Heuristic Caturiyati Staf Pegaar Jurusa Pedidika Matematika FMIPA UNY E-mail: wcaturiyati@yahoo.com

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Matematika Diskret (Kombiatorial - Permutasi) Istruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Pedahulua Sebuah sadi-lewat (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa

Lebih terperinci

BAB VI PELUANG DAN STATISTIKA DASAR

BAB VI PELUANG DAN STATISTIKA DASAR BB VI PELUNG DN STTISTIK DSR. Kosep Peluag da Pegelolaa Data Peluag serigkali diperluka oleh seseorag utuk melihat besarya kemugkia atau kesempata utuk terjadiya sesuatu. Sebagai cotoh, coba ada perhatika

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Tujua yag igi dicapai dalam peelitia ii adalah:. Utuk megetahui perbedaa hasil belajar atara model pembelajara tutor sebaya dalam kelompok kecil dega model pembelajara

Lebih terperinci