Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta

Ukuran: px
Mulai penontonan dengan halaman:

Download "Oleh: Bambang Widodo, SPd SMA Negeri 9 Yogyakarta"

Transkripsi

1 Oleh: Bambag Widodo, SPd SMA Negeri 9 Yogyakarta

2 PETA KONSEP

3 Prisip Superposisi Liier Sefase π π beda faseya : 0,2, 4,. beda litasa : 0,,2, 3,. terjadi iterferesi Kostruktif/ salig meguatka, amplitudo maksimum Berlawaa fase beda fase :,3,5,. π π beda litasa : ½,3/2, 5/2 π terjadi iterferesi distruktif/ salig melemahka, amplitudo ol

4 Iterferesi cahaya Sumber gelombag harus kohere kedua gelombag selalu memiliki beda fase tetap (boleh ol tetapi tidak harus ol ), frekuesi sama Amplitudo hampir sama Cara meghasilka pasaga sumber cahaya kohere 1. Siari dua atau lebih celah sempit dega cahaya yag berasal dari celah tuggal, thomas youg 2. Dapatka sumber-sumber kohere maya dari sebuah cahaya dari pematula saja, fresel 3. Guaka siar laser sebagai peghasil cahaya kohere

5 Iterferesi celah gada ( Thomas youg) pita gelap, destruktif pita terag, kostruktif

6 Aalisis kuatitatif iterferesi terjadi karea adaya beda litasa ( S ) yag ditempuh oleh cahaya S1 da S2 ke layar ( P ) S S2 P S1P S2R si θ S 2 R S2R S S 1 2 d si θ S d si θ S2R d

7 Iterferesi maksimum (pita terag) S d si θ 0,,2,3 S d si θ 1,2,3,... 0: terag pusat 1: pita terag ke -1 2: pita terag ke - 2 3: pita terag ke - 3

8 Iterferesi miimum ( Pita gelap) S S d si θ d si θ 1,2,3,... 1, 2, 3, pita pita pita 1 3 5,, ( ) 2 gelap ke -1 gelap ke - 2 gelap ke -3, dst

9 Jarak pita terag atau pita gelap ke- dari terag pusat karea jarak celah da layar sagat jauh dibadig dega jarak atara kedua celah ( L>>>d ) maka sudut θ berilai kecil sehigga siθ taθ y L d siθ d taθ d y L pita terag d si y d ( L θ ) yd L 1,2,3,...

10 Pita gelap 1 dsiθ ( ) 2 y 1 d( ) ( ) L 2 yd 1 ( ) L 2 1,2,3,... Jarak atara pita terag da pita gelap yag berdekata L y 1 2d Jarak diatara dua pita terag beruruta y L d

11 Hubuga atara ideks bias medium dega mula-mula medium atara celah da layar memiliki ideks bias 1 da diperoleh lebar pita y1, jika medium atara celah da layar digati dega ideks bias 2 maka diperoleh lebar pita y2. dapat diyataka y y y

12 Sepasag celah dega jarak 0,2 mm disiari tegak lurus. Garis terag ketiga terletak 7,5 mm dari garis terag ke ol pada layar yag jarakya 1 m dari celah. Pajag gelombag siar yag dipakai adalah.. ( 5 x 10-4 mm ) Suatu berkas cahaya mookromatis setelah melalui sepasag celah sempit yag jarakya 0,3 mm membetuk pola iterferesi pada layar yag jarakya 0,9 m dari celah. Bila jarak atara garis gelap kedua terhadap pusat pola 3 mm, maka pajag gelombag cahaya adalah.. ( 6,7 x 10-7 m ) Dua celah yag berjarak 1 mm disiari cahaya merah dega pajag gelombag 6,5 x 10-7 m. Garis gelap terag dapat diamati pada layar yag berjarak 1 m dari celah. Jarak atara gelap ketiga da terag ke lima adalah.. ( 1,62 mm )

13 1. dua celah sempit yag dipisahkasejauh 1,5 mm diteragi cahaya lampu atrium yag memiliki pajag gelombag 589 m. Pita- pita iterferesi teramati pada layar sejauh 3 m. carilah jarak pita- pita dilayar.( y/) 1,18 mm 2. dua celah sempit yag dipisahka pada jarak 1 mm diteragi cahaya dega pajag gelombag 600 m, da pola iterferesi dipadag pada layar berjarak 2 m jauhya. Hitug jumlah pita terag percetimeter dilayar. ( /y) 8,33 pita/cm 3. Dega megguaka alat celah gada kovesioal da cahaya yag pajag gelombagya 589 m, 28 pita-pita terag percetimeter teramati pada layar yag berjarak 3 m jauhya. Berapakah jarak pisah celahya.4,95 mm

14 Seberkas cahaya mookromatis jatuh pada lapisa tipis traspara ABC dipatulka oleh permukaa atas ABDEF dipatulka lapisa bawah Berkas cahaya patul kohere

15 Utuk mempermudah aalisis kuatitatif aggap cahaya mookromatis datag tegak lurus pada lapisa tipis, sehigga beda litasa S ABDEF ABC t tebal lapisa tipis 2 t

16 Persamaaa matematis utuk satu perubaha fase akibat pematula Syarat agar pada suatu lapisa tipis terjadi iterferesi melemah/destruktif ( gelap ) ( terjadi apabila perbedaaa litasa 2t 0 atau bilaga bulat dari pajag gelombag dalam lapisa tipis ) S 2 t m m ' dalam lapisa tipis ' 0,1,2,3,... pajag gelombag

17 Syarat agar pada suatu lapisa tipis terjadi iterferesi meguat/kostruktif( terag ) ( terjadi apabila perbedaa litasa merupaka bilaga gajil dari ½ pajag gelombag dalam lapisa tipis 1 S 2 t ( m + ) 2 m 0,1,2,3,... ' dalam lapisa tipis pajag gelombag '

18 Jika yag diketahui pajag gelombag diudara Sehigga iterferesi kostruktif 1 ' 2t (m + ) t (m + ) t (m + ) 2 Iterferesi destruktif ' atau ( u ) (1) ' ideks bias lapisa tipis 2 t 2 t m ' m

19 Cahaya polychromatis, hasil wara pelagi

20 selaput tipis air sabu disiari dalam arah tegak lurus dega megguaka cahaya atrium dega pajag gelombag 589,3m. Jika ideks bias air sabu adalah 1,33 tetuka a. ketebala miimum selaput air sabu yag tampak terag b. ketebala miimum selaput air sabu yag tampak gelap Lapisa udara berbetuk seperti kampak ( taji )dibuat dega eempatka Lapisa udara berbetuk seperti kampak ( taji )dibuat dega eempatka sepotog kertas kecil diatara dua potog kaca rata. Cahaya dega pajag gelombag 500 m datag secara ormal pada plat kaca, da pola iterferesi diamati dega pematula. Jika sudut yag dibetuk atara kedua plat 3 x 10-4 rad. Berapa bayakya pita iterferesi per cm yag teramati ( m/x. )

21 Geaga miyak dega idek bias 1,3 megapug di atas permukaa air. Cahaya dega pajag gelombag A jatuh hampir tegak lurus terhadap lapisa tipis tersebut sehigga terjadi iterferesi salig melemahka. Tetuka tebal miimum lapisa miyak tersebut. Suatu lapisa tipis besi ( 1,40) megapug di atas permukaa kaca ( 1,50). Siar Matahari jatuh hampir tegak lurus pada lapisa tipis da mematulkaya ke mata Ada. Walaupu siar Matahari adalah siar putih yag megadug berbagai wara, tetapi lapisa tipis tampak berwara kuig. Ii karea iterferesi destruktif pada lapisa meghilagka wara biru( biru di udara 468 m) dari cahaya yag dipatulka ke mata Ada. Tetuka ketebala miimum t (t 0) dari lapisa tipis ii.

22 Jika lapisa tebal yag beragam disiari dega cahayamookromatik aka teramati pita atau garis terag gelap secara selag selig ( frige/pita )

23 Iterferesi kostruktif/ terag r r 2 t t 1 1 ' (m + ) R ( m + ) R 2 2 jari jari ligkara terag ke R jari - jari lesa cembug datar

24 Iterferesi destruktif/ gelap r r 2 g g ' m R m R jari jari ligkara gelap ke

25 Pada percobaa iterferesi cici ewto diguaka cahaya dega pajag gelombag 5700 A 0. hasil pegamata meujukka jari-jari ligkara gelap ke sepuluh adalah 6 mm. hitug jari-jari kelegkuga lesa

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

BAB IV PEMANDU-GELOMBANG OPTIK TERPADU

BAB IV PEMANDU-GELOMBANG OPTIK TERPADU BAB IV PEMANDU-GELOMBANG OPTIK TERPADU Tujua Istruksioal Umum Pada bab ii aka dibahas megeai pemadugelombag yag bayak diguaka utuk metrasfer cahaya di atara kompoe-kompoe jariga, megeai bermacam-macam

Lebih terperinci

Untuk terang ke 3 maka Maka diperoleh : adalah

Untuk terang ke 3 maka Maka diperoleh : adalah JAWABAN LATIHAN UAS 1. INTERFERENSI CELAH GANDA YOUNG Dua buah celah terpisah sejauh 0,08 mm. Sebuah berkas cahaya datang tegak lurus padanya dan membentuk pola gelap terang pada layar yang berjarak 120

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

Meetuka Parameter Model Cauchy utuk A (1,587) Kosta Baha Polistirea Dzarril Maulidiyah 1, D. J. Djoko H Satjojo 1, Mauludi A Pamugkas 1, Ubaidillah 1 1) Jurusa Fisika FMIPA Uiv. Brawijaya Email: mdzarril@gmail.com

Lebih terperinci

INTERFERENSI DAN DIFRAKSI

INTERFERENSI DAN DIFRAKSI INTERFERENSI DAN DIFRAKSI Materi yang akan dibahas : 1. Interferensi Interferensi Young Interferensi Selaput Tipis 2. Difraksi Difraksi Celah Tunggal Difraksi Fresnel Difraksi Fraunhofer Difraksi Celah

Lebih terperinci

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15 SOAL PENYISIHAN Petujuk pegerjaa soal : Jumlah soal 0 soal Piliha Gada da Uraia Utuk piliha gada diberi peilaia bear +, salah -, tidak diisi 0 Lama pegerjaa soal adalah 0 meit Kalau berai, silaka pilih

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SBMPTN - SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b = 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

XI. OPTIKA. Buku Ajar Fisika Dasar II Pendahuluan. Optika XI - 1

XI. OPTIKA. Buku Ajar Fisika Dasar II Pendahuluan. Optika XI - 1 XI - XI. OPTIKA. Pedahulua adalah ilmu yag mempelajari tetag cahaya atau lebih luasya lagi tetag spektrum elektromagetik. Karea itu aspek-aspek gelombag dari cahaya harus medapatka perhatia yag utama.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

III. MATERI DAN METODE PENELITIAN. Penelitian telah dilakukan pada bulan November - Desember 2013 di

III. MATERI DAN METODE PENELITIAN. Penelitian telah dilakukan pada bulan November - Desember 2013 di III. MATERI DAN METODE PENELITIAN 3.. Waktu da Tempat Peelitia telah dilakuka pada bula November - Desember 203 di peteraka Kambig yag ada di Kota Pekabaru Provisi Riau. 3.2. Alat da Baha Materi yag diguaka

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya

Lebih terperinci

Xpedia Fisika. Optika Fisis - Soal

Xpedia Fisika. Optika Fisis - Soal Xpedia Fisika Optika Fisis - Soal Doc. Name: XPFIS0802 Version: 2016-05 halaman 1 01. Gelombang elektromagnetik dapat dihasilkan oleh. (1) muatan listrik yang diam (2) muatan listrik yang bergerak lurus

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG Cahaya

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG Cahaya 1. EBTANAS-06-22 Berikut ini merupakan sifat-sifat gelombang cahaya, kecuali... A. Dapat mengalami pembiasan B. Dapat dipadukan C. Dapat dilenturkan D. Dapat dipolarisasikan E. Dapat menembus cermin cembung

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku. BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr materio.r Statistika A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka).

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Kumpulan Soal Fisika Dasar II.

Kumpulan Soal Fisika Dasar II. Kumpulan Soal Fisika Dasar II http://personal.fmipa.itb.ac.id/agussuroso http://agussuroso102.wordpress.com Topik Gelombang Elektromagnetik Interferensi Difraksi 22-04-2017 Soal-soal FiDas[Agus Suroso]

Lebih terperinci

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis materio.r A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka). B. PENYAJIAN

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil 5/2/2017. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil 5/2/2017. Modus 5//0 Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

BAB GELOMBANG ELEKTROMAGNETIK

BAB GELOMBANG ELEKTROMAGNETIK BAB GELOMBANG ELEKTROMAGNETIK I. SOAL PILIHAN GANDA Diketahui c = 0 8 m/s; µ 0 = 0-7 Wb A - m - ; ε 0 = 8,85 0 - C N - m -. 0. Perhatikan pernyataan-pernyataan berikut : () Di udara kecepatannya cenderung

Lebih terperinci

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2015 Nomor Soal: 81-90

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2015 Nomor Soal: 81-90 Slusi Pegayaa Matematika disi Maret Peka Ke-, 0 Nmr Sal: -0. ari titik da pada ligkara, garis siggug P da Q digambarka sama, seperti diperlihatka pada gambar. uktika bahwa membagi PQ sama pajag. Q P Perpajag

Lebih terperinci

Halaman (2)

Halaman (2) Halaman (1) Halaman (2) Halaman (3) Halaman (4) Halaman (5) Halaman (6) Halaman (7) SOAL DIFRAKSI PADA CELAH TUNGGAL INTERFERENSI YOUNG PADA CELAH GANDA DAN DIFRAKSI PADA CELAH BANYAK (KISI) Menentukan

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Optika Fisis - Latihan Soal Doc Name: AR12FIS0399 Version : 2012-02 halaman 1 01. Gelombang elektromagnetik dapat dihasilkan oleh. (1) Mauatan listrik yang diam (2) Muatan listrik

Lebih terperinci

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh BAB III METODOLOGI 3.1 Tempat da Waktu Peelitia Pegambila data peelitia dilakuka di areal revegetasi laha pasca tambag Blok Q 3 East elevasi 60 Site Lati PT Berau Coal Kalimata Timur. Kegiata ii dilakuka

Lebih terperinci

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

II. TUJUAN PERCOBAAN 1. Dapat memahami cara menentukan konsentrasi larutan gula 2. Dapat memahami prinsip dan fungsi setiap komponen alat Polarimeter

II. TUJUAN PERCOBAAN 1. Dapat memahami cara menentukan konsentrasi larutan gula 2. Dapat memahami prinsip dan fungsi setiap komponen alat Polarimeter I. NAMA PERCOBAAN Nama percobaa : C1 Polarimeter II. TUJUAN PERCOBAAN 1. Dapat memahami cara meetuka kosetrasi laruta gula 2. Dapat memahami prisip da fugsi setiap kompoe alat Polarimeter III. ALAT DAN

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bitaro Sektor 7, Bitaro Jaa Tagerag Selata 154 PENDAHULUAN Megapa mempelajari kekuata taah? Keamaa

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Kuliah 3.Ukuran Pemusatan Data

Kuliah 3.Ukuran Pemusatan Data Kuliah 3.Ukura Pemusata Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. Prodi Perikaa Fakultas Perikaa da Ilmu Kelauta Uiversitas Padjadjara Cotet (1) modus Media Rata-rata Telada peerapa Cotet (2)

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

III BAHAN DAN METODE PENELITIAN

III BAHAN DAN METODE PENELITIAN 27 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Objek yag diguaka dalam peelitia ii adalah kuda Sumba (Sadelwood) betia da jata berjumlah 30 ekor dega umur da berat yag relatif

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2... SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5.

Lebih terperinci

Osilator Harmonik (Bagian 2)

Osilator Harmonik (Bagian 2) Osilator armoik Bagia Osilator harmoik mekaika kuatum Tijau osilator harmoik -dimesi: ˆ = E ki + E pot kostata gaa ˆ m d d k perpidaha E pot k massa k Tigkat eergi osilator Tigkat eergi osilator harmoik

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi)

BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi) Pertemua0 BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuaku Tambusai Bagkiag 7. PENAKSIRAN ( Taksira Iterval utuk rataa, varia da proporsi) 7.1 Pedahulua Pada pembahasa sebelumya adalah meletakka

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Setiap pria da waita sukses adalah pemimpipemimpi besar. Mereka berimajiasi tetag masa depa mereka, berbuat sebaik mugki dalam setiap hal,

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

KATA PENGANTAR. Kupang, September Tim Penyusun

KATA PENGANTAR. Kupang, September Tim Penyusun KATA PENGANTAR Puji syukur tim panjatkan ke hadirat Tuhan Yang Maha Esa, karena atas berkat dan rahmat-nya tim bisa menyelesaikan makalah yang berjudul Optika Fisis ini. Makalah ini diajukan guna memenuhi

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwarigi Asri Podok Gede -88 UJIAN SEKOLAH TAHUN PELAJARAN / L E M B A R S O A L Mata Pelajara : Matematika Kelas/Program : IPA Hari/Taggal

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih -- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa

Lebih terperinci

LAMPIRAN 1 PEMBENTUKAN FUNGSI PERIODIZER

LAMPIRAN 1 PEMBENTUKAN FUNGSI PERIODIZER LAMPIRAN LAMPIRAN PEMBENUKAN FUNGSI PERIODIZER Fugsi p c x x, merupaka fugsi garis lurus simetris dega variabel bebas x, mejadi fugsi dasar pembetuka gelombag sawtooth. Fugsi p c x ii yag aka disubstitusi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1. Metode Kuadrat Terkecil Aalisis regresi merupaka aalisis utuk medapatka hubuga da model matematis atara variabel depede (Y) da satu atau lebih variabel idepede (X). Hubuga atara

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

5. KARAKTERISTIK RESPON

5. KARAKTERISTIK RESPON 5. ARATERISTI RESPON Adalah ciri-ciri khusus perilaku diamik (spesifikasi performasi) Taggapa (respo) output sistem yag mucul akibat diberikaya suatu siyal masuka tertetu yag khas betukya (disebut sebagai

Lebih terperinci

TRANSFORMASI BOX-COX PADA ANALISIS REGRESI LINIER SEDERHANA

TRANSFORMASI BOX-COX PADA ANALISIS REGRESI LINIER SEDERHANA Jural Matematika UNAND Vol. 2 No. 2 Hal. 115 122 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND TRANSFORMASI BOX-COX PADA ANALISIS REGRESI LINIER SEDERHANA ELVI YATI, DODI DEVIANTO, YUDIANTRI ASDI Program

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran RENCANA PROGRAM PEMBELAJARAN KE - 1 Satua Pedidika Mata Pelajara Kelas/Semester Materi Pokok Waktu : SMA N 6 YOGYAKARTA : Matematika : XII IPS/ : Barisa da Deret : 6 jam pelajara 1. Stadar Kompetesi 4.

Lebih terperinci

Struktur Atom. Rudi

Struktur Atom. Rudi Struktur Atom Rudi Susato @rudist87 MODEL ATOM THOMSON Usurusur kimia terdiri dari atomatom J.J. Thomso meemuka elektro Di dalam atom terdapat elektro Atom etral, di dalam atom harus ada yag bermuata positip

Lebih terperinci

2. Spektrum Atom Hidrogen

2. Spektrum Atom Hidrogen Struktur Atom 1. Teori Atom (Model Atom) 1.1 Dalto Hukum Lavoisier & Proust kosep: atom 1. Tomso Hatara listrik Tabug siar katoda Peemua elektro Radioaktifitas kosep: elektro 1.3 Ruterford Percobaa berkas

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi,

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi, 7 III. METODE PENELITIAN 3.1 Idetifikasi Masalah Variabel yag diguaka dalam peelitia ii adalah variabel X da variabel Y. Variabel X merupaka variabel bebas adalah kepemimpia da motivasi, variabel Y merupaka

Lebih terperinci