KEAKURATAN SOLUSI PADA PERSAMAAN DIFUSI MENGGUNAKAN SKEMA CRANK-NICOLSON

Ukuran: px
Mulai penontonan dengan halaman:

Download "KEAKURATAN SOLUSI PADA PERSAMAAN DIFUSI MENGGUNAKAN SKEMA CRANK-NICOLSON"

Transkripsi

1 KEAKURATAN SOLUSI PADA PERSAMAAN DIFUSI MENGGUNAKAN SKEMA CRANK-NICOLSON Afidah Karimatul Laili, Ari Kusumastuti 2 Mahasiswa Jurusa Matematika, Fakultas Sais da Tekologi, UIN Maulaa Malik Ibrahim Malag 2 Dose Jurusa Matematika, Fakultas Sais da Tekologi, UIN Maulaa Malik Ibrahim Malag aphid.laili@gmail.com, arikususmastuti@gmail.com ABSTRAK Persamaa difusi adalah persamaa diferesial parsial liier yag merupaka represetasi berpidahya suatu zat dalam pelarut dari bagia berkosetrasi tiggi ke bagia yag berkosetrasi redah. Peelitia ii bertuua utuk meetuka distribusi temperatur persamaa difusi dega megguaka skema Crak-Nicolso. Pertama, mediskritisasika persamaa difusi megguaka skema Crak-Nicolso. Diskritisasi aka meghasilka matriks. Selautya meetuka kestabila da kosistesi. Kestabila da kosistesi utuk meuukka bahwa metode yag diguaka tersebut memiliki solusi yag dapat medekati solusi aalitikya sehigga diketahui bahwa solusi tersebut akurat. Matriks hasil diskritisasi aka disimulasika dalam program. Hasil simulasi meuukka bahwa distribusi temperatur meuru terhadap waktu karea adaya perpidaha paas. Kata kuci: solusi akurat, persamaa Difusi, perpidaha paas balik, Skema Crak-Nicolso. ABSTRACT Diffusio equatio is a liear differetial equatio that represets the trasfer of substace from the high cocetratio part to the lower cocetratio part. This research is determie the temperature distributio of diffusio equatio usig Crak-Nicholso scheme. First, Discretizatio diffusio equatio usig Crak-Nicholso scheme. Obtaied from the discretizatio is matrix. Next, determiig stability ad cosistecy. The stability ad cosistecy to idicate that the method used have a solutio that ca be approximatig aalytical solutio so kow regularizatio. Matrix discretizatio results will be simulated i the program. The simulatio results show that the temperature distributio decreases with time to heat trasfer. Keywords: regularizatio, Diffusio equatio, backward heat equatio, Crak-Nicholso Scheme. PENDAHULUAN Estimasi error adalah suatu proses yag bertuua utuk mecari solusi terbaik dega mempertimbagka besarya ilai error yag dihasilka dega metode umerik. Dalam prosesya, estimasi error didapatka dari ekspasi daret Taylor yag dipotog setelah suku turua yag diigika. Dega pemotoga order yag ke, maka hasil perhituga aka medekati solusi. Jadi dalam estimasi error aka dihasilka suatu solusi yag akurat. Solusi akurat yaitu dekatya suatu solusi pedekata terhadap ilai sebearya. Dalam prosesya, dibutuhka suatu metode umerik yag aka meghasilka solusi pedekata terbaik. Solusi pedekata salah satuya adalah skema Crak-Nicolso. Skema Crak-Nicolso adalah pegembaga dari metode beda higga skema eksplisit dega metode beda higga mau skema implisit. Namu betuk dari skema Crak-Nicolso adalah skema implisit. Kelebiha metode ii dibadigka dega metode beda higga yag lai adalah stabil tapa syarat. Peelitia terdahulu oleh (Durmi, 23) telah meeliti tetag perbadiga solusi dari skema implisit da skema Crak-Nicolso utuk model perpidaha paas. Fokus peelitia (Durmi, 23) adalah membadigka solusi dari skema implisit da skema Crak-Nicolso dega cara simulasi. Peelitia terdahulu oleh (Le, Q.H., & Nguye, 23) meeliti tetag keakurata solusi pada persamaa perpidaha paas balik dega megguaka ketaksamaa. Pada hasil

2 Keakurata Solusi pada Persamaa Difusi Megguaka Skema Crak-Nicolso diperoleh dega error yag relatif kecil da medekati solusi sesugguhya. Dega telah diketahuiya bahwa telah didapatka error yag relatif kecil, peulis igi megetahui estimasi error pada persamaa yag sama dega metode yag berbeda pada peetua solusi pedekataya. Pada peelitia ii diselesaika persamaa difusi megguaka skema Crak-Nicolso, dalam peyelesaiaaya dilakuka diskritisasi megguaka metode beda higga skema Crak- Nicolso, kemudia meetuka syarat kestabila da meetuka syarat kosistesi utuk megetahui bahwa hasil diskritisasi tersebut akurat. Selautya melakuka simulasi dari skema yag diguaka da iterpretasi hasil. KAJIAN PUSTAKA. Persamaa Difusi Persamaa difusi yag dipakai adalah persamaa perpidaha paas balik u t (x, t) a(t) 2 u (x, t) = f(x, t), x2 u(, t) = u(π, t) =, cos() si(x) u(x, ) = g(x) = exp( 2 + ), () dega domai t [,], x [, π], a(t) adalah fugsi 2t +, dega solusi eksak u(x, t) = cos(t) si(x), serta si(t) si(x) f(x, t) =. u(x, t) exp(t 2 +t) exp(t 2 +t) adalah fugsi distribusi temperatur da u(x, ) adalah distribusi temperatur awal, u t adalah variabel paas yag bergatug pada t, u xx adalah variabel paas yag bergatug pada x, da a(t) adalah kostata paas (Le, Q.H., & Nguye, 23). 2. Skema Crak-Nicolso Skema Crak-Nicolso merupaka salah satu skema pegembaga dari skema eksplisit da implisit, yaitu merupaka ilai rerata darai kedua metode tersebut. Pada skema Crak-Nicolso diferesial terhadap waktu t dituliska dalam betuk beda mau, yaitu (Triatmodo, 22) u(x,t) t = u + u t (2) Sedagka, diferesial terhadap ruag x merupaka rerata dari skema eksplisit dam implisit dega megguaka beda pusat u(x,t) x 2 (u + u x + u u ) (3) x Utuk diferesial orde 2 terhadap waktu dapat dituliska sebagai berikut 2 u(x,t) x 2 = 2 (u + 2u + +u+ + x 2 ) + 2 (u 2u +u + x 2 ), 3. Keakurata Solusi (4) Keakurata solusi umerik diukur berdasarka kriteria kovergesi, kosistesi serta stabilitas. Kovergesi berhubuga dega besarya peyimpaga solusi pedekata oleh metode beda higga terhadap solusi eksak. Aproksimasi solusi pasti koverge ke solusi aalitikya, ika kosistesi dari persamaa beda da stabilitas dari skema yag diberika terpeuhi (Zauderer, 26). Kriteria stabilitas da kositesi merupaka kodisi perlu da cukup agar diperoleh solusi koverge. Aalisis kestabila dari skema yag diguaka dapat dicari megguaka stabilitas Vo Neuma dega mesubstitusika u = ρ e ia ke dalam persamaa beda yag diguaka, sedagka utuk aalisis kosistesi dapat dicari dega megguaka ekspasi deret Taylor. Syarat perlu da cukup stabilitas Vo Neuma yaitu ρ da kriteria kosistesi aka terpeuhi ika x da t. Jika syarat kestabila da kosistesi terpeuhi maka solusi umerik tersebut aka medekati solusi aalitik (Zauderer, 26). PEMBAHASAN. Solusi Persamaa Difusi dega Skema Crak-Nicolso Persamaa difusi yag diguaka adalah persamaa () yag aka diaalisis dega skema Crak-Nicolso (Durmi, 23). Megacu pada persamaa (4), maka betuk diskrit dari persamaa () adalah sebagai berikut: u + u t u 2 (a 2u + u + x 2 + a u + 2u u + x 2 ) = f (5) Kemudia utuk semua variabel dega superskrip dikelompokka ke ruas kaa, sehigga CAUCHY ISSN:

3 Afidah Karimatul Laili [ a 2 x 2] u + + [ t + a x 2] u + diasumsika sebagai: A = C = D = F = a [ a 2 x 2] u + + = [ a 2 x 2] u + [ t a x 2] u + [ a 2 x 2] u + + f 2 x 2; B = t + a x 2, (6) E = t a x 2, sehigga persamaa di atas dapat ditulis kembali sebagai: + A u + B u + C u + + = u + u = (a t u 2u + u + 2 x 2 + a t u + 2u u + 2 x 2 ) + tf (9) Kemudia dapat dicari dega cara mesubstitusika u = ρ e ia, i = ke dalam persamaa tersebut da tf diaggap kecil, sehigga: ρ + e ia ρ e ia = a t 2 x 2 (ρ e ia( ) 2ρ e ia + D u + E u + (7) ρ e ia(+) ) + () F u + + f Kemudia utuk =,2,, M da =,2,, M. Misalka M = 5, M adalah bayakya iterasi, maka pada persamaa (7) aka diperoleh suatu matriks, B A 2 C [ B 2 B M 2 C M 2 A M B M ] [ + u + u 2 + u M 2 u + M ] = D D 2 D 4 [ D 5 ] (8) maka matriksya Au + = D, dimaa A da B adalah matriks tridiagoal dega ukura (M ) (M ) da usur u da f diketahui da selesaiaya adalah u + = A (D ) yag berukura (M ). 2. Keakurata Solusi Hasil Skema Crak- Nicolso Utuk Meuuka bahwa persamaa (5) berilai bear da memiliki solusi yag dapat medekati solusi aalitik, maka cukup dega meuuka bahwa persamaa beda yag diguaka tersebut stabil da kosiste. megetahui apakah metode yag diguaka utuk medekati persamaa difusi tersebut stabil atau tidak, maka ui kestabila dapat dilakuka megguaka aalisa stabilitas Va Neuma, dega cara mesubstitusika u = ρ e ia, i = ke dalam persamaa (5) yag terlebih dahulu dikalika dega t, sehigga diperoleh persamaa sebagai berikut: a t 2 x 2 (ρ(+) e ia( ) 2ρ (+) e ia + ρ (+) e ia(+) ) Utuk peyederhaaa, persamaa () dibagi dega ρ e ia, misalka a diasumsika sebagai k sehigga diperoleh: ρ = + k t 2 x 2 (e ia 2 + e ia ) [ k t 2 x 2 (e ia 2 + e ia )] () Karea e ±ia = cos a ± i si a, maka persamaa () dapat ditulis: ρ = k t + 2 x2(cos a i si a 2+cos a+i si a) (2) [ k t 2 x 2(cos a i si a 2+cos a+i si a)] sehigga diperoleh: ρ = Misalka k t 2 x2 = S k t + (2 2 x2 cos a 2) (3) [ k t (2 cos a 2)] 2 x S(2 cos a 2) ρ = [ [ S(2 cos a 2)] ] (3) Persamaa stabil ika da haya ika ρ < atau 49 Volume 3 No. 3 November 24

4 Keakurata Solusi pada Persamaa Difusi Megguaka Skema Crak-Nicolso + 4S(cos a ) 4S(cos a ) (4) Karea 2 cos a, maka persamaa (4) terpeuhi utuk setiap S R. Sehigga didapatka kestabila dari persamaa difusi megguaka skema Crak-Nicolso adalah stabil tapa syarat. Setelah diperoleh syarat kestabila maka selautya syarat kosistesi, utuk megetahui skema yag diguaka kosiste atau tidak, dapat dilakuka dega ekspasi deret Taylor yag disubstitusika kedalam persamaa (5). Ekspasi deret Taylor yag diguaka adalah sebagai berikut: u ± = u ± tu t + 2 x2 u tt ± 6 t3 ttt + u ± ± = u ± tu t ± xu x + 2 ( t2 u tt + 2 t xu tx + x 2 u xx ) + 6 ( t3 u tt + 3 t 2 xu ttx + 3 t x 2 u txx + x 3 u xxx ) + u ± = u ± xu x + 2 x2 u xx ± 6 x3 u xxx + (5) (6) (7) Selautya substitusika persamaa (5), (6) da (7) kedalam persamaa (5), dega sedikit maipulasi alabar maka diperoleh persamaa berikut: (u t a 2 u xx a 2 u xx + f) ( 2 u tt a x 8a x 3 u txxx ) t a 6 u xxx x + ( 6 u ttt 2a x 2 u ttxx ) t 2 a 2 u xxxx x 2 + = (8) Suku pertama pada persamaa (8) adalah persamaa difusi yag telah diselesaika. Suku kedua da seterusya adalah suku tambaha yag didapatka dari peyelesaia megguaka persamaa beda higga da disebut trucatio error. Trucatio error atau galat pemagkasa yag didapatka adalah ( 2 u tt a x 8a x 3 u txxx ) t a 6 u xxx x + ( 6 u ttt 2a x 2 u ttxx ) t 2 a 2 u xxxx x 2 + (9) Karea x da t sagat kecil maka umlah dari limit tersebut aka semaki kecil, karea berapapu ilai u tt, u txxx da u xxx ika dikalika dega ilai dari t da x aka semaki kecil. Error pemotoga yag dihasilka aka meuu ol utuk x da t. Jadi skema Crak- Nicolso kosiste terhadap persamaa difusi. 3. Simulasi da Iterpretasi Hasil Persamaa yag diguaka dalam simulasi adalah persamaa (7) yag merupaka betuk diskrit dari persamaa difusi. Dalam simulasi diguaka x =,698 da t =,222, sehigga simulasi persamaa difusi dapat dilihat pada gambar () berikut: CAUCHY ISSN:

5 Afidah Karimatul Laili peurua secara terus meerus sampai pada ruag x maksimal. Perubaha temperatur tersebut berala secara sama di t berapapau KESIMPULAN Gambar. Solusi Numerik Persamaa Difusi Megguaka Skema Crak-Nicolso Berdasarka hasil pembahasa, dapat diperoleh kesimpula atara lai:. Hasil diskritisasi skema Crak-Nicolso pada persamaa difusi stabil pada saat t da x berapapu, karea skema Crak-Nicolso. Hasil diskritisasi memeuhi syarat kosistesi karea error pemotogaya meuu ol utuk x da t. Jadi, hasil diskritisasi medekati solusi aalitik. 2. Pada simulasi da iterpretasi yag dilakuka pada solusi aalitik da solusi umerik meuukka bahwa solusi umerik merupaka solusi pedekata dari solusi aalitik. Perubaha temperatur teradi secara sama pada solusi aalitik da solusi umerik. DAFTAR PUSTAKA Gambar 2. Solusi Aalitik Persamaa Difusi Pada Gambar solusi umerik di atas perubaha temperatur berala dari x = di t berapapu berada pada temperatur u(x, t) = kemudia berala aik sampai pada temperatur tebesar yaitu pada x =,827 da t = dega temperatur u(x, t) =,4855 kemudia berala turu sampai pada x = π di t = dega temperatur u(x, t) =. Pada Gambar 2 solusi aalitik di atas perubaha temperatur berala secara sama yaitu dari x = di t berapapu berada pada temperatur u(x, t) = kemudia berala aik sampai pada temperatur tebesar yaitu pada x =,536 da t = dega temperatur u(x, t) =,977 kemudia berala turu sampai pada x = π di t = dega temperatur u(x, t) =. Perubaha temperatur pada solusi umerik da solusi aalitik bergerak secara sama. Perubaha temperatur teradi secara sigifika yaitu pada ruag x = dega temperatur yag awal ya kecil u(x, t) = kemudia perlaha megalami keaika sampai pada ruag tegah x. Kemudia temperatur u(x, t) megalami []. Durmi. (23). Studi Perbadiga Perpidaha Paas Megguaka Metode Beda Higga da Crah-Nicholso. Surabaya: tidak diterbitka. [2]. Le, T. P., Q.H., D. T., & Nguye, T. (23). A Backward Parabolic Equatio with Time- Depedet Coefficiet: Regulatio ad Error Estimates. Joural of Computatioal ad Applied Mathematics, 237, [3]. Triatmodo, B. (22). Metode Numerik Dilegkapi dega Program Komputer. Yogyakarta: Beta offset. [4]. Zauderer, E. (26). Partial Differetial Equatios of Applied Mathematics. Caada: Wiley. 5 Volume 3 No. 3 November 24

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan POSITRON, Vol. II, No. (0), Hal. -5 ISSN : 30-4970 Peetua Eergi Osilator Kuatum Aharmoik Megguaka Teori Gaggua Iklas Saubary ), Yudha Arma ), Azrul Azwar ) )Program Studi Fisika Fakultas Matematika da

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jural Matematika Muri da Terapa εpsilo Vol.8 No.2 (24) Hal. 39-45 APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama, Yui Yulida, Thresye Program Studi Matematika

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN Sedagka itegrasi ruas kaa utuk ersamaa (3b) diperoleh ds / = S... (36) Dega demikia pesamaa yag harus dipecahka adalah l 1 1 u u = S (37) Dari ersamaa (37) diperoleh persamaa utuk u u S = exp S 1exp S...

Lebih terperinci

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Vol.1 No.1 (16) Hal. 38-45 METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Siar Ismaya, Yui Yulida *, Na imah Hijriati Program Studi Matematika Fakultas MIPA

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU Rahma Dodi 1, Musraii M 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa Modul 1 Kekelirua dalam Perhituga Numerik da Selisih Terhigga Biasa D PENDAHULUAN Dr. Wahyudi, M.Pd. i dalam pemakaia praktis, peyelesaia akhir yag diigika dari solusi suatu permasalaha (soal) dalam matematika

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI I PENDAHULUAN 1 Latar belakag Model pertumbuha Solow-Swa (the Solow-Swa growth model) atau disebut juga model eoklasik (the eo-classical model) pertama kali dikembagka pada tahu 195 oleh Robert Solow da

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Model Pertumbuha Betuk ugsi pertumbuha satu jeis spesies pada umumya megguaka otasi ugsi aalitik yag diyataka dalam satu persamaa. Secara umum ugsi pertumbuha meyataka hubuga

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA Joas Lodewyk H 1, Zulkarai 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika

Lebih terperinci

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN Supriadi Putra, M,Si Laboratorium Komputasi Numerik Jurusa Matematika FMIPA Uiversitas Riau e-mail : spoetra@yahoo.co.id ABSTRAK Makalah ii

Lebih terperinci

SUATU TINJAUAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DU-FORT FRANKEL

SUATU TINJAUAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DU-FORT FRANKEL KNM XVII 11-14 Jui 2014 ITS, Surabaya SUATU TINJAUAN NUMERIK PERSAMAAN ADVEKSI DIFUSI 2-D TRANSFER POLUTAN DENGAN MENGGUNAKAN METODE BEDA HINGGA DU-FORT FRANKEL JEFFRY KUSUMA 1, KHAERUDDIN 2, SYAMSUDDIN

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

C (z m) = C + C (z m) + C (z m) +...

C (z m) = C + C (z m) + C (z m) +... 4.. DERET PANGKAT Deret pagkat dari (x-m) merupaka deret tak higga yag betuk umumya adalah : i= i i C (z m) = C + C (z m) + C (z m) +... ( 4- ) C, C,... = kostata disebut koefisie deret m = kostata disebut

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun 47 BAB IV HASIL DAN PEMBAHASAN Sebagai hasil peelitia dalam pembuata modul Racag Bagu Terapi Ifra Merah Berbasis ATMega8 dilakuka 30 kali pegukura da perbadiga yaitu pegukura timer/pewaktu da di badigka

Lebih terperinci

BAB IV PEMECAHAN MASALAH

BAB IV PEMECAHAN MASALAH BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA Fitriai Agustia, Math, UPI 1 Fiacial Derivative Opsi Mafaat Opsi Opsi Eropa Peetua Harga Opsi Kekovergea Model Biomial Fitriai Agustia, Math,

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

PENDUGA RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KUARTIL VARIABEL BANTU PADA PENGAMBILAN SAMPEL ACAK SEDERHANA DAN PENGATURAN PERINGKAT MEDIAN

PENDUGA RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KUARTIL VARIABEL BANTU PADA PENGAMBILAN SAMPEL ACAK SEDERHANA DAN PENGATURAN PERINGKAT MEDIAN PEDUGA RASIO UTUK RATA-RATA POPULASI MEGGUAKA KUARTIL VARIABEL BATU PADA PEGAMBILA SAMPEL ACAK SEDERHAA DA PEGATURA PERIGKAT MEDIA ur Khasaah, Etik Zukhroah, da Dewi Reto Sari S. Prodi Matematika Fakultas

Lebih terperinci

KIMIA. Sesi. Sifat Koligatif (Bagian II) A. PENURUNAN TEKANAN UAP ( P)

KIMIA. Sesi. Sifat Koligatif (Bagian II) A. PENURUNAN TEKANAN UAP ( P) KIMIA KELAS XII IA - KURIKULUM GABUNGAN 02 Sesi NGAN Sifat Koligatif (Bagia II) Iteraksi atara pelarut da zat megakibatka perubaha fisik pada kompoekompoe peyusu laruta. Salah satu sifat yag diakibatka

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka Itegral etu Jika fugsi kotiu yag didefiisika utuk, kita bagi selag mejadi selag bagia berlebar sama Misalka berupa titik ujug selag bagia ii da pilih titik sampel di dalam selag bagia ii, sehigga terletak

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

BAB III PENGGUNAAN METODE EMPIRICAL BEST LINEAR UNBIASED PREDICTION (EBLUP) PADA GENERAL LINEAR MIXED MODEL

BAB III PENGGUNAAN METODE EMPIRICAL BEST LINEAR UNBIASED PREDICTION (EBLUP) PADA GENERAL LINEAR MIXED MODEL BAB III PENGGUNAAN MEODE EMPIRICAL BES LINEAR UNBIASED PREDICION (EBLUP PADA GENERAL LINEAR MIXED MODEL Pada Bab III ii aka dibahas megeai taksira parameter pada Geeral Liear Mixed Model berdasarka asumsi

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur 0 III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai Mei 03. B. Populasi da Sampel Populasi dalam peelitia

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 30 III. METODE PENELITIAN A. Metode Dasar Peelitia Metode yag diguaka dalam peelitia adalah metode deskriptif, yaitu peelitia yag didasarka pada pemecaha masalah-masalah aktual yag ada pada masa sekarag.

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

Galat dan Perambatannya

Galat dan Perambatannya Modul 1 Galat da Perambataya Prof. Dr. Bambag Soedijoo P PENDHULUN ada Modul 1 ii dibahas masalah galat atau derajat kesalaha da perambataya, dega demikia para peggua modul ii diharapka telah memahami

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Modifikasi Metode Cauchy Tanpa Turunan Kedua dengan Orde Konvergensi Empat

Modifikasi Metode Cauchy Tanpa Turunan Kedua dengan Orde Konvergensi Empat Jural Sais Matematika da Statistika, Vol., No., Juli 07 ISSN 69-90 prit/issn 07-099 olie Modifikasi Metode Cauchy Tapa Turua Kedua dega Orde Kovergesi Empat Alamsyah, Wartoo, Jurusa Matematika, Fakultas

Lebih terperinci

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD)

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD) Prosidig Statistika ISSN: 2460-6456 Pegedalia Proses Megguaka Diagram Kedali Media Absolute Deviatio () 1 Haida Lestari, 2 Suliadi, 3 Lisur Wachidah 1,2,3 Prodi Statistika, Fakultas Matematika da Ilmu

Lebih terperinci

BAB II TEORI MOTOR LANGKAH

BAB II TEORI MOTOR LANGKAH BAB II TEORI MOTOR LANGKAH II. Dasar-Dasar Motor Lagkah Motor lagkah adalah peralata elektromagetik yag megubah pulsa digital mejadi perputara mekais. Rotor pada motor lagkah berputar dega perubaha yag

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling Jural Gradie Vol No Juli 5 : -5 Perbadiga Power of Test dari Uji Normalitas Metode Bayesia, Uji Shapiro-Wilk, Uji Cramer-vo Mises, da Uji Aderso-Darlig Dyah Setyo Rii, Fachri Faisal Jurusa Matematika,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

PENGARUH JARI-JARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN

PENGARUH JARI-JARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN PENGARUH JARIJARI LINGKARAN SYARAT BATAS PADA PENDEKATAN POLAR UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI KARTESIAN Aji Wira Tama, M. Arief Bustomi, M.Si. Jurusa Fisika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

simulasi selama 4,5 jam. Selama simulasi dijalankan, animasi akan muncul pada dijalankan, ProModel akan menyajikan hasil laporan statistik mengenai

simulasi selama 4,5 jam. Selama simulasi dijalankan, animasi akan muncul pada dijalankan, ProModel akan menyajikan hasil laporan statistik mengenai 37 Gambar 4-3. Layout Model Awal Sistem Pelayaa Kedai Jamoer F. Aalisis Model Awal Model awal yag telah disusu kemudia disimulasika dega waktu simulasi selama 4,5 jam. Selama simulasi dijalaka, aimasi

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

SOAL PRAPEMBELAJARAN MODEL PENILAIAN FORMATIF BERBANTUAN WEB-BASED UNTUK MENINGKATKAN PEMAHAMAN KONSEP FISIKA SISWA

SOAL PRAPEMBELAJARAN MODEL PENILAIAN FORMATIF BERBANTUAN WEB-BASED UNTUK MENINGKATKAN PEMAHAMAN KONSEP FISIKA SISWA Lampira 1. Prapembelajara SOAL PRAPEMBELAJARAN MODEL PENILAIAN FORMATIF BERBANTUAN WEB-BASED UNTUK MENINGKATKAN PEMAHAMAN KONSEP FISIKA SISWA Satua Pedidika : SMK Mata Pelajara : Fisika Kelas/ Semester

Lebih terperinci

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA. Mahasiswa Program S1 Matematika 2

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA. Mahasiswa Program S1 Matematika 2 METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA Roki Nuari *, Aziskha, Edag Lily Mahasiswa Program S Maemaika Dose Jurusa Maemaika Fakulas

Lebih terperinci

PENDEKATAN KARTESIAN UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI CAMPURAN KARTESIAN - POLAR

PENDEKATAN KARTESIAN UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI CAMPURAN KARTESIAN - POLAR PENDEKATAN KARTESIAN UNTUK SISTEM POTENSIAL LISTRIK GEOMETRI CAMPURAN KARTESIAN - POLAR Fitriaa R. H da M. Arief Bustomi Jurusa Fisika-FMIPA, Istitut Tekologi Sepuluh Nopember Kampus ITS Sukolilo, Surabaya-6

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Alat terapi ini menggunakan heater kering berjenis fibric yang elastis dan

BAB IV HASIL DAN PEMBAHASAN. Alat terapi ini menggunakan heater kering berjenis fibric yang elastis dan BAB IV HASIL DAN PEMBAHASAN 4.1. Spesifikasi Alat Alat terapi ii megguaka heater kerig berjeis fibric yag elastis da di bugkus dega busa, pasir kuarsa, da kai peutup utuk memberi isolator terhadap kulit

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

BAB V METODOLOGI PENELITIAN

BAB V METODOLOGI PENELITIAN BAB V METODOLOGI PEELITIA 5.1 Racaga Peelitia Peelitia ii merupaka peelitia kualitatif dega metode wawacara medalam (i depth iterview) utuk memperoleh gambara ketidaklegkapa pegisia berkas rekam medis

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES) rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 2012) ISSN: X D-31

JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 2012) ISSN: X D-31 JURNAL SAINS DAN SENI ITS Vol., No., (Sept. 202) ISSN: 230-928X D-3 Optimasi Multirespo Metode Taguchi dega Pedekata Quality Loss Fuctio (Study Kasus Proses Pembakara CO da Temperatur Gas Buag Pada Boiler

Lebih terperinci

MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL

MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL MENENTUKAN PELUANG RUIN DENGAN METODE KOMBINASI EKSPONENSIAL Karmila 1*, Hasriati 2, Haposa Sirait 2 1 Mahasiswa Program S1 Matematika 2 Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam

Lebih terperinci

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh BAB III METODOLOGI 3.1 Tempat da Waktu Peelitia Pegambila data peelitia dilakuka di areal revegetasi laha pasca tambag Blok Q 3 East elevasi 60 Site Lati PT Berau Coal Kalimata Timur. Kegiata ii dilakuka

Lebih terperinci