Volume 1, Nomor 2, Desember 2007

Ukuran: px
Mulai penontonan dengan halaman:

Download "Volume 1, Nomor 2, Desember 2007"

Transkripsi

1 Volue Noor Deseer 7

2 Brekeg Deseer 7. hl.5-3 Vol.. No. SIFAT-SIFAT INTEGRA RIEANN-STIETJES (Propertes O Re-Steltjes Itegrl FRANCIS Y RAWANG HARIANS BATKNDE St Jurus tetk FIPANPATTI Clo St Jurus tetk FIPANPATTI Jl. Ir.. Putuhe Kpus ptt Pok-Ao E~l: oct_8@yhoo.co ABSTRACT I :[ R s lted d α :[ R ootoe crese [ s Re-Steltjes tegrl le to α o RS α I J. Wth J I [ sply wrtte y [ ( x dα ( x s clled Re Steltjes lower tegrl to α d ( x dα ( x s clled Re Steltjes upper tegrl to α. The I J ( ( s clled Re Steltjes upper tegrl to x dα x α o [. g g s Re Steltjes tegrlle d k œ the + g k d g s lso Re Steltjes tegrlle. But d α hve uted dscotue pot the s ot Re Steltjes tegrlle o α Keywords: Re-Steltjes Re-Steltjes Itegrl PENDAHAN Slh stu kosep dsr dl tetk lss dlh tegrl tu tturu tu tdervt. Ide tegrl seery telh ucul pd z Archedes. Tetp jk dktk Teor tegrl k pert kl dteuk pd pertegh d ke-9. Teor tegrl klsk pert kl dperkelk oleh Cuchy d Re. Pd Thu 584 George F. Berrd Re eerk syrt-syrt perlu d cukup dr seuh ugs terts sehgg ejd tertegrlk. St seuh ugs dek dkel seg ugs yg tertegrl Re d seg esr hssw yg egl klkulus k epeljr etuk tegrl Re. Re edos ksus-ksus pegtegrl sp 894 ketk seorg erkegs Beld er Thos Joes Steltjes egegk Itegrl Re-Steltjes. T. J. Steltjes egegk tpe tegrl ketk eyeldk seuh slh khusus yg d okusk pd ss lok yg terdstrus ouor (tdk serg. slh khusus dseut pegeg dr perlus pert Itegrl Re. Deg dek dktk hw Itegrl Re Steltjes erupk geerlss dr tegrl Re. N Itegrl Re Steltjes dl dr peeuy ytu Thos Joes Steltjes yg egegk tegrl Re. Pd uuy teor yg serg djrk dlh Itegrl Re pdhl tegrl Re hylh erupk etuk khusus dr tegrl Re Steltjes. TINJAAN PSTAKA Klkulus erhsl dteuk sektr thu 67 d tokoh-tokoh tetk yg erper dl peeu Klkulus dlh Newto d ez (Gordo R A 994. Kedu tokoh erhsl egegk teore udetl ytu ege tdervt. Keud A. Cuchy ( ul egegk teor terseut d erhsl eelt tetg tegrl dr ugs kotu (J P. K. d Gupt V. P 986. Pd thu 584 Behrd Re ul eperhlus des yg dguk oleh Cuchy d Re pu egdk peelt tetg tegrl ugs dskotu (Royde H 989. Dr peelt terseut Re erhsl eeuk sutu etode khusus dr tegrl yg sgt sederh utuk ddesk sehgg etode tegrl tu dseut Itegrl Re (Soepr 6. Keud pd thu 875 Droux erhsl eodks Itegrl Re deg edesk tegrl ts d tegrl wh sehgg terdes sutu tegrl ru yg ekuvle deg Itegrl Re. Kosep ulh Re d julh Droux pd dsry dlh s (uslch 5. eskpu d eerp jes teor tegrl tetp Relh yg yk eer sprs peetuk tegrl l d sudh yk peky d dg tetk upu d dg ly. Seetr tegrl Re-Steltjes yg erupk perlus tegrl Re pert kl dperkelk oleh Thos Joes Steltjes. St-st yg erlku pd tegrl Re Steltjes k erlku jug pd Itegrl Re setelh dlkuk pegkhusus.

3 6 RAWANG SIFAT-SIFAT Pered esr tr Itegrl Re d Itegrl Re Steltjes sedr terletk pd etuk ugs turuy. slk pd Itegrl Re Steltjes etuk uu ugs ytu Re elk etuk uu ( x dα( x k Itegrl sehgg terlht jels hw Itegrl Re Steltjes k s deg Itegrl Re jk α x ( x ( x Des (Kekotu ugs d ttk Fugs dktk kotu d ttk jk d hy jk ketg syrt erkut terpeuh :. ( d. l x d x ( 3. l ( x ( x Jk slh stu syrt dr ketg syrt d ts tdk terpeuh k ugs dktk tdk kotu d ttk Des (Kekotu ugs d pd sutu selg Sutu ugs dktk kotu pd sutu selg teruk jk d hy jk ugs terseut kotu d setp ttk pd selg teruk terseut. Des 3 (Fugs kotu d selg tertutup Sutu ugs yg derh sly eut selg tertutup [ dktk kotu pd [ jk d hy jk ugs terseut kotu pd selg teruk ( d jug kotu k d d kotu kr d Des 4 (ugs kotu serg Fugs : R R dkt kotu serg D (uorlly cotous pd hpu S D jk utuk setp lg > terdpt lg δ > yg tk ergtug pd ttk x S sehgg utuk setp y N δ ( x S (utuk setp x y D d x y δ erkt Teore (. Jk d c k c c (. Jk d c k c c Bukt : (. Jk errt P {. Jk c k c P { Sehgg c ( P { tu c c P { yg errt c c. { (. Jk errt P. Jk c k c k c P { Sehgg ( c( P { tu c c P { yg errt c c Supreu d Iu Berkut k derk pegert dsr tetg ts ts d ts wh sert supreu (ts ts terkecl d u (ts wh teresr. sl serg A R dktk terts ke ts jk terdpt sutu lg N R sedek sehgg x N utuk setp x A seljuty N dseut ts ts utuk A d A R dktk terts ke wh jk terdpt sutu lg R sedek sehgg x utuk setp x A seljuty dseut ts wh utuk A. Berdsrk pegert terseut k derk des erkut. Teore Derk S dlh hpu terts d R d S φ deg S S deg dek erlku : S sup S sup S S Bukt : S dlh hpu terts deg dek S elk u d supreu. Kre S S k S jug terts d elk u sert supreu slk dlh u utuk S k : (. ts wh utuk S. (. Tdk d lg leh kecl dr yg erupk ts wh utuk S. slk l dlh u S k (. l ts wh utuk S. (. Tdk d lg leh kecl dr l yg erupk ts wh utuk S. Kre S S k l tu S S..( slk dlh supreu utuk S k : (. ts ts utuk S. (. Tdk d lg leh esr dr yg erupk ts ts utuk S. slk dlh supreu S k (. ts ts utuk S. (. Tdk d lg leh esr dr yg erupk ts ts utuk S. Kre S S k tu sups sups..( Dr ( d ( dperoleh S S sup S sup S Itegrl Re Pd g k djrk secr sgkt ege Itegrl Re kre tegrl Resteltjes yg k dhs erupk ked uu

4 Brekeg Vol. 7 SIFAT-SIFAT 7 dr tegrl Re. Deg dek sgt petg utuk dkj kel tetg prts d tegrl Re utuk edukug d eperjels pehs seljuty. Jk R deg k terdpt lg rl x sehgg x. kre x tetu terdpt lg rl sehgg eeuh x x. proses jk dterusk k dperoleh lg-lg x x... sehgg x x x... x Jd utuk setp [ dpt detuk hpu D x x... x deg { x x... x x HASI DAN PEBAHASAN. Itegrl Re Steltjes Derk ugs α : [ R k ooto pd d terts pd [. tuk setp prts { x x x... x pd [ [ P ddesk: α α( x α( x 3... Derk ugs : [ R keud ddesk: { ( x : x [ d { ( x : x [ { ( x : x [ x x d { ( x : x [ x x Perlu dperhtk hw jk terts ke wh pd [ k d d dek pul jk ugs terts ke ts pd [ k d d. Seljuty detuk julh-julh seg erkut. S ( P α α ( P α α ( P α ( x α [ x x deg x utuk setp 3... ots ( P α dseut julh Re Steltjes wh ( Pα dseut julh Re Steltjes ts d S ( Pα dseut julh Re Steltjes ugs pd [ terhdp prts P. Kre sellu ( erlku : x utuk setp 3... dperoleh teore seg erkut : Teore Derk ugs :[ R d α :[ R k ooto pd [. Jk P prts pd [ k erlku ( P α S( P α ( P α Khususy jk terts pd [ ytu ( x utuk setp x [ k erlku ( α ( α ( ( P α S( P α P α α α Bukt : ( ( ( ( slk P { x x x... x prts pd [ d { ( x : x [ x x d { ( x : x [ x x utuk setp 3... sup k erlku ( x Sehgg dpt dtuls ( x + ( x ( x tu ( x tp rus deg > Dperoleh α α d jk dklk ( x α α α pd yg s rty deg ( P α S( P α ( p α Deg eperhtk pertdks x k dperoleh α ( α ( x α α α (( α ( x α ( x + ( α ( x α ( x ( α ( x α ( x ( x (( α ( x α ( x + ( α ( x α ( x ( α ( x α ( x S α α ( α ( x α ( x α ( x α α α ( x α ( x α ( ( α ( α ( ( P α ( P α ( P α ( α ( α (

5 8 RAWANG SIFAT-SIFAT Teore 3 Derk ugs :[ R d α :[ R k ooto pd [. Jk P d P sg-sg prts pd [ d P P k ( P α ( P α ( P α ( α Bukt : P Detuk julh Re Steltjes ts d julh Re Steltjes wh utuk tp prts P d P pd [ deg P P α ( P α α ( P α ( P α α ( P α α D d { ( x : x [ x x P { ( x : x [ x x P { ( x : x [ x x P ( x : x [ x x P { d Sepert dkethu hw P P k prts P k terut dl sehgg tu P α α α α ( P α ( P α ( P α ( α P Des 5 Jk ugs :[ R terts d α :[ R k ooto pd [ k:. Bts ts terkecl (t ( α tu sup { P α : P π dtuls sgkt ( [ deg I ( x dα( x dseut tegrl wh Re Steltjes ugs terhdp α α tu P α : P π dtuls sgkt. Bts wh teresr (t ( { ( [ deg J ( x dα( x dseut tegrl ts Re Steltjes ugs terhdp α. Syrt Fugs Tertegrl Re Stetjes Des 6 Jk ugs :[ R terts d α :[ R k ooto pd [ dktk tertegrl Re-Steltjes terhdp α pd [ dtuls sgkt deg RS α jk I J [ I J ( x dα ( x Seljuty l dseut Itegrl Re Steltjes ugs terhdp α pd [ cukup dtuls RS [ α. Jk dl α[ x x k Itegrl Re erupk kejd khusus dr Itegrl Re Steltjes. St-st Dsr Itegrl Re Steltjes Teore 4 (St er Jk d g RS( α pd [ d k lg rl k k RS( α d + g RS( α pd [ d erlku (. k dα k dα (. ( + g dα( x dα + g dα Bukt : Derk serg > g RS pd [ k terdpt prts P d pd sehgg ( P ( P α. Kre ( α P [ α d ( k + ( g P α ( g P α P P Al P k P erupk prts peghlus sehgg erlku P pd [ ( P α ( P α ( P α ( α P ( P α ( P α ( P α ( α P Oleh kre tu dperoleh k P k P k P k P (. ( ( ( ( k ( ( P ( P k ( k + Terukt hw k RS( α pd [ erlku d

6 Brekeg Vol. 7 SIFAT-SIFAT 9 (. k dα k sup k k dα k k { ( k P α : [ { ( P α : [ dα jk k > { ( k P α : [ { ( P α : [ dα jk k ( + g P α ( + g P α ( P α + ( g P α ( ( P α + ( g P α ( P α ( P α + ( g P α ( g P α ( P α ( P α + ( g P α ( g P α s ( k + + Terukt hw g RS ( α erlku + pd [ d ( + g dα { ( + g P α : [ + sup { ( P α : [ { ( g P α : [ dα + g dα 4. Peghtug Itegrl Re-Steltjes Teore 5 (Peghtug Itegrl Re-Steltjes Dsusk α k ooto pd [ d α R [. d : [ R terts. Fugs RS( α pd [ jk d hy jk α R Bukt : [ Dkethu α R [ k utuk setp > terdpt prts P { x x x... x [ d erkt ( α P ( α P pd eurut teore l rt-rt k dpt dplh t [ x x sehgg α x α x α t ( ( ( x { α ( x : x [ x x { ( x : x [ x x x x erlku α slk α t [ s d k utuk setp ( s α d ( t Sehgg dperoleh α ( s α ( t ( α Dl sup{ ( x : x [ ( α P ( α P d kre k dperoleh ( s ( α s α ( t ( P α ( α P ( s α ( s α ( s ( s ( α α ( s ( s ( α ( t α ( s ( α ( s α ( t Sehgg ( P α ( α p + D erkt dα α + D erlku utuk setp > k dα α Dek jug erlku dα α + Kre erlku utuk setp > k dα α dα α RS( α pd [ α R[ Dr ( d ( k ytu jk d hy jk Teore 6 (Itegrl Prsl Re-Stltjes Derk F G : [ R yg erturut-turut epuy turu pd [. Jk F R[ d G g R[ k:

7 3 RAWANG SIFAT-SIFAT ( x g( x F( G( F( G( ( x g( x Bukt : Ddesk ugs ( x F( x G( x kre F d G epuy turu k :.. H d G kotu pd [ sehgg F G R[ d epuy turu pd deg H FG + F G Fg + G [ eurut teore udetl klkulus erkt ( F( x g( x + ( x G( x H ( H ( Berkt F ( G( F( G( ( x g( x F( G( F( G( ( x G( x F Huthe ethold. (986 Klkulus d Ilu kur Altk eds kel jld. Erlgg Jkrt. J P. K. d Gupt V. P. (986 eesgue esure d Itegrto. Wley Ester ted New Delh. uslch. (5 Alss Rel II eg Pegeg PeddkSurkrt. Purcell Edw J Vrerg Rgdo. (3. Klkulus eds kedelp jld. Erlgg Jkrt. Royde H. (989 F Rel Alyss Thrd Edto cll Pulshg Copy New York. Soepr D. (6 Pegtr Alss Rel versts Gjh d Yogykrt. Soepr D. (6 H Pegtr ( x F( x Alss G( x Astrk versts Gjh d Yogykrt. Soetr R. (988 Alss Rel I Kru Jkrt. Deg dek teore terukt. KESIPAN Berdsrk pehs k kespul dl peelt dlh:. Itegrl Re Steltjes dlh perlus dr tegrl Re d Itegrl Re erupk pegkhusus dr tegrl Re Steltjes.. Fugs tertegrl Re Steltjes pd α jk :[ R d α : [ R k ooto pd [ d ugs kotu. 3. Jk ugs d g tertegrl Re Steltjes d k R k ugs + g k d g tertegrl Re Steltjes. 4. Jk ugs d α elk ttk dskotu erserkt k tdk tertegrl Re Steltjes terhdp α DAFTAR PSTAKA Brtle R. G. (994 Itroducto to Rel Alyss Joh Wley & Sos SA Gordo R A. (994 The Itegrls O eesgue Dejoy Perro d Hestock. Grdute Studes I thetcs 4 Volue 4. Aerc thetcl SocetySA. Huthe E. (989 Alss Rel II Peert Kruk versts Teruk Jkrt.

INTEGRAL DELTA DAN SIFAT-SIFATNYA. Delta Integral and Properties of Delta Integral

INTEGRAL DELTA DAN SIFAT-SIFATNYA. Delta Integral and Properties of Delta Integral Jurl Brekeg Vol. 7 No. Hl. 3 8 (03) INTEGRAL DELTA DAN SIFAT-SIFATNYA Delt Itegrl d Propertes of Delt Itegrl MOZART WINSTON TALAKUA, MARLON STIVO NOYA VAN DELSEN Stf Jurus Mtemtk, FMIPA, Uptt Alum Jurus

Lebih terperinci

x 1 M = x 1 m 1 + x 2 m x n m n = x i

x 1 M = x 1 m 1 + x 2 m x n m n = x i Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl

Lebih terperinci

A. Pusat Massa Suatu Batang

A. Pusat Massa Suatu Batang Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel

Lebih terperinci

BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN. Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon

BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN. Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon Jurl Brekeg Vol. 6 No. 1 Hl. 1 18 (2012) BEBERAA TEOREMA KEKONVERGENAN ADA INTEGRAL RIEMANN VENN YAN ISHAK ILWARU 1, H. J. WATTIMANELA 2, M. W. TALAKUA 1,2, St Jurus Mtemtik FMIA UNATTI Jl. Ir. M. utuhe,

Lebih terperinci

BAB IV INTEGRAL RIEMANN

BAB IV INTEGRAL RIEMANN Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x

Lebih terperinci

SIFAT-SIFAT DASAR INTEGRAL HENSTOCK (Basic Properties of Henstock Integral)

SIFAT-SIFAT DASAR INTEGRAL HENSTOCK (Basic Properties of Henstock Integral) Jurl Breeg Vol 6 No Hl 7 5 (0) SIFAT-SIFAT DASAR INTEGRAL HENSTOCK (Bsc Propertes of Hestoc Itegrl) LEXY JANZEN SINAY MOZART WINSTON TALAKUA Stf Jurus Mtemt FMIPA UNPATTI Jl Ir M Putuhe Kmpus Uptt Po-Amo

Lebih terperinci

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1) CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6 home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk

Lebih terperinci

DEFINISI INTEGRAL. ' untuk

DEFINISI INTEGRAL. ' untuk DEINISI INTEGRAL Dlm mtemtk d eerp stl sepert des, teorem, lemm Istl petg kre meujuk keeksstes Des dl peryt yg erl er kre dsepkt, d tdk perlu duktk Teorem dl peryt yg dpt duktk keery Lemm dl teorem kecl,

Lebih terperinci

BAB VI ANALISIS REGRESI

BAB VI ANALISIS REGRESI BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet

Lebih terperinci

Jl. HR. Soebrantas No. 155 Simpang Baru, Panam, Pekanbaru,

Jl. HR. Soebrantas No. 155 Simpang Baru, Panam, Pekanbaru, Jurl Ss Mtetk d Sttstk, Vol. No. Jul 6 ISSN 6-5 Metode Guss-Sedel d Geerlss Guss-Sedel utuk Meyelesk Sste Pers Ler Kopleks Cotoh Ksus: SPL Kopleks deg pers d vrel tr ry, Le Tr Lestr, Jurus Mtetk, kults

Lebih terperinci

TEOREMA DERET PANGKAT

TEOREMA DERET PANGKAT TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif Vol. 3 No. 80-85 Ju 007 Bts Nl Ege Mksl D Mtks Tk Negtf A. Kes Jy Abstk Ide ut skps dlh utuk edptk etode dl eetuk bts d l ege ksl d tks tk egtf deg bedsk bts Fobeus. Ytu R d dlh ulh bs tu kolo u d R dlh

Lebih terperinci

1 yang akan menghasilkan

1 yang akan menghasilkan Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser

Lebih terperinci

1. Aturan Pangkat 3. Logartima

1. Aturan Pangkat 3. Logartima KL UN Mtetk MA IPA 9/ No. KL Ruus. Meetuk egs pert g dperoleh dr perk kespul.. p q. p q. p q ~ (p q) = ~p ~q ~ (eu/etp p) = Ad/Beerp ~p p. ~q q r ~ (p q) = ~p ~q ~ (Ad/Beerp p) = eu/etp ~p q ~p p r p q

Lebih terperinci

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

BAB V INTEGRAL DARBOUX

BAB V INTEGRAL DARBOUX Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower

Lebih terperinci

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x

Lebih terperinci

Bab 4 ANALISIS REGRESI dan INTERPOLASI

Bab 4 ANALISIS REGRESI dan INTERPOLASI Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp

Lebih terperinci

( X ) 2 ANALISIS REGRESI

( X ) 2 ANALISIS REGRESI ANALII REGREI A. PENGERTIAN REGREI ecr umum d du mcm huug tr du vrel tu leh, tu etuk huug d keert huug. Utuk megethu etuk huug dguk lss regres. Utuk keert huug dpt dkethu deg lss korels. Alss regres dperguk

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupk pegembg dr ANAVA 1 Jl Jk pd ANAVA 1 l 1 Fktor Jk pd ANAVA l Fktor Model Ler Asums: Model efek Tetp! 1,..., 1,..., Stu fktor g dtelt Av 1 l k k 1,,..., 1,,..., b k 1,,..., Du fktor

Lebih terperinci

MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK SKS TEKNIK ELEKTRO UDINUS Integrl Fungs Kompleks 4 INTEGRAL FUNGSI KOMPLEKS Sepert hlny dlm fungs rl, dlm fungs kompleks jug dkenl stlh ntegrl fungs kompleks sert sft-sftny Sft kenltkn

Lebih terperinci

Metode Fuzzy ASM pada Masalah Transportasi Fuzzy Seimbang

Metode Fuzzy ASM pada Masalah Transportasi Fuzzy Seimbang EMINAR MATEMATIKA AN PENIIKAN MATEMATIKA UNY 7 T - 6 Metode Fuzzy AM pd Mslh Trsports Fuzzy eg olkh eprtee Mtetk Fkults s d Mtetk Uversts poegoro ol_erf@yhooo Astrk Mslh trsports fuzzy erupk geerlss dr

Lebih terperinci

BAB III LIMIT FUNGSI DAN KEKONTINUAN

BAB III LIMIT FUNGSI DAN KEKONTINUAN BAB III LIMIT FUNGSI DAN KEKONTINUAN 3. Pedhulu Seelu hs liit fugsi di sutu titik terleih dhulu kit k egti perilku sutu fugsi f il peuh edekti sutu ilg ril tertetu. Misl terdpt sutu fugsi f() = + 4. Utuk

Lebih terperinci

HUBUNGAN DERET BERTINGKAT BERDASAR BILANGAN EULERIAN DENGAN OPERATOR BEDA

HUBUNGAN DERET BERTINGKAT BERDASAR BILANGAN EULERIAN DENGAN OPERATOR BEDA HUBUNAN DERET BERTINKAT BERDAAR BILANAN EULERIAN DENAN OPERATOR BEDA Aleder A uw Jurus Mtetk, Fkults s d Tekolog, Uversts B Nustr Jl. K.H. yhd No. 9, Plerh, Jkrt Brt 48 gug@bus.edu ABTRACT Cscde seres

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

INTEGRAL-Z. Siti Khabibah, Farikhin, Bayu Surarso Jurusan Matematika FMIPA UNDIP Semarang Jl. Prof. H. Soedarto, SH, Tembalang, Semarang, 50275

INTEGRAL-Z. Siti Khabibah, Farikhin, Bayu Surarso Jurusan Matematika FMIPA UNDIP Semarang Jl. Prof. H. Soedarto, SH, Tembalang, Semarang, 50275 INTEGRAL-Z Siti Khih, Frikhi, By Srrso Jrs Mtetik FMIPA UNDIP Serg Jl. Prof. H. Soedrto, SH, Telg, Serg, 5275 Astrk: Kosep egei itegrl-z terkit deg keerd deritif kt. St fgsi F yg terderitif kt pd [,] diotsik

Lebih terperinci

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG GEOMETRI EUCLID EG(, p ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG Bmg Irwto d Yu Hdyt Jurus Mtemtk FMIPA UNDIP Jl. Prof. H. Soedrto, S.H, Semrg 5075 Astrt. A Bled Iomplete Blok (BIB) desg

Lebih terperinci

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler

Lebih terperinci

DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA

DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA Muslih 1), Sutrim 2) d Supriydi Wiowo 3) 1,2,3) Jurus Mtemtik FMIPA UNS, muslih_mus@yhoo.om, zutrim@yhoo.om, supriydi_w@yhoo.o.id Astrk

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK Pegtr Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. Msly dlm termodmk, model Deye utuk megtug kpsts ps dr ed pdt.

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

Pendahuluan Pengantar Metode Simpleks. Fitriani Agustina, Math, UPI

Pendahuluan Pengantar Metode Simpleks. Fitriani Agustina, Math, UPI Pedhulu Pegtr Metode Sipleks Fitrii Agusti, Mth, METODE SIMPLEKS (PRIMAL) Mslh Progr Lier Mslh Progr Lier dl Betuk Mtriks Ketetu dl Betuk Stdr Mslh PL Betuk Stdr Mslh Progr Lier Betuk Stdr Pets Lier Betuk

Lebih terperinci

Bentuk Umum Perluasan Teorema Pythagoras

Bentuk Umum Perluasan Teorema Pythagoras Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem

Lebih terperinci

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES 3.1 Itegrl Riem-Stieltjes dri Fugsi Berili Rel Pd seelumy telh dihs megei eerp kosep dsr, dim kosep-kosep ii merupk slh stu teori pedukug yg tiy k erper segi

Lebih terperinci

PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real

PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real Resume PENGANTAR ANALISIS REAL Utuk Memeuhi Tugs Mt Kulih Pegtr Alisi Rel Disusu Oleh: M. ADIB JAUHARI D. P (0860009) MUHTAR SAFI I (086003) BOWO KRISTANTO (086004) ANA MARDIATUS S (086005) OKTA ARFIYANTA

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Ltr Belg Istlh Pemrogrm Geometr (PG) dperel oleh Duff, Peterso, d Zeer pd thu 967 Istlh dmbl dr mslh-mslh geometr g dpt dformuls sebg PG Pemrogrm Geometr dlh sutu tpe mslh optmlss mtemt g

Lebih terperinci

EKUIVALENSI INTEGRAL RIEMANN DAN INTEGRAL DARBOUX SKRIPSI. Oleh: DZAWIN NUHA ALHIDAYAH NIM

EKUIVALENSI INTEGRAL RIEMANN DAN INTEGRAL DARBOUX SKRIPSI. Oleh: DZAWIN NUHA ALHIDAYAH NIM EKIVAENSI INTEGRA RIEMANN DAN INTEGRA DARBOX SKRISI Oleh: DZAWIN NHA AHIDAYAH NIM. 055007 JRSAN MATEMATIKA FAKTAS SAINS DAN TEKNOOGI NIVERSITAS ISAM NEGERI MAANA MAIK IBRAHIM MAANG 00 EKIVAENSI INTEGRA

Lebih terperinci

Pertemuan 7 Persamaan Linier

Pertemuan 7 Persamaan Linier Perteu 7 Pers Liier Ojektif:. Prktik ehi teori dsr Pers Liier. Prktik dpt eyelesik Pers Liier. Prktik dpt eut progr erkisr tetg Pers Liier Pers Liier P7. Teori Pers lier dlh seuh pers ljr, yg tip sukuy

Lebih terperinci

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHues (Volue 3 No 3) 04 INTEGRAL H Hili Nur Ardi Jurus Mtetik, Fkults Mtetik d Ilu Pegethu Al, Uiversits Negeri Sury e-il: sterrdi@yhoocoid Muhrwti Jurus Mtetik, Fkults Mtetik d Ilu Pegethu Al, Uiversits

Lebih terperinci

HUBUNGAN DERET BERTINGKAT BERDASARKAN BILANGAN EULERIAN DENGAN OPERATOR BEDA

HUBUNGAN DERET BERTINGKAT BERDASARKAN BILANGAN EULERIAN DENGAN OPERATOR BEDA HUBUNGAN DERET BERTINGKAT BERDAARKAN BILANGAN EULERIAN DENGAN OPERATOR BEDA Aleder A.. Guw Jurus Mtetk d ttstk, Fkults s d Tekolog, Bus Uversty Jl. KH. yhd No. 9, Plerh, Jkrt Brt 48. gug@bus.edu ABTRACT

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

BAB V ANALISIS REGRESI

BAB V ANALISIS REGRESI BAB V ANALISIS REGRESI Setelh mempeljr mhssw dhrpk dpt : Meghtug prmeter regres Melkuk estms d uj prmeter regres 3 Meemuk model regres g tept Dlm kehdup serg dtemuk d sekelompok peuh g dtr terdpt huug,

Lebih terperinci

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel Sitek Vol 5. No 3 Thu 1 Peyelesi Alitik d Peodel Fugsi Bessel Lily Yhy Jurus Mtetik Fkults MIPA Uiersits Negeri Gorotlo bstrk Dl klh ii k dilkuk peyelesi litik d peodel pers diferesil Bessel sert eujukk

Lebih terperinci

ANALISIS KINERJA METODE ZERO SUFFIX DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER

ANALISIS KINERJA METODE ZERO SUFFIX DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER ANALISIS KINERJA METODE ZERO SUFFIX DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER Tof Adtyw, Spt Whyugsh 2 Uversts Neger Mlg E l : tofdtyw@yhoo.co.d ABSTRAK: Slh stu slh dl kehdup sehr hr yg

Lebih terperinci

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA) BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs

Lebih terperinci

DUALITAS DAN ANALISIS SENSITIVITAS

DUALITAS DAN ANALISIS SENSITIVITAS /5/008 DUALITAS DAN ANALISIS SENSITIVITAS Dr. Mohd Adul Mukhy, SE., MM. Prl Prole P ze z cx suject to Ax x 0 optu vlue s z* Dul Prole xze suject to D v π πa c optu vlue s v* Theore. (Strog Dulty) If oth

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model

Lebih terperinci

1. Bilangan Berpangkat Bulat Positif

1. Bilangan Berpangkat Bulat Positif N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui

Lebih terperinci

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode

Lebih terperinci

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0.

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0. KKKF BAHAGAN A 6 MARKAH Arh : Jw SEMUA sol. Kepekt kter pecemr pt, d dlm secw teh trk yg drk selm eerp jm derk oleh: pt = 5e -.5t + 5e -.75t Crk ms, t, dlm ut jm yg dperluk utuk kter jk kepekt yg dkehedk

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk

Lebih terperinci

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker

Lebih terperinci

matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT

matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT K1 Kels X tetik PEMINATAN SIFAT-SIFAT EKSPONEN TUJUAN PEMBELAJARAN Setelh epeljri teri ii, ku dihrpk eiliki kepu erikut. 1. Mehi defiisi ekspoe.. Mehi sift-sift etuk pgkt.. Mehi sift-sift etuk kr.. Megguk

Lebih terperinci

Pendahuluan Aljabar Vektor Matrik

Pendahuluan Aljabar Vektor Matrik Pedhulu Aljr Vektor trik Defiisi: trik A erukur x ilh sutu susu gk dl ersegi et ukur x, segi erikut: = A tu A = ( ij ) Utuk eytk elee trik A yg ke (i,j), yitu ij, diguk otsi (A) ij. Ii errti ij = (A) ij.

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275 DIGRAF ESENTRIS PADA DIGRAF SIEL DIGRAF OMPLIT DAN DIGRAF OMPLIT MULTIPARTIT Reto tur umlsr d Luc Rtsr Jurus Mtemtk FMIPA UNDIP Jl Prof H Soedrto SH Semrg 5075 Abstrct The eccetrc dgrph of dgrph ED ( D)

Lebih terperinci

Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg

Lebih terperinci

3SKS-TEKNIK INFORMATIKA-S1

3SKS-TEKNIK INFORMATIKA-S1 SKS-TEKNIK INFORMATIKA-S Momd Sdq PERTEMUAN : 9- INTEGRASI NUMERIK METODE NUMERIK TEKNIK INFORMATIKA S SKS Momd Sdq MATERI PERKUIAHAN SEBEUM-UTS Pegtr Metode Numerk Sstem Blg d Kesl Peyj Blg Bult & Pe

Lebih terperinci

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY Oleh : Yusup Fkults Ilmu Komputer, Uversts AKI Semrg Astrt The frto of No Homoge Lerty Ajustmet System towr Cholesky Doule

Lebih terperinci

Model Tak Penuh. Definisi dapat di-uji (testable): nxp

Model Tak Penuh. Definisi dapat di-uji (testable): nxp Model T Peuh Defs dpt d-u (testle): Sutu c c 'c 'c H 'c 'c dpt du l d stu set fugs g dpt - ddug m m ' sehgg H er c ' ' slg es ler tu C c ' c m ' Perht : Kre r X p r p m m r c' (X' X) c X' X c' C(X' X)

Lebih terperinci

Teorema-Teorema Kekonvergenan pada Integral Riemann, Lebesgue dan Henstock

Teorema-Teorema Kekonvergenan pada Integral Riemann, Lebesgue dan Henstock Prosidig Semir Nsiol Mtemtik Prodi Pedidik Mtemtik, Uiversits Muhmmdiyh Surkrt, 24 Juli 2 Teorem-Teorem Kekoverge pd Itegrl Riem, Leesgue d Hestock Rit P.Khotimh, Soepr Drmwijy 2, Ch. Rii Idrti 3, Prodi

Lebih terperinci

Integral Riemann-Stieltjes Pada Fungsi Bernilai Real. The Riemann-Stieltjes Integral for Real Function

Integral Riemann-Stieltjes Pada Fungsi Bernilai Real. The Riemann-Stieltjes Integral for Real Function Itegrl Riem-Stieltjes Pd Fugsi Berili Rel Septi Mosl Pirde 1, Tohp Murug 2, Julli Titley 3* 1,2,3 Progrm Studi Mtemtik, Fkults Mtemtik d Ilmu Pegethu Alm, Uiversits Sm Rtulgi Mdo *correspodig uthor emil:

Lebih terperinci

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: jo@ee.it.c.id Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh

Lebih terperinci

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah 13. INTEGRAL RIEMANN 13.1 Jumlh Riem Ats d Jumlh Riem Bwh Pd Bb 12 kit megsumsik bhw f kotiu pd [, b] d medefiisik itegrl b f(x) dx sebgi supremum dri himpu semu jumlh lus derh persegi-pjg kecil di bwh

Lebih terperinci

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil

Lebih terperinci

INVERS MATRIKS MOORE PENROSE ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN (THE MOORE PENROSE INVERSE OF MATRICES OVER COMMUTATIVE RING WITH UNITY)

INVERS MATRIKS MOORE PENROSE ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN (THE MOORE PENROSE INVERSE OF MATRICES OVER COMMUTATIVE RING WITH UNITY) JURNL MTEMTIK DN KOMPUTER Vol. 7. No., -, prl, ISSN : -858 INVERS MTRIKS MOORE PENROSE TS RING KOMUTTIF DENGN ELEMEN STUN THE MOORE PENROSE INVERSE OF MTRICES OVER COMMUTTIVE RING WITH UNITY Tt Ud SRRM

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA.

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA. PENAKI AIO ANG EFIIEN UNTUK ATA-ATA POPULAI MENGGUNAKAN KOEFIIEN EGEI OUT PADA AMPING ACAK EDEHANA M Okto Mork Arsm Ad Hpos rt moktomoo@hoo.co.d Mhssw Progrm Mtemtk Dose Jurus Mtemtk Fkults Mtemtk d Ilmu

Lebih terperinci

Induksi Dan Rekursi. Bab IV Induksi Pada Bilangan Asli (Natural) Bilangan Asli

Induksi Dan Rekursi. Bab IV Induksi Pada Bilangan Asli (Natural) Bilangan Asli Bb IV Iduks D Rekurs 4.. Iduks Pd Blg Asl (Nturl) Bsy, duks tets tu dsebut jug duks legkp (coplete ducto) plg byk dguk dl do blg turl. Khususy, dl duks, dsusk bhw sutu sft tertetu yg egguk blg sl terkecl,

Lebih terperinci

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31 INTEGRAL TERTENTU Defs: Prs P pd ervl [,] dlh suu suse erhgg P = {,,,, } dr [,] deg = < < < < = Jk P = {,,,, } prs pd [,] mk Norm P, duls P, ddefsk seg P = m{ - =,,,, } Cooh: = = Pd ervl [, ], suu prs

Lebih terperinci

Didownload dari ririez.blog.uns.ac.id

Didownload dari ririez.blog.uns.ac.id A. METODE PROGRAM LINIER Terdpt hubug g ert tr teor per d progr ler kre setp betuk per berulh ol dr du org (g berhgg) dpt dtk sebg sutu betuk progr ler d seblk, setp perslh progr ler dpt dsk sebg sutu

Lebih terperinci

ANALISIS KINERJA METODE ASM DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER

ANALISIS KINERJA METODE ASM DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER ANALISIS KINERJA METODE ASM DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER D Arvto 1, Spt Whyugsh 2 Uversts Neger Mlg E l : d_rvto@yhoo.co.d ABSTRAK: Mslh trsports fuzzy d ler erupk slh stu

Lebih terperinci

MATERI LOGARITMA. Oleh : Hartono

MATERI LOGARITMA. Oleh : Hartono MATERI LOGARITMA Oleh : Hrtoo Mteri dispik pd Peltih Mpel Mtetik SMA/ SMK Progr Pscsrj UNY Yogykrt 01 Kopetesi Kopetesi yg dihrpk dicpi oleh pr pesert setelh ebc odul ii d egikuti peltih dlh pu : ehi kosep

Lebih terperinci

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi

Lebih terperinci

PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS

PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS Metode ple erup utu te tdr g dgu utu eech lh Progr Ler e thu 9. Pd prp etode ple ecr peele optl deg eetu tt-tt udut dr derh fele proe dlu erulg-ulg dr utu

Lebih terperinci

Pemilihan Model Terbaik pada Mars Respon Kontinu

Pemilihan Model Terbaik pada Mars Respon Kontinu Sttstk, Vol. 8 No., 9 9 e 008 Pelh odel erk pd rs Respo Kotu Bg Wdjrko Otok eg Pegjr d Jurus Sttstk, IS, Sury e-l: g_wo@sttstk.ts.c.d; otok_w@yhoo.co Astrk ultvrte dptve regresso sple (ARS) dlh slh stu

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk

Lebih terperinci

Modul II Limit Limit Fungsi

Modul II Limit Limit Fungsi Modul II Limit Kosep it merupk sutu kosep dsr yg petig utuk memhmi klkulus dieresil d itegrl Oleh kre itu seelum kit mempeljri leih ljut tetg klkulus diresil d itegrl, mk kit terleih dhulu hrus mempeljri

Lebih terperinci

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f

Lebih terperinci

HANDS-OUT ANALISIS NUMERIK

HANDS-OUT ANALISIS NUMERIK HANDS-OUT ANALISIS NUMERIK Oleh : Drs Her Sutro, M T Dew Rchmt, SS, MS JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA 8 Pertemu

Lebih terperinci

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut

Lebih terperinci

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut

Lebih terperinci

KALKULUS BUKAN SEKEDAR KALKULASI. Hendra Gunawan Kampus UNJ, 21 November 2015

KALKULUS BUKAN SEKEDAR KALKULASI. Hendra Gunawan Kampus UNJ, 21 November 2015 KALKULUS BUKAN SEKEDAR KALKULASI Hendr Gunwn Kmpus UNJ, 21 Novemer 2015 MENGAPA KALKULUS? APA YANG DIGARAP? c) Hendr Gunwn 2015) 2 Isc Newton 1643 1727) & Keceptn Sest Mslkn seuh prtkel ergerk sepnjng

Lebih terperinci

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR

Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Ser : Modul Dskus Fkults Ilmu Komputer FAKULTAS ILMU KOMPUTER Sstem Komputer & Sstem Iforms HANDOUT : KALKULUS DASAR Ole : Toy Hrtoo Bgo KALKULUS DASAR Toy Hrtoo Bgo KATA PENGANTAR Klkulus Dsr dl sl stu

Lebih terperinci

BAB II KAJIAN TEORI. operasi penjumlahan dan operasi perkalian mempunyai sifat-sifat. 1. R merupakan grup komutatif terhadap operasi penjumlahan.

BAB II KAJIAN TEORI. operasi penjumlahan dan operasi perkalian mempunyai sifat-sifat. 1. R merupakan grup komutatif terhadap operasi penjumlahan. 4 BAB II KAJIAN TEORI A. Sstem Blg Rel es II.A. Sstem blg rel R merpk st sstem ljbr g terhdp opers pejmlh d opers perkl memp st-st sebg berkt:. R merpk grp komtt terhdp opers pejmlh.. R -{} merpk grp komtt

Lebih terperinci

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Desg d coduct expermets volvg sgle. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc wth resdul plots 4. Use multple comprso

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

Solusi Sistem Persamaan Linear

Solusi Sistem Persamaan Linear Sos Sstem Persm Ler Sstem persm er: h persm deg h kow j d dketh, j,,, j? So: z 6 z z () () () persm d kow Jw: z 6.5 z.5 z () () () ems : pers. ().5 pers. () pers. ().5 pers. () z 6.5 z 8z 8 () () () ems

Lebih terperinci

Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú.

Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú. x x g x x erh ditsi kurv = (x) deg (x), gris x =, gris x =, d sumu x. = {(x,) x, (x)} Lus derh dlh. L = lim x x = x erh ditsi kurv = (x), kurv = g(x), deg (x) g(x), gris x =, d gris x =. = {(x,) x, g(x)

Lebih terperinci

Sifat-sifat Super Matriks dan Super Ruang Vektor

Sifat-sifat Super Matriks dan Super Ruang Vektor Sift-sift Super Mtriks d Super Rug Vektor Cturiyti Jurus Pedidik Mtetik FMIPA UNY wcturiyti@yhoo.co Abstrk Sutu triks yg elee-eleey erupk bilg disebut deg triks sederh tu lebih dikel deg triks. Sedgk supertriks

Lebih terperinci

BAB I SISTEM PERSAMAAN LINEAR

BAB I SISTEM PERSAMAAN LINEAR BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik

Lebih terperinci

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

DIKTAT MATEMATIKA I. Penyusun : Ir. Zainuddin Ginting, MT Ir. Amri Ismail

DIKTAT MATEMATIKA I. Penyusun : Ir. Zainuddin Ginting, MT Ir. Amri Ismail DIKTAT MATEMATIKA I Peyusu : Ir. Zudd Gtg, MT Ir. Amr Isml JURUSAN TEKNIK KIMIA, FAKULTAS TEKNIK UNIVERSITAS MALIKUSSLEH LHOKSEUMAWE, KATA PENGANTAR Mtemtk I merupk mt kul wj tgkt I d jurus Tekk Km Uversts

Lebih terperinci

PANGKAT & AKAR (INDICES & SURDS)

PANGKAT & AKAR (INDICES & SURDS) PANGKAT & AKAR (INDICES & SURDS) Ksus Hituglh? A PANGKAT (EKSPONEN) Ksus Perhtik hw x x Terliht hw d tig uh gk yg diklik d jik d gk seyk uh, k seyk Secr uu, disipulk Igt keli ruus pert Secr uu disipulk

Lebih terperinci

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT Prosdg Semr Nsol Mtemtk d Terpy 06 p-issn : 550-084; e-issn : 550-09 KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT St Muhwh Uversts Jederl Soedrm st_muhwh@yhoo.co.d

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 30-37

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 30-37 Jurl Mtemtk Mur d Terp Vol. 4 No. Desember : - 7 PENGGUNN BENTUK SMITH UNTUK MENENTUKN BENTUK KNONIK MTRIKS NORML DENGN ENTRI-ENTRI BILNGN KOMPLEKS Thresye Progrm Stud Mtemtk Uversts Lmbug Mgkurt Jl. Jed..

Lebih terperinci