INTEGRAL-Z. Siti Khabibah, Farikhin, Bayu Surarso Jurusan Matematika FMIPA UNDIP Semarang Jl. Prof. H. Soedarto, SH, Tembalang, Semarang, 50275

Ukuran: px
Mulai penontonan dengan halaman:

Download "INTEGRAL-Z. Siti Khabibah, Farikhin, Bayu Surarso Jurusan Matematika FMIPA UNDIP Semarang Jl. Prof. H. Soedarto, SH, Tembalang, Semarang, 50275"

Transkripsi

1 INTEGRAL-Z Siti Khih, Frikhi, By Srrso Jrs Mtetik FMIPA UNDIP Serg Jl. Prof. H. Soedrto, SH, Telg, Serg, 5275 Astrk: Kosep egei itegrl-z terkit deg keerd deritif kt. St fgsi F yg terderitif kt pd [,] diotsik deg F s (). Jik dipehi st fgsi f sedeiki sehigg F s ()f() k f k teritegrl-z pd [,]. Syrt ckp d perl st fgsi teritegrl-z dlh hw fgsi terset hrslh koti. Kt Kci: Deritif kt, Itegrl-Z PENDAHULUAN Dl teori dsr Klkls dikel eerp teori egei itegrl, tr li itegrl Newto, itegrl Rie, d itegrl Leesge. Pd perlih d ke-9 pr Mtetikw erpedpt hw sift fgsi-fgsi koti d teori itegrl Rie tidk ckp tk dpt eyelesik perslh-perslh lisis. Kedi sekitr wl d ke-2 diperkelk st teori kr yg edsri kosep itegrl Leesge. Itegrl Leesge sediri tepty diperkelk pd th 92. Seplh th kedi tetikw Percis, A.Dejoy, eyjik pegitlk teori itegrl Leesge yg dikel deg teori itegrl Dejoy Khss. Pd th 96 Rlph Hestock eperkelk st defiisi itegrl yg dieri itegrl Hestock. Pd pelis tgs khir ii k dihs egei teori itegrl yg erkit deg deritif kt yit itegrl-z. Teori ii diperkelk oleh L Ship pd wl d ke-2. DERIVATIF KUAT Seel kosep itegrl-z dihs leih jh, terleih dhl k diperkelk st deritif yg erhg deg kosep itegrl-z yit deritif kt. Defiisi. Dierik F:[,] R d [,]. Fgsi F() diktk terderitif kt ke F s ( ) di, jik tk setip ε> terdpt δ> sedeiki sehigg tk setip [,] ( δ, +δ) erlk F() s F ( ) < ε Bilg F s ( ) diset ili deritif kt di. Cotoh 2 : Dierik F:[-,] R deg F().Tjkk hw F() terderitif kt di d F s (). Peyelesi : Ail serg ε> di terdpt δε sedeiki sehigg tk setip [,] ( δ,δ) erlk F( ) <ε Kre [,] serg k terkti F terderitif kt di d F s (). Teore 3. Dierik F:[,] R d [,], jik F s ( ) d k ili F s ( ) tggl. Teore 4. Dierik F,G:[,] R fgsi yg terderitif kt di [,] k. fgsi αf terderitif kt di tk setip α R d (αf) s ( ) αf s ( ). fgsi F+G terderitif kt di d (F+G) s ( ) F s ( )+G s ( ) c. fgsi FG terderitif kt di d (FG) s ( ) F s ( )G( )+F( )G s ( ) Teore 5. Dierik F:[,] R d [,], jik F s ( ) d k F ( ) d d F s ( ) F ( ). ' ' 84

2 SIFAT DASAR INTEGRAL-Z Dl pehs egei kosep itegrl-z fgsi yg diicrk dlh fgsi yg koti yg erili rel d didefiisik pd selg terttp d terts. St prtisi P pd selg [,] dlh st hip erhigg {,,, } sedeiki sehigg < <. <. Fgsi f:[,] R diktk ooto ik pd [,] jik tk setip,y [,] deg <y erlk f() f(y). Fgsi g:[,]. R diktk ooto tr pd [,] jik tk setip,y [,] deg <y erlk g(y) g(). Fgsi f:[,] R diktk teritegrl-z pd [,], f Z[,],jik terdpt fgsi F:[,] R sedeiki sehigg F s ()f() tk setip [,]. Nili itegrl-z dri f pd [,] ditlis Z f()d F()-F(). Cotoh 6 : Dierik fgsi f:[-,] R deg f() tk setip [-,]. Tjkk hw fgsi f Z[-,] d Z f ( ) d 2 Peyelesi: Didefiisik fgsi F:[-,] R deg F() tk setip [-,], sehigg dipehi F( ) y) y tk setip,y [-,]. Megigt cotoh 2 k F s ()f() pd[-,]. Jdi fgsi f Z[-,] d Z f ( ) d F()-F(-)2. Teore 7. Fgsi f:[,] R d f Z[,] k ili itegrly tggl. Teore 8. Fgsi f:[,] R d f Z[,] k f Z[c,d] tk setip [c,d] [,]. Teore 9. Dierik f:[,c] R. Jik f Z[,] d f Z[,c] k f Z[,c] d erlk c f()d Z f()d + Z Z f()d. c Teore. Jik f,g Z[.] d α,β R k αf+βg Z[.] d Z [ αf() βg() ]d β Z g()d. + α Z f()d + Teore. Dierik fgsi f,g Z[.]. Jik f() g() tk setip [,] k Z f()d Z g()d. SYARAT PERLU DAN SYARAT CUKUP Teore 2. (Syrt Perl. Jik f Z[,] k f() koti pd [,]. Bkti : Dikethi f Z[,] errti terdpt F:[,]. R d F s ()f() tk setip [,] yit tk setip ε> terdpt δ > sedeiki sehigg tk setip [,] ( δ,+δ ) erlk F() ε () < 2 Ail serg ( δ,+δ ). Kre F s ( ) d k terdpt δ 2 > sedeiki sehigg tk setip [,] ( δ 2, +δ 2 ) erlk F() ε ( ) < 2 85

3 Jik [,] ( δ 2, +δ 2 ) ( δ,+δ ) diperoleh F() F() f() ( ) f() + ( ) F() F() () + ( ) < 2 ε + 2 ε ε Dri ri dits, dipilih δi{δ, δ 2 } sehigg tk setip ε> terdpt δ> sedeiki sehigg tk setip deg <δ erlk f() ( ) <ε. Hl ii errti f() koti di [,]. Kre serg elee pd [,] k f() koti pd [,]. Teore 3. (Syrt Ckp). Jik f:[,] R koti pd [,] k f Z[,]. Bkti: Dikethi f koti pd [,] errti f koti di setip titik pd [,]. Ail serg [,], tk setip ε> terdpt δ> sedeiki sehigg tk setip [,] d < δ erlk f() ( ) < ε. Kre f koti pd [,] k f R[,] d terdpt F:[,] R deg F()R f(t)dt tk setip [,]. Utk δ yg s dipilih serg [,] ( δ, +δ) sedeiki sehigg erlk F() F() f( )() ( ) F() ( )() R f()d R R (f() ( ))d R f() f( < R εd ε Kre [,] ( δ, +δ) k f Z[,]. ) d f( )d Dri ked teore dits dpt dietk st teore r yit Teore 4. Dierik f:[,] R, k f Z[,] jik d hy jik f koti pd [,]. Teore 5. Fgsi f:[,] R,f Z[,] k f R[,] d erlk R f()d Z f()d Teore 5 tidk erlk seliky, yki st fgsi yg teritegrl Rie el tet teritegrl-z. TEOREMA KEKONVERGENAN Dl epeljri teori itegrl slh yg ckp erik tk diteliti dlh kekoerge ris fgsi yg teritegrl. Pd teori itegrl-z dikel st teore kekoerge yit 86

4 Teore 6. (Teore Kekoerge Serg). Dikethi f :[,] R, f Z[,] d li f f serg pd [,] k f Z[,] d li f d fd. Bkti : Dikethi ) f Z[,], k ert Teore 4 f koti. 2) li f f serg pd [,] Dri ) d 2) k f koti pd [,]. Kre f koti pd [,] k f Z[,]. Dikethi li f f serg pd [,] k erlk kriteri Cchy yit tk setip ε> terdpt ilg sli sedeiki sehigg tk setip, d tk setip [,] erlk f ( ) ( ) <ε. f Z[,] k terdpt fgsi priitif F () f d. Ak diktik {F ():,2,3, }ris ilg Cchy F ( ) F ( ) Z f ( ) d Z f ( ) d Z ( f ( ) ( )) d Z f ( ) ( ) d < ε(-) Sehigg tk setip ε> terdpt ilg sli sedeiki sehigg tk setip, d tk setip [,] erlk F ( ) F ( ) <ε( ). Hl ii errti {F ():,2,3, } Cchy. Kre {F ()} Cchy k {F ()} koerge, ktk li ( ) F( ). Kre serg elee pd [,] errti F {F } koerge ke F. Seljty k diktik hw F s ()f() yit tk setip ε> terdpt δ> sedeiki sehigg tk setip [,] [-δ,+δ] erlk F( ) ) <ε(3+(-) Ail serg ε> sehigg F( ) ) F( ) F ( ) + F ( ) F ( + F ( + f ( )( ) ) ) F( ) F ( ) + F ( + F ( ) F ( ( )( ) + f ( ) ( ) Utk ε terset d [,] diil sedeiki sehigg tk setip erlk ) F ( ) ) <ε 2) f ( ) ( ) <ε Utk ii diil δ> sedeiki sehigg tk setip [,] [-δ,+δ] erlk F ( ) F ( ( )( ) <ε, tk setip Sehigg diperoleh F( ) ) < ε + ε + ε + ε(- < ε (3+(-) Jdi tk setip ε> terdpt δ> sedeiki sehigg tk setip [,] [ δ,+δ] erlk F( ) ) <ε(3+(-) 87

5 Terkti F s ()f(). Kre F s ()f() k F s () li f d fd F( ) ) Z Koklsi dri Teore 6 tidk erlk jik hy li (F ()-F ()) li Z f d. li ff pd[,]. KESIMPULAN Dri pehs egei teori itegrl-z dpt disiplk :. Fgsi f,g:[,] R teritegrl-z pd [,] d α,β R k αf+βg teritegrl-z pd [,] d + α Z [ αf() βg() ]d Z f()d + β Z g()d. 2. St fgsi f:[,] R k teritegrl-z pd [,] jik d hy jik f koti pd [,]. 3. Jik fgsi f:[,] R teritegrl-z pd [,] k f:[,] R k teritegrl Rie pd [,] d tidk erlk seliky. 4. Itegrl liit st ris fgsi f :[,] R yg teritegrl-z pd [,] k s deg liit itegrl ris fgsi f :[,] R jik f :[,] R koerge serg ke fgsi f:[,] R pd [,]. DAFTAR PUSTAKA []. Apostol, To M, Mtheticl Alysis, Secod Editio, Addiso-Wesley Plishig Copy Ic, USA, 98. [2]. Brtle, Roert G, Itrodctio to Rel Alysis, Joh Wiley d Sos. Ic, New York, 992. [3]. Bishop, Erret, Fodtio of Costrctie Alysis, McGrw-Hill. Ic, New York, 967. [4]. Frikhi, Itegrl Dejoy Khss pd [,], Skripsi, FMIPA UGM, 998. [5]. Prcell, Edwi J, Klkls d Geoetri Alitis, Alih hs Drs. I Nyo Ssil, MSc, Jilid l, Edisi keept, Erlgg, Jkrt, 995. [6]. Soetri, R, Alisis Rel I, PT. Krik, Uiersits Terk, 993. [7]. Yg Kere d L Ship, Strog Deritie d its Coseqece, Jorl of Mthetics Stdy, Vol 27, Chi,

BAB IV INTEGRAL RIEMANN

BAB IV INTEGRAL RIEMANN Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x

Lebih terperinci

BAB V INTEGRAL DARBOUX

BAB V INTEGRAL DARBOUX Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower

Lebih terperinci

TEOREMA DERET PANGKAT

TEOREMA DERET PANGKAT TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (

Lebih terperinci

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x

Lebih terperinci

DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA

DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA Muslih 1), Sutrim 2) d Supriydi Wiowo 3) 1,2,3) Jurus Mtemtik FMIPA UNS, muslih_mus@yhoo.om, zutrim@yhoo.om, supriydi_w@yhoo.o.id Astrk

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHues (Volue 3 No 3) 04 INTEGRAL H Hili Nur Ardi Jurus Mtetik, Fkults Mtetik d Ilu Pegethu Al, Uiversits Negeri Sury e-il: sterrdi@yhoocoid Muhrwti Jurus Mtetik, Fkults Mtetik d Ilu Pegethu Al, Uiversits

Lebih terperinci

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES 3.1 Itegrl Riem-Stieltjes dri Fugsi Berili Rel Pd seelumy telh dihs megei eerp kosep dsr, dim kosep-kosep ii merupk slh stu teori pedukug yg tiy k erper segi

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

BAB III LIMIT FUNGSI DAN KEKONTINUAN

BAB III LIMIT FUNGSI DAN KEKONTINUAN BAB III LIMIT FUNGSI DAN KEKONTINUAN 3. Pedhulu Seelu hs liit fugsi di sutu titik terleih dhulu kit k egti perilku sutu fugsi f il peuh edekti sutu ilg ril tertetu. Misl terdpt sutu fugsi f() = + 4. Utuk

Lebih terperinci

MATERI LOGARITMA. Oleh : Hartono

MATERI LOGARITMA. Oleh : Hartono MATERI LOGARITMA Oleh : Hrtoo Mteri dispik pd Peltih Mpel Mtetik SMA/ SMK Progr Pscsrj UNY Yogykrt 01 Kopetesi Kopetesi yg dihrpk dicpi oleh pr pesert setelh ebc odul ii d egikuti peltih dlh pu : ehi kosep

Lebih terperinci

BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN. Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon

BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN. Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon Jurl Brekeg Vol. 6 No. 1 Hl. 1 18 (2012) BEBERAA TEOREMA KEKONVERGENAN ADA INTEGRAL RIEMANN VENN YAN ISHAK ILWARU 1, H. J. WATTIMANELA 2, M. W. TALAKUA 1,2, St Jurus Mtemtik FMIA UNATTI Jl. Ir. M. utuhe,

Lebih terperinci

1. Bilangan Berpangkat Bulat Positif

1. Bilangan Berpangkat Bulat Positif N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui

Lebih terperinci

BILANGAN BERPANGKAT DAN BENTUK AKAR

BILANGAN BERPANGKAT DAN BENTUK AKAR BILANGAN BERPANGKAT DAN BENTUK AKAR. Sift Opersi Bilg Bult Berpgkt Defiisi Pgkt Bult Positif Jik dlh ilg rel (yt) d dlh ilg sli (ilg ult positif), k... seyk fktor deg = pgkt tu ekspoe = ilg pokok/dsr/sis

Lebih terperinci

PANGKAT, AKAR, DAN LOGARITMA., maka berlaku sifat-sifat operasi hitung: a).

PANGKAT, AKAR, DAN LOGARITMA., maka berlaku sifat-sifat operasi hitung: a). Sip UN Mtetik sikeljrwordpresso PANGKAT, AKAR, DAN LOGARITMA A Sift-sift Opersi Hitug Pgkt Jik d ilg rel d 0,, k erlku sift-sift opersi hitug: ) deg srt sek ) ) d) e) f) g) 0 h) i) j) Pehs sol UN tetik

Lebih terperinci

BARISAN DAN DERET 1. INTISARI TEORI A. NOTASI SIGMA B. DERET KHUSUS m dan c adalah konstanta real, menyatakan jumlah

BARISAN DAN DERET 1. INTISARI TEORI A. NOTASI SIGMA B. DERET KHUSUS m dan c adalah konstanta real, menyatakan jumlah Hsei Tpos, Bris d Deret, 06 BARISAN DAN DERET INTISARI TEORI A NOTASI SIGMA Misly st ris erhigg,,,, 3 Lg eyt jlh dri s pert ris, yit 3 Sift-sift Notsi Sig Ji d dlh ilg-ilg sli, deg d c dlh ostt rel, erl

Lebih terperinci

MATERI : OPERASI BILANGAN

MATERI : OPERASI BILANGAN MATERI : OPERASI BILANGAN A) MENYELESAIKAN MASALAH YANG TERKAIT DENGAN PERBANDINGAN BERBALIK NILAI B) MENERAPKAN OPERASI PADA BILANGAN IRASIONAL C) MENERAPKAN KONSEP LOGARITMA Oleh : Hrtoo Mteri dispik

Lebih terperinci

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah 13. INTEGRAL RIEMANN 13.1 Jumlh Riem Ats d Jumlh Riem Bwh Pd Bb 12 kit megsumsik bhw f kotiu pd [, b] d medefiisik itegrl b f(x) dx sebgi supremum dri himpu semu jumlh lus derh persegi-pjg kecil di bwh

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1 Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*

Lebih terperinci

Sistem Bilangan dan Kesalahan. Metode Numerik

Sistem Bilangan dan Kesalahan. Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c

Lebih terperinci

Integral Riemann-Stieltjes Pada Fungsi Bernilai Real. The Riemann-Stieltjes Integral for Real Function

Integral Riemann-Stieltjes Pada Fungsi Bernilai Real. The Riemann-Stieltjes Integral for Real Function Itegrl Riem-Stieltjes Pd Fugsi Berili Rel Septi Mosl Pirde 1, Tohp Murug 2, Julli Titley 3* 1,2,3 Progrm Studi Mtemtik, Fkults Mtemtik d Ilmu Pegethu Alm, Uiversits Sm Rtulgi Mdo *correspodig uthor emil:

Lebih terperinci

PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real

PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real Resume PENGANTAR ANALISIS REAL Utuk Memeuhi Tugs Mt Kulih Pegtr Alisi Rel Disusu Oleh: M. ADIB JAUHARI D. P (0860009) MUHTAR SAFI I (086003) BOWO KRISTANTO (086004) ANA MARDIATUS S (086005) OKTA ARFIYANTA

Lebih terperinci

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil

Lebih terperinci

matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT

matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT K1 Kels X tetik PEMINATAN SIFAT-SIFAT EKSPONEN TUJUAN PEMBELAJARAN Setelh epeljri teri ii, ku dihrpk eiliki kepu erikut. 1. Mehi defiisi ekspoe.. Mehi sift-sift etuk pgkt.. Mehi sift-sift etuk kr.. Megguk

Lebih terperinci

BAB 2 SISTEM BILANGAN DAN KESALAHAN

BAB 2 SISTEM BILANGAN DAN KESALAHAN Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg

Lebih terperinci

SISTEM ORTONORMAL DALAM RUANG HILBERT Orthonormal Systems in Hilbert Space

SISTEM ORTONORMAL DALAM RUANG HILBERT Orthonormal Systems in Hilbert Space Jrl Breeg Vol 8 No Hl 9 6 (04) SISTEM ORTONORMAL DALAM RUANG HILBERT Orthoorl Systes i Hilert Spe ZETH ARTHUR LELEURY Jrs Mteti Flts MIPA Uiersits Pttir Jl Ir M Pthe Kps Uptti Po-Ao E-il: zethrthr8@gilo

Lebih terperinci

Modul II Limit Limit Fungsi

Modul II Limit Limit Fungsi Modul II Limit Kosep it merupk sutu kosep dsr yg petig utuk memhmi klkulus dieresil d itegrl Oleh kre itu seelum kit mempeljri leih ljut tetg klkulus diresil d itegrl, mk kit terleih dhulu hrus mempeljri

Lebih terperinci

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,

Lebih terperinci

Sifat-sifat Super Matriks dan Super Ruang Vektor

Sifat-sifat Super Matriks dan Super Ruang Vektor Sift-sift Super Mtriks d Super Rug Vektor Cturiyti Jurus Pedidik Mtetik FMIPA UNY wcturiyti@yhoo.co Abstrk Sutu triks yg elee-eleey erupk bilg disebut deg triks sederh tu lebih dikel deg triks. Sedgk supertriks

Lebih terperinci

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel Sitek Vol 5. No 3 Thu 1 Peyelesi Alitik d Peodel Fugsi Bessel Lily Yhy Jurus Mtetik Fkults MIPA Uiersits Negeri Gorotlo bstrk Dl klh ii k dilkuk peyelesi litik d peodel pers diferesil Bessel sert eujukk

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

Pendahuluan Pengantar Metode Simpleks. Fitriani Agustina, Math, UPI

Pendahuluan Pengantar Metode Simpleks. Fitriani Agustina, Math, UPI Pedhulu Pegtr Metode Sipleks Fitrii Agusti, Mth, METODE SIMPLEKS (PRIMAL) Mslh Progr Lier Mslh Progr Lier dl Betuk Mtriks Ketetu dl Betuk Stdr Mslh PL Betuk Stdr Mslh Progr Lier Betuk Stdr Pets Lier Betuk

Lebih terperinci

KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES

KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES JMP : Volume 4 Nomor 1, Jui 2012, hl. 59-68 KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES Dey Ivl Hkim Deprteme Mtemtik Istitut Tekologi Bdug Bdug 40132, Idoesi dy_hkm@yhoo.com Hedr

Lebih terperinci

JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1

JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1 JURNAL MATEMATIKA DAN PEMBELAJARANNYA 6 VOLUME, NO.. ISSN -99 PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN! = Amr Hs Dos STKIP Pmg Idosi Mkssr 85 557 6956, E-mil: mrhs@yhoo.co.id ABSTRAK Pmkti! = dt dilkk dri

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 3, , Desember 2001, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 3, , Desember 2001, ISSN : Vol. 4. No. 3, 3 -, Deseme 00, ISSN : 40-858 EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH Y.D. Smto Js Mtemti FMIPA UNDIP Ast Itegl McShe gsi-gsi

Lebih terperinci

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi

Lebih terperinci

Teorema-Teorema Kekonvergenan pada Integral Riemann, Lebesgue dan Henstock

Teorema-Teorema Kekonvergenan pada Integral Riemann, Lebesgue dan Henstock Prosidig Semir Nsiol Mtemtik Prodi Pedidik Mtemtik, Uiversits Muhmmdiyh Surkrt, 24 Juli 2 Teorem-Teorem Kekoverge pd Itegrl Riem, Leesgue d Hestock Rit P.Khotimh, Soepr Drmwijy 2, Ch. Rii Idrti 3, Prodi

Lebih terperinci

MATA KULIAH : MATEMATIKA II POKOK BAHASAN :

MATA KULIAH : MATEMATIKA II POKOK BAHASAN : MT KULIH : MTEMTIK II POKOK HSN :. INTEGRL TK TENTU. INTEGRL TERTENTU SEGI LIMIT JUMLH. SIFT-SIFT INTEGRL TERTENTU. TEOREM-TEOREM DSR DLM KLKULUS. EERP TERPN DLM INTEGRL TERTENTU. INTEGRL NUMERIK UKU PEGNGN

Lebih terperinci

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ... Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit

Lebih terperinci

EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen.

EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen. EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA theresivei.wordpress.o A. BENTUK PANGKAT BULAT. Pgkt Bult Positif Igt: 5 5 = (-) = -() = Defiisi Bilg erpgkt ult positif : Mislk ilg ult positif d ilg Rel,

Lebih terperinci

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

Pertemuan 7 Persamaan Linier

Pertemuan 7 Persamaan Linier Perteu 7 Pers Liier Ojektif:. Prktik ehi teori dsr Pers Liier. Prktik dpt eyelesik Pers Liier. Prktik dpt eut progr erkisr tetg Pers Liier Pers Liier P7. Teori Pers lier dlh seuh pers ljr, yg tip sukuy

Lebih terperinci

Pendahuluan Aljabar Vektor Matrik

Pendahuluan Aljabar Vektor Matrik Pedhulu Aljr Vektor trik Defiisi: trik A erukur x ilh sutu susu gk dl ersegi et ukur x, segi erikut: = A tu A = ( ij ) Utuk eytk elee trik A yg ke (i,j), yitu ij, diguk otsi (A) ij. Ii errti ij = (A) ij.

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bmbg Irwto Jurus Mtemtik FMIPA UNDIP Abstct I this er, it ws lered of the ecessry d sufficiet coditio for

Lebih terperinci

Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan

Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan Ali Ketil 4 Ali Ketil.. Pedhulu Hl yg mt petig dlm dei item kotrol dlh mlh tilit item. Buk hl yg rhi lgi hw pokok tuju terpetig dlm li d dei kotrol dlh meiptk utu item yg til. Sutu item diktk til pil teript

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL RIEMANN Teorem Kekonvergenn Fungsi Terintegrl Riemnn ( Frikhin ) TEOREMA KEKONVERGENAN FUNGI TERINTEGRAL RIEMANN Frikhin Jurusn Mtemtik FMIPA Undip Astrk Teorem kekonvergenn merupkn gin yng penting dlm mempeljri

Lebih terperinci

Hendra Gunawan. 21 Februari 2014

Hendra Gunawan. 21 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge

Lebih terperinci

Posisi Integral Henstock-Dunford dan Integral Henstock- Bochner pada [a,b]

Posisi Integral Henstock-Dunford dan Integral Henstock- Bochner pada [a,b] SEMINR NSIONL MTEMTIK N PENIIKN MTEMTIK UNY 06 Posisi Itegrl Hestoc-uford d Itegrl Hestoc- Bocher pd [,] Solihi, Heru Tjhj, Solichi Zi Fults Sis d Mtemti, Uiversits ipoegoro soli_erf@yhoocom -4 str Pd

Lebih terperinci

Bab 3 SISTEM PERSAMAAN LINIER

Bab 3 SISTEM PERSAMAAN LINIER Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm

Lebih terperinci

MA SKS Silabus :

MA SKS Silabus : Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedr Guw Semester II, 2016/2017 24 Februri 2017 9.6 Deret Pgkt Kulih yg Llu Meetuk selg kekoverge deret pgkt 9.7 Opersi pd Deret Pgkt Melkuk opersi pd deret pgkt yg dikethui jumlhy

Lebih terperinci

SYARAT PERLU DAN CUKUP INTEGRAL HENSTOCK-BOCHNER DAN INTEGRAL HENSTOCK-DUNFORD PADA [a,b] Solikhin, Y.D. Sumanto, Susilo Hariyanto, Abdul Aziz

SYARAT PERLU DAN CUKUP INTEGRAL HENSTOCK-BOCHNER DAN INTEGRAL HENSTOCK-DUNFORD PADA [a,b] Solikhin, Y.D. Sumanto, Susilo Hariyanto, Abdul Aziz SYRT PERLU N CUKUP INTEGRL HENSTOCK-BOCHNER N INTEGRL HENSTOCK-UNFOR P [,] Solihi, Y Sumto, Susilo Hriyto, dul ziz 1,2,3,4 eprteme Mtemti FSM Uiversits ipoegoro Jl Prof Soedrto, SH Temlg-Semrg solihi@liveudipcid

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige

Lebih terperinci

RENCANA PELAKSANAAN PERKULIAHAN

RENCANA PELAKSANAAN PERKULIAHAN Lesso Study FMIPA UNY RENCANA PELAKSANAAN PERKULIAHAN MATA KULIAH : ALJABAR LINEAR II SEMESTER : III TOPIK : NILAI EIGEN DAN VEKTOR EIGEN SUB TOPIK : NILAI EIGEN DAN VEKTOR EIGEN WAKTU : X 5 A. Stdr Kompetesi:

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds

Lebih terperinci

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f

Lebih terperinci

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11) III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg

Lebih terperinci

METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN.

METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN. METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN http://mul.lecture.u.c.id/lecture/metode-umerik/ Sistem Persm Liier Misl terdpt SPL deg uh vriel es Mtriks: m m m m Peyelesi Sistem Persm Liier

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA0 MATEMATIKA A Hedr Guw Semester II, 06/07 0 Februri 07 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kekoverge deret

Lebih terperinci

EXPONEN DAN LOGARITMA

EXPONEN DAN LOGARITMA Drs Pudjul Prijoo SMA Negeri Mlg EXPONEN DAN LOGARITMA A EXPONEN Sift-sift il Berpgkt yg ekspoey il Bult Sift-sift il Berpgkt yg ekspoey il Rsiol/Peh 0 ; 0 ; 0 0, 0 ; 0 0 d ; 7 0 0; ; Meyederhk etuk :

Lebih terperinci

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: jo@ee.it.c.id Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh

Lebih terperinci

Barisan Dan Deret Tak Hingga

Barisan Dan Deret Tak Hingga Bris D Deret T Higg Mteti Wji Kels XI Disusu oleh : Mrus Yuirto, S.Si Thu Peljr 06 07 SMA St Agel Jl. Merde No. Bdug =====================================================Mteti XI Wji Pegtr: Modul ii i

Lebih terperinci

Hendra Gunawan. 19 Februari 2014

Hendra Gunawan. 19 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/0 9 Februri 0 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kk kekoverge

Lebih terperinci

Sub Pokok Bahasan Bilangan Bulat

Sub Pokok Bahasan Bilangan Bulat MODUL MATERI PELAJARAN MATEMATIKA Sub Pokok Bhs Bilg Bult Kels : VII (tujuh) Seester: 1 (gjil) Kurikulu KTSP Disusu Oleh: Seri Rhwti, S.Pd NIP. 171101 001 001 MTsN SELAT KUALA KAPUAS TAHUN PELAJARAN 010/011

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Mt Peljr : Mtetik Kels/Seester : X/ Perteu ke : Aloksi Wktu : 8 j @ 45 eit Stdr Kopetesi : Meechk slh erkit deg kosep opersi Bilg Riil Kopetesi Dsr : Meerpk opersi

Lebih terperinci

Ruang Vektor Umum. V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan

Ruang Vektor Umum. V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan /8/5 Mtris & Rng Vetor Rng Vetor Umm Strt Rng Vetor Umm Misln v w V dn l Riil V dinmn rng vetor ji terpenhi siom :. V terttp terhdp opersi penjmlhn Unt setip v V m v V.. v v ( v w ) ( v ) w. Terdpt V sehingg

Lebih terperinci

MetodeLelaranUntukMenyelesaikanSPL

MetodeLelaranUntukMenyelesaikanSPL MetodeLelrUtukMeyelesikSPL Metode elimisi Guss melitk yk glt pemult. Glt pemult yg terjdi pd elimisi Guss dpt meyek solusiyg diperoleh juh drisolusiseery. Ggs metod lelr pd pecri kr persm irljr dptjugditerpkutukmeyelesikspl.

Lebih terperinci

BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA

BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA BAB BENTUK PANGKAT, AKAR, DAN LOGARITMA A RINGKASAN MATERI. Sift-sift Ekspoe Misl d ilg rel ( 0, 0) sert d ilg rsiol, k erlku huug segi erikut. =... fktor = + = ( ) = ( ) =. Betuk Akr Jik d ilg rsiol positif,

Lebih terperinci

TUGAS KELOMPOK TURUNAN DAN INTEGRAL

TUGAS KELOMPOK TURUNAN DAN INTEGRAL Mtemtik TUGAS KELOMPOK TURUNAN DAN INTEGRAL DISUSUN OLEH NAMA. LUKMANUDIN D79. YUYU YUMIARSIH D799. SERLI WIJAYA D798 PROGRAM STUDY MATA KULIAH DOSEN : PEND. MATEMATIKA : ANALISA VEKTOR : ABDUL KARIM,

Lebih terperinci

Persamaan Linier Simultan

Persamaan Linier Simultan Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel

Lebih terperinci

Kajian Integral Cavalieri-Wallis dan Integral Porter-Wallis serta Kaitannya dengan Integral Riemann

Kajian Integral Cavalieri-Wallis dan Integral Porter-Wallis serta Kaitannya dengan Integral Riemann J. Mth. d Its Appl. ISSN: 1829-605X Vol. 3, No. 2, Nov 2006, 81 93 Kji Itegrl Cvlieri-Wllis d Itegrl Porter-Wllis sert Kity deg Itegrl Riem Rt Sri Dewi d Sursii Jurus Mtemtik ITS Istitut Tekologi Sepuluh

Lebih terperinci

BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA

BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA BAB BENTUK PANGKAT, AKAR, DAN LOGARITMA A RINGKASAN MATERI. Sift-sift Ekspoe Misly d ilg rel ( 0, 0) sert d ilg rsiol, k erlku huug segi erikut. =... fktor = + = ( ) = ( ) =. Betuk Akr Jik d ilg rsiol

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT. Oleh Shahibul Ahyan

PERSAMAAN DAN FUNGSI KUADRAT. Oleh Shahibul Ahyan PERSAMAAN DAN FUNGSI KUADRAT Oleh Shhil Ahyn A. Bentk Umm Persmn Kdrt Definisi : Mislkn,, Rdn, mk persmn yng erentk + + = dinmkn persmn kdrt dlm peh. Berkitn dengn nili-nili dri,, dikenl eerp persmn kdrt

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN SUMBER BELAJAR PENUNJANG PLPG 207 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN Dr. Djdir, M.Pd. Dr. Ilhm Miggi, M.Si J fruddi,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si

Lebih terperinci

juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen.

juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen. MATERI: ) Perbed bris d deret b) Defiisi d teorem tetg deret c) Deret suku positif d uji kovergesiy d) Deret hiperhrmois e) Deret ukur f) Deret ltertig d uji kovergesiy g) Deret kus d opersiy h) Deret

Lebih terperinci

INTEGRAL HENSTOCK-STIELTJES FUNGSI BERNILAI VEKTOR

INTEGRAL HENSTOCK-STIELTJES FUNGSI BERNILAI VEKTOR Integrl Henstock-Stieltjes... (Ui Mhnun Hnung) INTEGRAL HENSTOCK-STIELTJES FUNGSI BERNILAI VEKTOR Ui Mhnun Hnung dn Ch. Rini Indrti Jurusn Mtetik FMIPA UGM, Yogykrt, Indonesi hnung_ug@yhoo.co Astrct This

Lebih terperinci

PANGKAT & AKAR (INDICES & SURDS)

PANGKAT & AKAR (INDICES & SURDS) PANGKAT & AKAR (INDICES & SURDS) Ksus Hituglh? A PANGKAT (EKSPONEN) Ksus Perhtik hw x x Terliht hw d tig uh gk yg diklik d jik d gk seyk uh, k seyk Secr uu, disipulk Igt keli ruus pert Secr uu disipulk

Lebih terperinci

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG GEOMETRI EUCLID EG(, p ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG Bmg Irwto d Yui Hidyti Jurus Mtemtik FMIPA UNDIP Jl. Prof. H. Soedrto, S.H, Semrg 5075 v is rrgemet of v distit ojets ito

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Liner Elementer MA SKS Sils : B I Mtriks dn Opersiny B II Determinn Mtriks B III Sistem Persmn Liner B IV Vektor di Bidng dn di Rng B V Rng Vektor B VI Rng Hsil Kli Dlm B VII rnsformsi Liner B VIII

Lebih terperinci

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs Diijik memperyk demi kepetig pedidik deg tetp mectumk lmt situs LATIH UN IPA. 00-00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik

Lebih terperinci

CARA LAIN MENENTUKAN TAKSIRAN ERROR UNTUK METODE INTEGRAL NUMERIK ABSTRACT ABSTRAK

CARA LAIN MENENTUKAN TAKSIRAN ERROR UNTUK METODE INTEGRAL NUMERIK ABSTRACT ABSTRAK CARA LAIN MENENTUKAN TAKSIRAN ERROR UNTUK METODE INTEGRAL NUMERIK D. S. Wti 1, M. Imr, L. Deswit 1 Mhsisw Progrm Studi S1 Mtemtik Dose Jurus Mtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uiversits Riu Kmpus

Lebih terperinci

Ketaksamaan Chaucy Schwarz Engel

Ketaksamaan Chaucy Schwarz Engel Keksm Chuy Shwrz Egel Fedi Alfi Fuzi Rigks Keksm Cuhy Shwrz merupk Keksm yg ukup mpuh uuk memehk ergi mm persol yg meygku sol keksm pd olimpide memik igk siol mupu iersiol. Pd pper ii k diperkelk euk li

Lebih terperinci

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT) SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki

Lebih terperinci

Rangkuman Materi dan Soal-soal

Rangkuman Materi dan Soal-soal Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy

Lebih terperinci

Rangkuman Materi dan Soal-soal

Rangkuman Materi dan Soal-soal Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy

Lebih terperinci

PEMBENTUKAN DIAGRAM SEMIGRUP. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya, Pekanbaru Indonesia ABSTRACT

PEMBENTUKAN DIAGRAM SEMIGRUP. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya, Pekanbaru Indonesia ABSTRACT PEMBENTKAN DIAGRAM SEMIGRP Sisk My Sri *, Sri Gemwti, Rol Pe Mhsisw Progrm S Mtemtik Dose JurusMtemtik Fkults Mtemtik d Ilmu Pegethu Alm iverits Riu Kmpus Bi Widy, Pekru 893 Idoesi * siskmysri@yhoocom

Lebih terperinci

htt://meetied.wordress.com Mtemtik X Semester SMAN BoeBoe Jik sesutu tmk sulit gi kti, jg meggg org li tidk mmu melkuk. Selik, jik sesutu dt dilkuk oleh org li, kikh hw kit jug mmu melkuk. (Mrcus Aurelius

Lebih terperinci

6. Hitunglah. 7. Hitunglah. 8. Jika x. 9. Kurva 3

6. Hitunglah. 7. Hitunglah. 8. Jika x. 9. Kurva 3 JWN Persi U Mth IP JWN Persi U Mth IP tl U t Mret Hitlh l i ljtk i l Fktrk I Tr Hitlh l i i l Hitlh l i ljtk i l Fktrk i l ljtk l i sekw Kli Hitlh ) ( li li ) ( li Hitlh li li li li Hitlh li li li li li

Lebih terperinci

Metode Iterasi Gauss Seidell

Metode Iterasi Gauss Seidell Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier

Lebih terperinci

Untuk matriks diperoleh bahwa ú

Untuk matriks diperoleh bahwa ú B DETERMINAN Ekspsi Lple Bris Pertm Determi (determit) dri sutu mtriks persegi ts field F dlh sutu eleme dri field F Terleih dhulu k ditujukk gim meghitug determi dri mtriks erukur d DEFINISI Dierik mtriks

Lebih terperinci

INTEGRAL LEBESGUE di R 1 SKRIPSI. Oleh: INDAH RESTI AYUNI SURI NIM

INTEGRAL LEBESGUE di R 1 SKRIPSI. Oleh: INDAH RESTI AYUNI SURI NIM 1 INTGRAL LBSGU di R 1 SKRIPSI Oleh: INDAH RSTI AYUNI SURI NIM. 05510015 JURUSAN MATMATIKA FAKULTAS SAINS DAN TKNOLOGI UNIVRSITAS ISLAM NGRI MAULANA MALIK IBRAHIM MALANG 2009 2 INTGRAL LBSGU di R 1 SKRIPSI

Lebih terperinci

BAB I SISTEM PERSAMAAN LINEAR

BAB I SISTEM PERSAMAAN LINEAR BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik

Lebih terperinci

1 ) 8 berturut-turut. 1 ) 8, dan seterusnya. Lambang bilangan 3, 1 disebut

1 ) 8 berturut-turut. 1 ) 8, dan seterusnya. Lambang bilangan 3, 1 disebut Kegit Belj Megj 7 BILANGAN BERPANGKAT Ds Ziuddi, MPd Kegit elj egj 7 ii eupk kegit elj egj tekhi di tkulih Mtetik Ds Ckup di kegit elj egj ii ehs pokok hs tetg ilg epgkt d opesiy Pokok hs ii eliputi su-su

Lebih terperinci

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs Diijik memperyk demi kepetig pedidik deg tetp metumk lmt situs LATIH UN IPS. 008 00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik

Lebih terperinci

Contoh Soal log 9 = 2 b. 5 log 1 = log 32 = 2p. Jawab: log 9 = 2 9 = log 1 = 3 1 =

Contoh Soal log 9 = 2 b. 5 log 1 = log 32 = 2p. Jawab: log 9 = 2 9 = log 1 = 3 1 = Ifo Mth Joh Npier (0 67). Cotoh Sol. Nytk logrit berikut dl betuk pgkt.. log 9 = log = log = p Jwb:. log 9 = 9 = log = = Suber: ctiques.krokes.free.fr Metode logrit pert kli dipubliksik oleh tetikw Scotldi,

Lebih terperinci

MATRIKS. Create by Luke

MATRIKS. Create by Luke Defiisi Mtris MTRIS Crete y Lue Seuh mtri dlh sergi eleme dlm etu persegi pg Eleme e-(i,) i dri mtris erd diris e-i d olom e- dri rgi terseut Order (uur) dri seuh mtri dit seesr (m x ) i mtris terseut

Lebih terperinci

IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB

IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB Respons Respons IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB Rncngn Ack Lengkp Pol Fktoril AxB dlh rncngn ck lengkp yng terdiri dri d peh es (Fktor dlm klsfiksi silng yit fktor A yng terdiri dri trf dn

Lebih terperinci

PENDAHULUAN LANDASAN TEORI. perubahan entri matriks menjadi sangat penting. Latar Belakang

PENDAHULUAN LANDASAN TEORI. perubahan entri matriks menjadi sangat penting. Latar Belakang ENDAHUUAN tr elkg Nili eige (eigele) d ektor eige (eigeector) eiliki per yg gt petig dl perkeg il d tekologi d yk diterpk dl kehidp ehri-hri Dl idg il tetik, lh ili eige d ektor eige eperoleh peh yg gt

Lebih terperinci

Bab 6 TRANSFORMASI LINEAR

Bab 6 TRANSFORMASI LINEAR B 6 RANSFORMASI LINEAR 6 Pegtr Pd k idg tetik serigkli diigik utuk eghuugk ggot dri sutu hipu deg ggot pd hipu li d deg deiki kosep sutu fugsi f : S dietuk Segi cotoh dl klkulus vriel tuggl S d is dlh

Lebih terperinci