Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah"

Transkripsi

1 13. INTEGRAL RIEMANN 13.1 Jumlh Riem Ats d Jumlh Riem Bwh Pd Bb 12 kit megsumsik bhw f kotiu pd [, b] d medefiisik itegrl b f(x) dx sebgi supremum dri himpu semu jumlh lus derh persegi-pjg kecil di bwh kurv y = f(x). Sesugguhy, kit dpt pul medefiisik itegrl b f(x) dx sebgi ifimum dri himpu semu jumlh lus derh persegi-pjg kecil di ts kurv y = f(x). Dlm hl f kotiu pd [, b], kedu defiisi tersebut k meghsilk ili yg sm. Pd bb ii, kit k memperlus defiisi itegrl utuk fugsi f : [, b] R yg terbts, sebgim yg dilkuk oleh Berhrd Riem pd Seperti pd Sub-bb 12.2, diberik sembrg prtisi P := {x 0, x 1,..., x } dri [, b], kit dpt medefiisik L(P, f) := m k (x k x k 1 ). deg m k := if f(x), k = 1, 2,...,. Pd st yg sm, kit jug dpt x k 1 x x k medefiisik U(P, f) := M k (x k x k 1 ). deg M k := sup f(x), k = 1, 2,...,. x k 1 x x k L(P, f) d U(P, f) disebut sebgi jumlh Riem bwh d jumlh Riem ts dri f yg berkit deg prtisi P. Perhtik bhw utuk sembrg prtisi P. L(P, f) U(P, f) 109

2 110 Hedr Guw Seljuty, jik P := {x 0, x 1,..., x } d Q := {y 0, y 1,..., y m } dlh prtisi dri [, b], mk Q disebut sebgi sutu perhlus dri P pbil setip titik prtisi x k P merupk titik prtisi di Q, yki P Q. Dlm hl ii, setip sub-itervl yg terkit deg prtisi P dpt diytk sebgi gbug dri beberp subitervl yg terkit deg prtisi Q, yki [x k 1, x k ] = [y i 1, y i ] [y i, y i+1 ] [y j 1, y j ]. Ctt bhw kit dpt memperoleh sutu perhlus dri sembrg prtisi P deg membhk sejumlh titik ke P. Proposisi 1. Jik Q merupk perhlus dri P, mk L(P, f) L(Q, f) d U(Q, f) U(P, f). Akibt 2. Jik P 1 d P 2 dlh du prtisi sembrg dri [, b], mk L(P 1, f) U(P 2, f). Sol Ltih 1. Buktik Proposisi 1. (Petujuk. Muli deg ksus Q = P {x } deg x / P.) 2. Buktik Akibt Itegrl Riem Seperti pd sub-bb 13.1, pd sub-bb ii kit megsumsik bhw f : [, b] R terbts. Meurut Akibt 2, himpu {L(P, f) : P prtisi dri [, b]} terbts di ts (oleh sutu jumlh Riem ts), semetr himpu {U(P, f) : P prtisi dri [, b]} terbts di bwh (oleh sutu jumlh Riem bwh). Kre itu kit dpt medefiisik L(f) := sup{l(p, f) : P prtisi dri [, b]} d U(f) := if{u(p, f) : P prtisi dri [, b]}.

3 Pegtr Alisis Rel 111 L(f) disebut sebgi itegrl Riem ts dri f, semetr U(f) disebut sebgi itegrl Riem bwh dri f. Proposisi 3. L(f) U(f). Bukti. Utuk setip prtisi P 0 dri [, b], U(P 0, f) merupk bts ts dri {L(P, f) : P prtisi dri [, b]}, sehigg L(f) = sup{l(p, f) : P prtisi dri [, b]} U(P 0, f). Kre ii berlku utuk sembrg prtisi P 0, mk L(f) merupk bts bwh dri {U(P 0, f) : P 0 prtisi dri [, b]}. Akibty sebgim yg dihrpk. sebgi L(f) if{u(p 0, f) : P 0 prtisi dri [, b]} = U(f), Secr umum, L(f) U(f). Sebgi cotoh, jik f : [0, 1] R didefiisik f(x) = mk L(f) = 0 semetr U(f) = 1. { 0, x rsiol; 1, x irsiol, Jik L(f) = U(f), mk f diktk teritegrlk Riem d ili yg sm tersebut didefiisik sebgi itegrl Riem dri f pd [, b], yg dilmbgk deg b f(x) dx. (Seperti pd Bb 12, kit defiisik f(x) dx = b b f(x) dx d f(x) dx = 0.) Sebgi cotoh, jik f berili kost pd [, b], ktk f(x) = c utuk setip x [, b], mk L(f) = U(f) = c(b ) d krey f teritegrlk Riem pd [, b] deg b f(x) dx = c(b ). Teorem berikut memberik sutu kriteri utuk keteritegrl f pd [, b]. (Utuk seljuty, teritegrlk berrti teritegrlk Riem d itegrl berrti itegrl Riem.) Teorem 6. f teritegrlk pd [, b] jik d hy jik utuk setip > 0 terdpt sutu prtisi P dri [, b] sedemiki sehigg U(P, f) L(P, f) <.

4 112 Hedr Guw Bukti. Mislk f teritegrlk pd [, b]. Ambil > 0 sembrg. Dri defiisi supremum, terdpt sutu prtisi P 1 dri [, b] sehigg L(f) 2 < L(P 1, f). Dri defiisi ifimum, terdpt pul sutu prtisi P 2 dri [, b] sehigg U(P 2, f) < U(f) 2. Sekrg mislk P = P 1 P 2. Mk P merupk perhlus dri P 1 d P 2. Akibty, L(f) 2 < L(P 1, f) L(P, f) U(P, f) U(P 2, f) < U(f) + 2. Nmu L(f) = U(f), sehigg kit peroleh U(P, f) L(P, f) <. Sebliky mislk utuk setip > 0 terdpt sutu prtisi P dri [, b] sedemiki sehigg Mk, utuk setip > 0, berlku U(P, f) L(P, f) <. 0 U(f) L(f) U(P, f) L(P, f) <. Dri sii kit simpulk bhw U(f) = L(f) tu f teritegrlk pd [, b]. Akibt 7. Mislk terdpt bris prtisi P dri [, b] sedemiki sehigg Mk f teritegrlk pd [, b] d lim [U(P, f) L(P, f)] = 0. lim L(P, f) = b f(x) dx = lim U(P, f). Sol Ltih 1. Buktik Akibt 7.

5 Pegtr Alisis Rel Mislk f(x) = x, x [0, 1], d P = {0, 1, 2,..., 1}, N. Tujukk bhw lim [U(P, f) L(P, f)] = 0, d kemudi simpulk bhw f teritegrlk pd [0, 1]. 3. Mislk fugsi f didefiisik pd [0, 1] sebgi { 0, 0 x < 1; f(x) = 1, x = 1. Buktik bhw f teritegrlk pd [0, 1] deg 1 f(x) dx = Mislk fugsi f didefiisik pd [0, 2] sebgi { 1, 0 x 1; f(x) = 2, 1 < x 2. Buktik bhw f teritegrlk pd [0, 2] deg 2 f(x) dx = Keteritegrl Fugsi Kotiu d Fugsi Mooto Sebgim disiggug pd wl bb ii, fugsi yg kotiu psti teritegrlk. Teorem 8. Jik f kotiu pd [, b], mk f teritegrlk pd [, b]. Bukti. Meurut Teorem 18 pd Bb 8, fugsi yg kotiu pd [, b] mestilh kotiu sergm pd [, b]. Kre itu, diberik > 0 sembrg, terdpt δ > 0 sedemiki sehigg utuk x, y [, b] deg x y < δ berlku f(x) f(y) < b. Seljuty, utuk tip N deg > b δ, tiju prtisi P := {x 0, x 1,..., x } deg x k = + k b, k = 0, 1,...,. (Di sii, itervl [, b] terbgi mejdi sub-itervl sm pjg.) Meurut Teorem 13 pd Bb 8, pd setip sub-itervl [x k 1, x k ], f mecpi ili mksimum M k d miimum m k, ktklh f(u k ) = M k d f(v k ) = m k.

6 114 Hedr Guw Dlm hl ii kit peroleh d kibty 0 U(P, f) L(P, f) = M k m k = f(u k ) f(v k ) < b, (M k m k )(x k x k 1 ) Dri sii kit simpulk bhw teritegrlk pd [, b]. b b =. lim [U(P, f) L(P, f)] = 0, d krey f Seli fugsi kotiu, teorem berikut meytk bhw fugsi mooto jug teritegrlk. Teorem 9. Jik f mooto pd [, b], mk f teritegrlk pd [, b]. Bukti. Tp megurgi keumum, sumsik f ik pd [, b]. Utuk tip N, tiju prtisi P := {x 0, x 1,..., x } deg x k = + k b, k = 0, 1,...,. Kre f ik pd [x k 1, x k ], mk m k = f(x k 1 ) d M k = f(x k ). Dlm hl ii kit peroleh sutu deret teleskopis (M k m k )(x k x k 1 ) = b [f(x k ) f(x k 1 )] = b [f(b) f()]. Sekrg, jik > 0 diberik, mk utuk tip N deg > b [f(b) f()] berlku 0 U(P, f) L(P, f) = (M k m k )(x k x k 1 ) <. Deg demiki f mestilh teritegrlk pd [, b]. Sol Ltih 1. Mislk f : [, b] R kotiu d f(x) 0 utuk setip x [, b]. Buktik jik L(f) = 0, mk f(x) = 0 utuk setip x [, b]. 2. Mislk f : [, b] R kotiu d, utuk setip fugsi g : [, b] R yg teritegrlk, fg teritegrlk d b f(x)g(x) dx = 0. Buktik bhw f(x) = 0 utuk setip x [, b].

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x

Lebih terperinci

BAB V INTEGRAL DARBOUX

BAB V INTEGRAL DARBOUX Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower

Lebih terperinci

Hendra Gunawan. 19 Februari 2014

Hendra Gunawan. 19 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/0 9 Februri 0 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kk kekoverge

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA0 MATEMATIKA A Hedr Guw Semester II, 06/07 0 Februri 07 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kekoverge deret

Lebih terperinci

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES 3.1 Itegrl Riem-Stieltjes dri Fugsi Berili Rel Pd seelumy telh dihs megei eerp kosep dsr, dim kosep-kosep ii merupk slh stu teori pedukug yg tiy k erper segi

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen.

juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen. MATERI: ) Perbed bris d deret b) Defiisi d teorem tetg deret c) Deret suku positif d uji kovergesiy d) Deret hiperhrmois e) Deret ukur f) Deret ltertig d uji kovergesiy g) Deret kus d opersiy h) Deret

Lebih terperinci

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ... Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit

Lebih terperinci

Kajian Integral Cavalieri-Wallis dan Integral Porter-Wallis serta Kaitannya dengan Integral Riemann

Kajian Integral Cavalieri-Wallis dan Integral Porter-Wallis serta Kaitannya dengan Integral Riemann J. Mth. d Its Appl. ISSN: 1829-605X Vol. 3, No. 2, Nov 2006, 81 93 Kji Itegrl Cvlieri-Wllis d Itegrl Porter-Wllis sert Kity deg Itegrl Riem Rt Sri Dewi d Sursii Jurus Mtemtik ITS Istitut Tekologi Sepuluh

Lebih terperinci

Hendra Gunawan. 21 Februari 2014

Hendra Gunawan. 21 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge

Lebih terperinci

PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real

PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real Resume PENGANTAR ANALISIS REAL Utuk Memeuhi Tugs Mt Kulih Pegtr Alisi Rel Disusu Oleh: M. ADIB JAUHARI D. P (0860009) MUHTAR SAFI I (086003) BOWO KRISTANTO (086004) ANA MARDIATUS S (086005) OKTA ARFIYANTA

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedr Guw Semester II, 2016/2017 24 Februri 2017 9.6 Deret Pgkt Kulih yg Llu Meetuk selg kekoverge deret pgkt 9.7 Opersi pd Deret Pgkt Melkuk opersi pd deret pgkt yg dikethui jumlhy

Lebih terperinci

BAB IV INTEGRAL RIEMANN

BAB IV INTEGRAL RIEMANN Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x

Lebih terperinci

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11) III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg

Lebih terperinci

Barisan dan Deret Tak Hingga

Barisan dan Deret Tak Hingga Modul Bris d Deret Tk Higg Dr. Spti Whyuigsih, M.Si. M PENDAHULUAN odul ii meyjik kji tetg Bris d Deret Tk Higg. Kji tetg bris d deret memegg per sgt petig kre sebgi dsr utuk pembhs Itegrl Tetu. Bris d

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg

Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg Estimsi Koefisie Fugsi Regulr- Dri kels Fugsi Alitik Bieberbch-Eilemberg Oleh Edg Chy M.A Jurus Mtemtik FPMIPA UPI Abstrk Tulis ii mejelsk tetg estimsi koefisie fugsi regulr- yg dideretk, sebgi fugsi yg

Lebih terperinci

Barisan bilangan real Pengaturan bilangan real dalam indeks terurut

Barisan bilangan real Pengaturan bilangan real dalam indeks terurut + e - e Bris bilg rel Pegtur bilg rel dlm ideks terurut dimk bris. Bris bilg rel,,, ditulis { } =, tu disigkt { }. Secr forml, bris (tk higg) ii didefiisik sebgi fugsi deg derh sl himpu bilg sli. Ilustrsi

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan ) Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of

Lebih terperinci

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler

Lebih terperinci

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik

Lebih terperinci

PENGANTAR TEORI INTEGRAL

PENGANTAR TEORI INTEGRAL BAB 6 PENGANTAR TEORI INTEGRAL Oe c ot uderstd... the uiverslity of lw of ture, the reltioship of thigs, without uderstdig of mthemtics. There is o wy to do it. Richrd P FEYNMAN 6. Pedhul Dlm klkulus sisw

Lebih terperinci

Barisan bilangan real Pengaturan bilangan real dalam indeks terurut

Barisan bilangan real Pengaturan bilangan real dalam indeks terurut Koko Mrtoo FMIPA - ITB 7 Bris bilg rel Pegtur bilg rel dlm ideks terurut dimk bris. Bris bilg rel,,, ditulis { } =, tu disigkt { }. Secr forml, bris (tk higg) ii didefiisik sebgi fugsi deg derh sl himpu

Lebih terperinci

DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh :

DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh : DERET FOURIER Oleh : Nm :. Neti Okmyti 7..6). Reto Fti Amh 7..6). Feri Febrisyh 7..8) Kels : 6. Mt Kulih : Mtemtik jut Dose Pegsuh : Fdli, S.Si FAKUTAS KEGURUAN DAN IMU PENDIDIKAN UNIVERSITAS PGRI PAEMBANG

Lebih terperinci

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil

Lebih terperinci

Rank Matriks Atas Ring

Rank Matriks Atas Ring Rk Mtriks Ats Rig A 8 Yuliyti Di Prtiwi (Mhsisw S2 Mtemtik FMIPA UGM) Mifth Sigit Rhmwti (Mhsisw S2 Mtemtik FMIPA UGM); N Fitri (Mhsisw S2 Mtemtik FMIPA UGM); Sri Whyui (Dose PS S2 Mtemtik Jurus Mtemtik

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/

Lebih terperinci

Integral Riemann-Stieltjes Pada Fungsi Bernilai Real. The Riemann-Stieltjes Integral for Real Function

Integral Riemann-Stieltjes Pada Fungsi Bernilai Real. The Riemann-Stieltjes Integral for Real Function Itegrl Riem-Stieltjes Pd Fugsi Berili Rel Septi Mosl Pirde 1, Tohp Murug 2, Julli Titley 3* 1,2,3 Progrm Studi Mtemtik, Fkults Mtemtik d Ilmu Pegethu Alm, Uiversits Sm Rtulgi Mdo *correspodig uthor emil:

Lebih terperinci

DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA

DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA Muslih 1), Sutrim 2) d Supriydi Wiowo 3) 1,2,3) Jurus Mtemtik FMIPA UNS, muslih_mus@yhoo.om, zutrim@yhoo.om, supriydi_w@yhoo.o.id Astrk

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

ANALISIS REAL I. (M4) untuk setiap a R, a 0 terdapat R sedemikian hingga a. = 1 dan. a =

ANALISIS REAL I. (M4) untuk setiap a R, a 0 terdapat R sedemikian hingga a. = 1 dan. a = ANALISIS REAL I BAB I BILANGAN REAL Pd bb ii dibhs sift-sift petig dri sistem bilg rel R, seperti sift-sift ljbr, urut, d ketksm. Seljuty, k diberik beberp pegerti seperti bilg rsiol, hrg mutlk, himpu

Lebih terperinci

KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES

KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES JMP : Volume 4 Nomor 1, Jui 2012, hl. 59-68 KETAKSAMAAN HERMITE-HADAMARD TERHADAP INTEGRAL RIEMANN-STIELTJES Dey Ivl Hkim Deprteme Mtemtik Istitut Tekologi Bdug Bdug 40132, Idoesi dy_hkm@yhoo.com Hedr

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm

Lebih terperinci

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc. Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh

Lebih terperinci

CARA LAIN MENENTUKAN TAKSIRAN ERROR UNTUK METODE INTEGRAL NUMERIK ABSTRACT ABSTRAK

CARA LAIN MENENTUKAN TAKSIRAN ERROR UNTUK METODE INTEGRAL NUMERIK ABSTRACT ABSTRAK CARA LAIN MENENTUKAN TAKSIRAN ERROR UNTUK METODE INTEGRAL NUMERIK D. S. Wti 1, M. Imr, L. Deswit 1 Mhsisw Progrm Studi S1 Mtemtik Dose Jurus Mtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uiversits Riu Kmpus

Lebih terperinci

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A

Lebih terperinci

Penyelesaian Persamaan Linier Simultan

Penyelesaian Persamaan Linier Simultan Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d

Lebih terperinci

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug

Lebih terperinci

IDENTIFIKASI RING DENGAN SIFAT UNIQUELY MORPHIC

IDENTIFIKASI RING DENGAN SIFAT UNIQUELY MORPHIC Prosidig FMIPA Uiversits Pttimur 03 ISBN: 978-60-975-0-5 IDENTIFIKASI RING DENGAN SIFAT UNIQUELY MORPHIC Hery Willym Michel Ptty Zeth Arthur Leleury Jurus Mtemtik FMIPA Uiversits Pttimur Jl Ir M Putuhe,

Lebih terperinci

BARISAN DAN DERET BARISAN DAN DERET. U n. 2 n. 2 a = suku pertama = U 1 b = beda deret = U n U n 1. I. Perngertian Barisan dan Deret

BARISAN DAN DERET BARISAN DAN DERET. U n. 2 n. 2 a = suku pertama = U 1 b = beda deret = U n U n 1. I. Perngertian Barisan dan Deret BARISAN DAN DERET I. Pergerti Bris d Deret Bris bilg dlh pemet dri bilg sli ke bilg rel yg diurutk meurut tur tertetu. U III. Deret Geometri Ciriy : rsio tetp U = r S r = r S r = r = bilg sli U = suku

Lebih terperinci

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1 Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*

Lebih terperinci

Sistem Bilangan dan Kesalahan. Metode Numerik

Sistem Bilangan dan Kesalahan. Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN SUMBER BELAJAR PENUNJANG PLPG 207 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN Dr. Djdir, M.Pd. Dr. Ilhm Miggi, M.Si J fruddi,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si

Lebih terperinci

Modul II Limit Limit Fungsi

Modul II Limit Limit Fungsi Modul II Limit Kosep it merupk sutu kosep dsr yg petig utuk memhmi klkulus dieresil d itegrl Oleh kre itu seelum kit mempeljri leih ljut tetg klkulus diresil d itegrl, mk kit terleih dhulu hrus mempeljri

Lebih terperinci

TEOREMA DERET PANGKAT

TEOREMA DERET PANGKAT TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (

Lebih terperinci

MATERI LOGARITMA. Oleh : Hartono

MATERI LOGARITMA. Oleh : Hartono MATERI LOGARITMA Oleh : Hrtoo Mteri dispik pd Peltih Mpel Mtetik SMA/ SMK Progr Pscsrj UNY Yogykrt 01 Kopetesi Kopetesi yg dihrpk dicpi oleh pr pesert setelh ebc odul ii d egikuti peltih dlh pu : ehi kosep

Lebih terperinci

DERET PANGKAT TAK HINGGA

DERET PANGKAT TAK HINGGA DERET PANGKAT TAK HINGGA DERET PANGKAT Defiisi deret pgkt : C ( ) c c ( ) c ( ) c ( )... o dim dlh vribel c d dlh kostt Perhtik bhw dlm otsi deret pgkt telh segj memilih ideks ol utuk meytk suku pertm

Lebih terperinci

MATA KULIAH : MATEMATIKA II POKOK BAHASAN :

MATA KULIAH : MATEMATIKA II POKOK BAHASAN : MT KULIH : MTEMTIK II POKOK HSN :. INTEGRL TK TENTU. INTEGRL TERTENTU SEGI LIMIT JUMLH. SIFT-SIFT INTEGRL TERTENTU. TEOREM-TEOREM DSR DLM KLKULUS. EERP TERPN DLM INTEGRL TERTENTU. INTEGRL NUMERIK UKU PEGNGN

Lebih terperinci

DETERMINAN MATRIKS dan

DETERMINAN MATRIKS dan DETERMINN MTRIKS d TRNSFORMSI ELEMENTER gusti Prdjigsih, M.Si. Jurus Mtemtik FMIP UNEJ tiprdj.mth@gmil.com DEFINISI Utuk setip mtriks bujursgkr berordo x dpt dikitk deg tuggl sutu bilg rel yg dimk determi.

Lebih terperinci

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi

Lebih terperinci

DERET PANGKAT TAK HINGGA

DERET PANGKAT TAK HINGGA DERET PANGKAT TAK HINGGA TEOREMA-TEOREMA PENTING TERKAIT DERET PANGKAT TEOREMA-TEOREMA PENTING. Itegrsi d diferesisi deret pgkt dpt dilkuk per suku, yitu: ( ) d p q d d ( ) q p d d ( ) ( ) d, d p, q Selg

Lebih terperinci

Rencana Pembelajaran

Rencana Pembelajaran http://dgmursit.stff.telkomuiversity.c.id/ Lerig Outcome Rec Pemeljr Setelh megikuti proses pemeljr ii, dihrpk mhsisw dpt ) Meetuk ti turu dri seuh fugsi ) Meyelesik itegrl tetu deg itegrsi ke-x d itegrsi

Lebih terperinci

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT) SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki

Lebih terperinci

DERET TAK HINGGA. Deret Geometri Suatu deret yang berbentuk: Dengan a 0 dinamakan deret geometri. Kekonvergenan: divergen jika r 1 Bukti:

DERET TAK HINGGA. Deret Geometri Suatu deret yang berbentuk: Dengan a 0 dinamakan deret geometri. Kekonvergenan: divergen jika r 1 Bukti: DERET TAK HINGGA Cooh dere k higg : + + 3 + = k= k u k. Bris jumlh prsil S, deg S = + + 3 + + = k= k Defiisi Dere k higg, k= k, koverge d mempuyi jumlh S, pbil bris jumlh-jumlh prsil S koverge meuju S.

Lebih terperinci

Bab 3 SISTEM PERSAMAAN LINIER

Bab 3 SISTEM PERSAMAAN LINIER Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008 Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+

Lebih terperinci

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN. Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon

BEBERAPA TEOREMA KEKONVERGENAN PADA INTEGRAL RIEMANN. Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon Jurl Brekeg Vol. 6 No. 1 Hl. 1 18 (2012) BEBERAA TEOREMA KEKONVERGENAN ADA INTEGRAL RIEMANN VENN YAN ISHAK ILWARU 1, H. J. WATTIMANELA 2, M. W. TALAKUA 1,2, St Jurus Mtemtik FMIA UNATTI Jl. Ir. M. utuhe,

Lebih terperinci

BAGIAN KETIGA. Integral, Barisan Fungsi, Pertukaran Limit dan Integral

BAGIAN KETIGA. Integral, Barisan Fungsi, Pertukaran Limit dan Integral BAGIAN KETIGA Integrl, Brisn Fungsi, Pertukrn Limit dn Integrl 101 102 Hendr Gunwn Pengntr Anlisis Rel 103 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung)

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGRAL TENTU Apliksi Itegrl Tetu థ Lus ditr 2 kurv థ Volume ed dlm idg (deg metode ckrm d cici) థ Volume ed putr (deg metode kulit tug) థ Lus permuk ed putr థ Mome d pust mss 1 2 1. LUAS DIANTARA

Lebih terperinci

BILANGAN TETRASI. Sumardyono, M.Pd

BILANGAN TETRASI. Sumardyono, M.Pd BILAGA TETRASI Sumrdyoo, M.Pd Megp Tetrsi? Di dlm ritmetik tu ilmu berhitug, opersi hitug merupk kosep yg mt petig bhk mugki sm petigy deg kosep bilg itu sediri. Tp kehdir opersi hitug, mk tmpky musthil

Lebih terperinci

Rekursi dan Relasi Rekurens

Rekursi dan Relasi Rekurens Rekursi d Relsi Rekures Bh Kulih IF2120 Mtemtik Diskrit Oleh: Rildi Muir Progrm Studi Iformtik Sekolh Tekik Elektro d Iformtik (STEI) ITB 1 Rekursi Sebuh objek diktk rekursif (recursive) jik i didefiisik

Lebih terperinci

Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0

Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0 LJBR MTRIKS Bil kit mempui sutu sistem persm liier + + z = + + z = + z = Mk koefisie tersebut di ts disebut MTRIKS, d secr umum dpt ditulisk sbb : Jjr bilg tersebut di ts disebut MTRIKS, d secr umum dpt

Lebih terperinci

Metode Iterasi Gauss Seidell

Metode Iterasi Gauss Seidell Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier

Lebih terperinci

BAB 12 METODE SIMPLEX

BAB 12 METODE SIMPLEX METODE ANAISIS PERENCANAAN Mteri 9 : TP 3 SKS Oleh : Ke Mrti Ksikoe BAB METODE SIMPE Metode Simplex dlh metode pemrogrm liier yg mempuyi peubh (vrible) byk, sehigg dimesiy lebih dri 3. Metode simplex dpt

Lebih terperinci

TEORI PERMAINAN. Aplikasi Teori Permainan. Strategi Murni

TEORI PERMAINAN. Aplikasi Teori Permainan. Strategi Murni TEORI PERMAINAN Apliksi Teori Peri Lw pei (puy itelegesi yg s) Setip pei epuyi beberp strtegi utuk slig eglhk Two-Perso Zero-Su Ge Peri deg pei deg peroleh (keutug) bgi slh stu pei erupk kehilg (kerugi)

Lebih terperinci

BAGIAN KETIGA. Integral, Barisan Fungsi, Pertukaran Limit dan Integral

BAGIAN KETIGA. Integral, Barisan Fungsi, Pertukaran Limit dan Integral BAGIAN KETIGA Integrl, Brisn Fungsi, Pertukrn Limit dn Integrl 101 102 Hendr Gunwn Pengntr Anlisis Rel 103 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume bend

Lebih terperinci

Sifat-sifat Super Matriks dan Super Ruang Vektor

Sifat-sifat Super Matriks dan Super Ruang Vektor Sift-sift Super Mtriks d Super Rug Vektor Cturiyti Jurus Pedidik Mtetik FMIPA UNY wcturiyti@yhoo.co Abstrk Sutu triks yg elee-eleey erupk bilg disebut deg triks sederh tu lebih dikel deg triks. Sedgk supertriks

Lebih terperinci

A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri

A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri A. Bis Geometi ).Defiisi bis geometi Sutu bis yg suku-sukuy dipeoleh deg c meglik suku sebelumy deg sutu kostt (sio/pembdig) tu ili kost. Betuk umum bis geometi (deg suku wl d sio ) dlh : + + + +... +

Lebih terperinci

Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú.

Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú. x x g x x erh ditsi kurv = (x) deg (x), gris x =, gris x =, d sumu x. = {(x,) x, (x)} Lus derh dlh. L = lim x x = x erh ditsi kurv = (x), kurv = g(x), deg (x) g(x), gris x =, d gris x =. = {(x,) x, g(x)

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bmbg Irwto Jurus Mtemtik FMIPA UNDIP Abstct I this er, it ws lered of the ecessry d sufficiet coditio for

Lebih terperinci

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel Sitek Vol 5. No 3 Thu 1 Peyelesi Alitik d Peodel Fugsi Bessel Lily Yhy Jurus Mtetik Fkults MIPA Uiersits Negeri Gorotlo bstrk Dl klh ii k dilkuk peyelesi litik d peodel pers diferesil Bessel sert eujukk

Lebih terperinci

BAB 2 SISTEM BILANGAN DAN KESALAHAN

BAB 2 SISTEM BILANGAN DAN KESALAHAN Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg

Lebih terperinci

1. Bilangan Berpangkat Bulat Positif

1. Bilangan Berpangkat Bulat Positif N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 PAKET. Sit: SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN. ~ p q p ~ q. ~ p q~ p ~ q Jdi, igkr dri pert dlh Air sugi melup d kot tidk kejir tu eerp wrg kot tidk hidup mederit. []. Sit:. p q ~ q ~

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

Persamaan Linier Simultan

Persamaan Linier Simultan Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel

Lebih terperinci

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN Yo Hedri 1* Asmr Krm Musrii 1 Mhsisw Progrm S1 Mtemtik Dose JurusMtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uiversits Riu

Lebih terperinci

Contoh Soal log 9 = 2 b. 5 log 1 = log 32 = 2p. Jawab: log 9 = 2 9 = log 1 = 3 1 =

Contoh Soal log 9 = 2 b. 5 log 1 = log 32 = 2p. Jawab: log 9 = 2 9 = log 1 = 3 1 = Ifo Mth Joh Npier (0 67). Cotoh Sol. Nytk logrit berikut dl betuk pgkt.. log 9 = log = log = p Jwb:. log 9 = 9 = log = = Suber: ctiques.krokes.free.fr Metode logrit pert kli dipubliksik oleh tetikw Scotldi,

Lebih terperinci

Rangkuman Materi dan Soal-soal

Rangkuman Materi dan Soal-soal Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy

Lebih terperinci

Rangkuman Materi dan Soal-soal

Rangkuman Materi dan Soal-soal Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds

Lebih terperinci

Teorema-Teorema Kekonvergenan pada Integral Riemann, Lebesgue dan Henstock

Teorema-Teorema Kekonvergenan pada Integral Riemann, Lebesgue dan Henstock Prosidig Semir Nsiol Mtemtik Prodi Pedidik Mtemtik, Uiversits Muhmmdiyh Surkrt, 24 Juli 2 Teorem-Teorem Kekoverge pd Itegrl Riem, Leesgue d Hestock Rit P.Khotimh, Soepr Drmwijy 2, Ch. Rii Idrti 3, Prodi

Lebih terperinci

LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu.

LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu. LIMIT FUNGSI Teoem. f() g() f() g( ). f().g() f(). g( ) f(). f() g() f() g( ). deg g() g() g(). c.f() c. f(), c = kostt. f() f() f() Betuk Tk Tetu Betuk di dlm mtemtik d mcm, yitu :. Betuk tedefiisi (tetetu)

Lebih terperinci

Integral Tentu. Bab. Di unduh dari : Bukupaket.com. Kompetensi Dasar Dan Pengalaman Belajar

Integral Tentu. Bab. Di unduh dari : Bukupaket.com. Kompetensi Dasar Dan Pengalaman Belajar Bb 5 Itegrl Tetu Kompetesi Dsr D Peglm Beljr Kompetesi Dsr. Meghyti d megmlk gm yg diuty. Meghyti perilku disipli, sikp kerjsm, sikp kritis d cermt dlm bekerj meyelesik mslh kotekstul. Memiliki d meujukk

Lebih terperinci

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: jo@ee.it.c.id Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh

Lebih terperinci

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1 METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D

Lebih terperinci

Bentuk Kanonik Persamaan Ruang Keadaan. Institut Teknologi Sepuluh Nopember

Bentuk Kanonik Persamaan Ruang Keadaan. Institut Teknologi Sepuluh Nopember Betuk Koik Persm Rug Ked Istitut Tekologi Sepuluh Nopember Pegtr Mteri Betuk Koik Observble Betuk Koik Jord Cotoh Sol Rigks Ltih Asesme Pegtr Mteri Cotoh Sol Ltih Rigks Pd bgi ii k dibhs megei Persm Ked

Lebih terperinci

Bab 3. Penyelesaian Sistem Persamaan Linier (SPL)

Bab 3. Penyelesaian Sistem Persamaan Linier (SPL) Bb. Peelesi Sistem Persm Liier (SPL) Yuli Setiowti Politekik Elektroik Negeri Surb 7 Topik Defiisi SPL Betuk Mtrik SPL Augmeted Mtrik Peelesi SPL Opersi-opersi Dsr (Elemetr Opertios) Sistem equivlet Opersi

Lebih terperinci