Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ukuran: px
Mulai penontonan dengan halaman:

Download "Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang"

Transkripsi

1 ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang 2 yang dibentuk dari garis 2 yang sejajar dengan sumbu-x dan sumbu-y seperti pada gambar di atas. Sebut partisi tersebut sebagai k, k = 1, 2,,n. Perhatikan persegipanjang ke k, yaitu k. Luasnya adalah A k = x k y k. Selanjutnya pilih titik wakil (x k, y k ) k. Perhatikan balok yang terbentuk dengan alas k dan tinggi f(x k, y k ). Volumenya adalah f(x k, y k ) A k (lihat gambar di atas yang di tengah). Jumlah iemann dari z = f(x, y) atas partisi P adalah: n J = f(x k, y k ) A k k=1 Mialkan P adalah elemen partisi yang paling luas, integral lipat dua atas daerah adalah: n f(x k, y k ) A k f(x, y) da = lim P 0 k=1 Sifat (jaminan integral lipat dua ada): Bila fungsi f(x, y) terdefinisi pada persegipanjang tertutup dan kontinu (kecuali mungkin di sebanyak berhingga titik) maka f terintegralkan. UL:materikuliah.math.itb.ac.id

2 ingkasan Kalkulus 2, Untuk dipakai di ITB 2 Secara geometri, bila f(x, y) 0, integral lipat dua menyatakan volume benda yang alasnya dan atapnya permukaan z = f(x, y). Bila ada daerah dengan f(x, y) 0, integral lipat dua menyatakan volume benda pada daerah z positif dikurangi volume benda pada daerah z negatif (lihat gambar di samping). Sifat 2 : a. kf(x, y) da = k f(x, y) da (f(x, y) + g(x, y)) da = f(x, y) da + g(x, y) da b. Jika = 1 2 maka f(x, y) da = f(x, y) da + f(x, y) da 1 2 c. Jika f(x, y) g(x, y) maka f(x, y) da g(x, y) da d. 1 da = A dengan A adalah luas daerah. UL:materikuliah.math.itb.ac.id

3 ingkasan Kalkulus 2, Untuk dipakai di ITB 3 Latihan: 1. Misalkan = {(x, y) : 0 x 3, 0 y 3}. Tentukan 1 0 x 3, 0 y 1 f(x, y) da bila f(x, y) = 2 0 x 3, 1 < y x 3, 2 < y 3 2. Misalkan = {(x, y) : 0 x 4, 0 y 8}. Tentukan jumlah 64 8x + y 2 iemann dari da dengan membagi atas empat bagian yang 16 sama dan titik wakilnya dipilih pusat dari masing-masing persegipanjang. UL:materikuliah.math.itb.ac.id

4 ingkasan Kalkulus 2, Untuk dipakai di ITB 4 Perhitungan Integral Lipat Sebagai Integral Berulang Pada pasal ini akan dibahas cara menghitung integral lipat dua atas daerah persegipanjang untuk fungsi sebarang. Perhatikan f(x, y) atas daerah = {(x, y) : a x b, c y d}. Pembahasan rumus berikut akan berlaku untuk sebarang fungsi f, namun demikian untuk memudahkan intepretasi geometri, diambil f(x, y) > 0. Irislah benda yang akan dihitung volumenya (gambar paling kiri) menjadi keping-keping tipis yang sejajar dengan bidang xz (gambar tengah). Misalkan lebar keping tersebut y. Luas permukaan keping tersebut hanya bergantung pada posisi y (jelaskan!), notasikan A(y). Volume keping tipis tersebut adalah V = A(y) y. Dengan demikian volume benda adalah: V = d c A(y) dy Dilain pihak, luas permukaan keping sejauh y dari bidang xz (y konstanta) adalah b a f(x, y) dx. Dengan demikian volume benda adalah: V = d c [ b a ] f(x, y) dx dy Alternatif lain bila kita membuat irisan kepingnya sejajar dengan bidang yz maka rumus yang diperoleh adalah b [ d ] V = f(x, y) dy dx a c Hati 2 : Batas-batas integrasi harus sesuai dengan urutan perhitungan integral. UL:materikuliah.math.itb.ac.id

5 ingkasan Kalkulus 2, Untuk dipakai di ITB 5 Contoh-contoh: 4 [ 2 ] 1. Hitung 6x 2 y dx 2 1 dy 2. Hitung soal no 1. dengan urutan pengintegralan yang berbeda. 3. Hitung volume benda dibawah permukaan f(x, y) = x 2 + y pada = {(x, y) : 1 x 1, 0 y 2} dan di atas bidang z = 1. Integral Lipat Dua atas Daerah Sebarang Perhitungan integral lipat atas daerah sebarang secara umum sulit dilakukan. Kita akan melihatnya pada dua jenis daerah berikut: S = {(x, y) : a x b, φ 1 (x) y φ 2 (x)} disebut y-sederhana S = {(x, y) : ψ 1 (y) x ψ 2 (y), c y d} disebut x-sederhana Jenis daerah lain yang tidak termasuk ke dalam dua tipe di atas pada umumnya dapat dipartisi menjadi beberapa bagian yang masing-masingnya berbentuk daerah x-sederhana atau y-sederhana. Diskusi: a. Adakah daerah yang sekaligus x-sederhana dan y-sederhana? b. Carilah daerah yang tidak dapat dipartisi jadi bagian-bagian daerah x-sederhana dan y-sederhana. UL:materikuliah.math.itb.ac.id

6 ingkasan Kalkulus 2, Untuk dipakai di ITB 6 Untuk daerah y-sederhana, rumus integrasinya adalah sebagai berikut: [ b ] φ2 (x) f(x, y) da = f(x, y) dy dx a φ 1 (x) dengan argumentasi serupa, rumus untuk daerah x- sederhana: [ d ] ψ2 (x) f(x, y) da = f(x, y) dx dy Contoh 2 : 1. Hitung 1 y c 2ye x dx dy ψ 1 (x) 2. Hitung volume benda pada oktan pertama yang terletak diantara paraboloida z = x 2 + y 2 dan silinder x 2 + y 2 = Hitung y 2 e x2 dx dy (petunjuk: gambar daerah integrasinya lalu ubah urutan integrasinya) UL:materikuliah.math.itb.ac.id

7 ingkasan Kalkulus 2, Untuk dipakai di ITB 7 Integral Lipat Dua pada Koordinat Polar Seringkali daerah integrasi dari integral lipat dua berbentuk sebuah busur. Daerah seperti ini lebih mudah direpresentasikan dalam bentuk koordinat polar ketimbang dalam koordinat kartesius. Perhatikan sistem koordinat polar seperti terlihat pada gambar di samping. Di sini sebuah titik pada bidang dinyatakan sebagai (r, θ) dengan r menyatakan jarak dari titik pusat koordinat dan θ adalah sudut yang dibentuk antara sumbu polar dengan garis yang menghubungkan pusat koordinat dan titik tersebut. Hubungan titik di koordinat kartesius dan koordinat polar adalah: x = r cosθ dan y = r sin θ Perhatikan sebuah persegi panjang polar (gambar di atas, sebelah kiri) = {(r, θ) : a r b, α θ β}. Fungsi dua peubah z = f(x, y) terdefinisi pada daerah tersebut (gambar sebelah kanan). Dalam bentuk polar, fungsi tersebut berbentuk z = f(r cos θ, r sin θ) Perhatikan persegipanjang (pp) polar di samping. Partisikan pp tersebut atas n bagian. Selanjutnya perhatikan elemen partisi ke k. Ukuran elemen ini adalah r k dan θ k. Pilih wakil ( r k, θ k ) dengan r k titik tengah antara r k 1 dan r k sedangkan θ k sebarang. Luas elemen ini adalah A k = r k r k θ k (buktikan!) Bila z = f(x, y) > 0 maka volume benda di atas elemen tersebut adalah: V = f( r k cos θ k, r k sin θ k ) r k r k θ k UL:materikuliah.math.itb.ac.id

8 ingkasan Kalkulus 2, Untuk dipakai di ITB 8 Dengan demikian, volume benda di bawah permukaan f(x, y) dan di atas daerah adalah: V = f(r cosθ, r sin θ) r dr dθ Contoh: Tentukan volume benda di bawah permukaan z = e x2 +y 2 dan di atas daerah = {(r, θ) : 1 r 3, 0 θ π/4} Sebuah daerah S disebut daerah r-sederhana bila berbentuk S = {(r, θ) : φ 1 (θ) r φ 2 (θ), α θ β} Integral lipat dua atas r-sederhana: β φ2 (θ) f(x, y) da = f(r cosθ, r sinθ) r dr dθ α φ 1 (θ) Sebuah daerah S disebut daerah θ-sederhana bila berbentuk S = {(r, θ) : a r b, ψ 1 (r) θ ψ 2 (r)} Integral lipat dua atas daerah θ-sederhana: b ψ2 (r) f(x, y) da = f(r cosθ, r sin θ) r dθ dr a ψ 1 (r) UL:materikuliah.math.itb.ac.id

9 ingkasan Kalkulus 2, Untuk dipakai di ITB 9 Contoh 2 : 1. Tentukan volume benda di bawah permukaan x = x 2 + y 2 di atas bidang xoy dan di dalam silinder x 2 + y 2 = 2y 2. Gunakan koordinat polar untuk menghitung e x2 +y 2 da dengan S = {(x, y) : x 2 + y 2 4}. 3. Ubahlah dalam koordinat kartesius, lalu hitunglah 4π/3 5 secθ 3π/4 0 r 3 sin 2 θ dr dθ UL:materikuliah.math.itb.ac.id

10 ingkasan Kalkulus 2, Untuk dipakai di ITB 10 Momen dan Pusat Massa Perhatikan sebuah lamina (keping tipis 2 dimensi) tak homogen S (gambar sebelah kiri). Misalkan rapat masssanya adalah δ(x, y). Partisikan S atas pp-pp kecil seperti pada gambar sebelah kanan. Perhatikan elemen ke k. Pilih wakil ( x k, ȳ k ). Massa elemen ini adalah m = δ( x k, ȳ k ) A k. Massa lamina: m = δ(x, y) da Sedangkan momen terhadap sumbu x dan sumbu y masing-masing: M x = yδ(x, y) da dan M y = xδ(x, y) da Pusat massa dari lamina: ( x, ȳ) = ( M y m, M x m ) Contoh 2 : 1. Sebuah lamina dengan rapat massa δ(x, y) = xy dibatasi oleh sumbu-x, garis x = 8 dan kurva y = x 2 3. Tentukan massa dan pusat massanya. 2. Sebuah lamina berbentuk seperempat linkaran berjari-jari a, rapat massanya sebanding dengan jaraknya dari pusat lingkaran tersebut. Tentukan pusat massanya (gunakan koordinat [polar). UL:materikuliah.math.itb.ac.id

11 ingkasan Kalkulus 2, Untuk dipakai di ITB 11 Momen Inersia Perhatikan sebuah benda (berbentuk titik) bermassa m dan berjarak sejauh r dari suatu garis. Momen inersia dari benda didefinisikan sebagai: momen inersia : I = mr 2 Sekarang perhatikan sebuah lamina pada bidang xy. Misalkan rapat massanya δ(x, y). Momen inersia benda terhadap sumbu-x, sumbu-y dan pusat koordiant adalah: I x = y 2 δ(x, y) da, I y = x 2 δ(x, y) da dan I z = (x 2 + y 2 ) δ(x, y) da = I x + I y Contoh: Tentukan momen inersia terhadap sumbu-x, sumbu-y dan pusat koordinat dari dua contoh terakhir. I Jari-jari girasi didefinisiakan sebagai : r = m. UL:materikuliah.math.itb.ac.id

12 ingkasan Kalkulus 2, Untuk dipakai di ITB 12 Persamaan Diferensial Persamaan diferensial (Biasa), disingkat PD, adalah persamaan yang melibatkan turunanturunan dari suatu fungsi f(x). contoh 2 : 1. y + 2 sinx = 0 2. d2 y dx 2 + 3x dy dx 2y = 0 3. y + (y ) 5 e x = 0 Turunan tertinggi yang muncul pada suatu PD disebut orde dari PD tersebut. Pada contoh di atas ordenya masing-masing satu, dua dan tiga. Fungsi y = f(x) disebut solusi dari suatu PD bila fungsi tersebut memenuhi PD tersebut. Sebagai contoh fungsi y = sinx merupakan solusi dari y + y = 0 (tunjukan!). Fungsi y = cosx, juga merupakan solusi dari PD tersebut. Secara umum solusinya berbentuk y = A sin x+b cosx dengan A dan B konstanta. Solusi umum dari PD orde n selalu memuat n buah konstanta. Bila sebuah PD dilengkapi dengan syarat-syarat maka konstanta pada solusi umum dapat dieliminasi. Solusi ini disebut solusi khusus. Sebagai ilustrasi bila PD y + y = 0 dilengkapi syarat y(0) = 3 dan y (0) = 0 maka solusi khususnya y = 3 cosx PD linear orde n: y (n) + a 1 (x) y (n 1) + + a n 1 (x) y + a n (x) y = k(x) Fungsi a 1 (x), a 2 (x),, a n (x) disebut koefisien dari PD linear tersebut. Perkuliahan ini akan membahas pencarian solusi untuk PD linear orde satu dan orde dua saja. UL:materikuliah.math.itb.ac.id

13 ingkasan Kalkulus 2, Untuk dipakai di ITB 13 Perasamaan Diferensial Linear Orde Satu Bentuk Umum : y + p(x) y = q(x) Tetapkan faktor pengintegral e p(x)dx, lalu kalikan pada PD semula. y e p(x)dx + y p(x) e p(x)dx = q(x) e p(x)dx d dx [y e p(x)dx ] = q(x) e p(x)dx y e p(x)dx = q(x) e p(x)dx dx Contoh: y = e p(x)dx q(x) e p(x)dx dx 1. Tentukan solusi dari dy dx + 2 x y = sin(3x) x 2, y(1) = Tangki berisi 120 liter air asin, mengandung 75 gram garam. Air asin yang berisi 1,2 gram garam per liter memasuki tangki dengan laju 2 liter/menit dan air asin keluar dari tangki dengan laju sama. Jika larutan garam dalam tangki selalu homogen, tentukan konsentrasi garam dalam tangki setelah 1 jam dan setelah 100 jam. Tugas baca: Kalkulus Purcell (terjemahan bahasa Indonesia) Edisi 5 hal 437, tentang kelistrikan. UL:materikuliah.math.itb.ac.id

14 ingkasan Kalkulus 2, Untuk dipakai di ITB 14 Persamaan Diferensial Linear Orde Dua Bentuk Umum : y + a 1 (x) y + a 2 (x) y = k(x) Pembahasan akan dilakukan hanya untuk a 1 (x) dan a 2 (x) berupa fungsi konstan, yaitu y + a 1 y + a 2 y = k(x) Bila k(x) = 0 maka PD tersebut disebut PD linear orde 2 homogen. Untuk mencari solusi PD linear homogen (dengan koefisien konstan), kita harus mencari dahulu solusi PD homogennya. Perhatikan PD linear orde dua homogen berikut: y + a 1 y + a 2 y = 0 Misalkan solusinya adalah y = e rx dengan r suatu konstanta. Kita harus menentukan nilai r. Substitusikan solusi ini pada PD homogen semula: r 2 e rx + a 1 re rx + a 2 e rx = 0 ( r 2 + a 1 r + a 2 ) e rx = 0 r 2 + a 1 r + a 2 = 0 (disebut persamaan karakteristik) Misalkan r 1 dan r 2 solusi persamaan karakteristik tersebut, maka tiga bentuk yang mungkin terjadi a. r 1 & r 2 real berbeda, solusi PD homogen: y = c 1 e r 1x + c 2 e r 2x b. r 1 & r 2 real kembar, solusi PD homogen: y = c 1 e r 1x + c 2 xe r 1x c. r 1 & r 2 kompleks r 1 = α + β i dan r 2 = α β i solusi PD homogen: y = c 1 e αx sin(βx) + c 2 e αx cos(βx) Contoh: Tentukan solusi umum dari PD berikut: 1. y 2y y = 0 2. y 6y + 9y = 0 3. y 4y + 13y = 0 4. y + y = 0 UL:materikuliah.math.itb.ac.id

15 ingkasan Kalkulus 2, Untuk dipakai di ITB 15 Sekarang kita akan mencari solusi umum dari PD linear orde dua tak homogen. Perhatikan PD tak homogen y + a 1 y + a 2 y = k(x) Tahap pencarian solusinya adalah sebagai berikut: Cari solusi PD homogennya, misalkah y h = c 1 u 1 (x) + C 2 u(2x) Fungsi u 1 (x) dan u 2 (x) disebut solusi fundamental. Cari sebuah solusi PD tak homogennya, misalkan y p. Solusi umum PD tak homogen adalah y = y h + y p. Mencari y h sudah dibahas, jadi sekarang tinggal mencari sebuah y p. Ada dua metode pencarian y p yang akan dibahas: Metode koefisien tak tentu (metode coba-coba) Metode variasi parameter Metode Koefisien Tak Tentu Metode ini hanya dapat dipakai untuk beberapa bentuk dari k(x) seperti yang tercantum pada tabel berikut: k(x) a. ce αx te αx b. c cos(αx) d sin(αx) c cos(αx) + d sin(αx) y p dimisalkan s cos(αx) + t sin(αx) c. c 0 + c 1 x + + c n x n t 0 + t 1 x + + t n x n Solusi y p dimisalkan seperti yang tercantum pada kolom tiga, dengan catatan: Bila k(x) merupakan kombinasi linear dari bentuk (a), (b) dan (c) maka pemisalan y p juga diambil dari kombinasi kolom ketiga. Bila pemisalan y p bentuknya sama dengan solusi fundamental, maka pemisalan tersebut harus dikali dengan x atau x 2 sampai bentuk pemisalan tersebut tidak sama dengan solusi fundamental. UL:materikuliah.math.itb.ac.id

16 ingkasan Kalkulus 2, Untuk dipakai di ITB 16 Contoh 2 : 1. y 3y 4y = 3x y + 2y = 3x y + 4y = sin(2x) 4. y 3y 4y = 3e x + 3x Metode Variasi Parameter Metode ini dapat dipakai untuk sebarang bentuk k(x). Perhatikan kembali PD tak homogen y + a 1 y + a 2 y = k(x). Misalkan solusi homogennya y h = c 1 u 1 (x) + c 2 u 2 (x). Salosi y p yang memenuhi PD tak homogennya adalah: y p = v 1 (x) u 1 (x) + v 2 (x) u 2 (x) dengan v 1 dan v 2 fungsi-fungsi yang memenuhi hubungan { v 1 u 1 + v 2 u 2 = 0 v 1 u 1 + v 2 u 2 = k(x) Contoh: Tentukan solusi umum PD y + y = sec x. Tugas Baca: Penerapan PD linear orde 2 pada masalah pegas. UL:materikuliah.math.itb.ac.id

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x,y) pada = {(x,y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Penerapan Integral Lipat-Dua Atina Ahdika,.i, M.i tatistika FMIPA Universitas Islam Indonesia 214 Penerapan Integral Lipat-Dua Penerapan Integral Lipat-Dua Penerapan lain dari integral lipat-dua antara

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Integral Lipat-Dua dalam Koordinat Kutub Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 214 / 2 Integral Lipat-Dua dalam Koordinat Kutub Terdapat beberapa kurva tertentu pada suatu

Lebih terperinci

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN LINIER NON HOMOGEN Contoh PD linier non homogen orde 2. Bentuk umum persamaan PD Linier Non Homogen Orde 2, adalah sebagai berikut : y + f(x) y + g(x) y = r(x) ( 2-35) Solusi umum y(x) akan didapatkan

Lebih terperinci

BAB VI INTEGRAL LIPAT

BAB VI INTEGRAL LIPAT BAB VI INTEGRAL LIPAT 6.1 Pendahuluan Pada kalkulus dan fisika dasar, kita melihat sejumlah pemakaian integral misal untuk mencari luasan, volume, massa, momen inersia, dsb.nya. Dalam bab ini kita ingin

Lebih terperinci

PD Orde 2 Lecture 3. Rudy Dikairono

PD Orde 2 Lecture 3. Rudy Dikairono PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order

Lebih terperinci

SIFAT-SIFAT INTEGRAL LIPAT

SIFAT-SIFAT INTEGRAL LIPAT TUGAS KALKULUS LANJUT SIFAT-SIFAT INTEGAL LIPAT Oleh: KAMELIANI 46 JUUSAN MATEMATIKA FAKULTAS MATEMATIKA AN ILMU PENGETAHUAN ALAM UNIVESITAS NEGEI MAKASSA 4 SIFAT-SIFAT INTEGAL LIPAT A. SIFAT-SIFAT INTEGAL

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Persamaan Diferensial Orde II PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4] PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan

Lebih terperinci

PERSAMAAN DIFFERENSIAL LINIER

PERSAMAAN DIFFERENSIAL LINIER PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Integral Lipat-Dua dalam Koordinat Kutub Statistika FMIPA Universitas Islam Indonesia Terdapat beberapa kurva tertentu pada suatu bidang yang lebih mudah dijelaskan dengan menggunakan koordinat Kutub.

Lebih terperinci

1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih

1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih ] 1 Pada Bab 1 ini akan dibahas antara lain sebagai berikut. 1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih Tema sentral dari bab ini adalah kalkulus dari fungsi peubah

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Statistika FMIPA Universitas Islam Indonesia Salah satu jenis generalisasi integral tentu b f (x)dx diperoleh dengan menggantikan himpunan [a, b] yang kita integralkan menjadi himpunan berdimensi dua dan

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom [MA1124] KALKULUS II Program Peruliahan asar Umum Seolah Tinggi Tenologi Telom Integral Lipat ua [MA4] Integral Lipat ua Misalan z f(,) terdefinisi pada merupaan suatu persegi panjang tertutup, aitu : {(, ) : a b, c d} b a

Lebih terperinci

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda 1 Benda tegar Pada pembahasan mengenai kinematika, dinamika, usaha dan energi, hingga momentum linear, benda-benda yang bergerak selalu kita pandang sebagai benda titik. Benda yang berbentuk kotak misalnya,

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

MACLAURIN S SERIES. Ghifari Eka

MACLAURIN S SERIES. Ghifari Eka MACLAURIN S SERIES Ghifari Eka Taylor Series Sebelum membahas mengenai Maclaurin s series alangkah lebih baiknya apabila kita mengetahui terlebih dahulu mengenai Taylor series. Misalkan terdapat fungsi

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d INTEGAL ANGKAP. Integral angkap Dua. Volume dan Pusat Massa. Integral angkap Tiga.4 Koordinat Tabung dan Koordinat Bola.. Intergral angkap Dua Misal diberikan daerah di bidang XOY ang berbentuk persegi

Lebih terperinci

Persamaan Di erensial Orde-2

Persamaan Di erensial Orde-2 oki neswan FMIPA-ITB Persamaan Di erensial Orde- Persamaan diferensial orde-n adalah persamaan yang melibatkan x; y; dan turunan-turunan y; dengan yang paling tinggi adalah turunan ke-n: F x; y; y ; y

Lebih terperinci

MEDAN LISTRIK. Oleh Muatan Kontinu. (Kawat Lurus, Cincin, Pelat)

MEDAN LISTRIK. Oleh Muatan Kontinu. (Kawat Lurus, Cincin, Pelat) MDAN LISTRIK Oleh Muatan Kontinu (Kawat Lurus, Cincin, Pelat) FISIKA A Semester Genap 6/7 Program Studi S Teknik Telekomunikasi Universitas Telkom Medan listrik akibat muatan kontinu Muatan listrik kontinu

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I atas Persegi Panjang Integral dalam uang Berdimensi n: atas Persegi Panjang Statistika FMIPA Universitas Islam Indonesia 2014 atas Persegi Panjang Sifat-Sifat Perhitungan pada Masalah-masalah yang dipecahkan

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Bab II Konsep Dasar Metode Elemen Batas

Bab II Konsep Dasar Metode Elemen Batas Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Statistika FMIPA Universitas Islam Indonesia 214 Salah satu jenis generalisasi integral tentu b f (x)dx diperoleh dengan menggantikan himpunan [a, b] yang kita integralkan menjadi himpunan berdimensi dua

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk

Lebih terperinci

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran

Lebih terperinci

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta

INTEGRAL. disebut integral tak tentu dan f(x) disebut integran. = X n+1 + C, a = konstanta INTEGRAL Jika f(x) = F (x) adalah turunan pertama dari fungsi F(x) maka F(x) adalah antiturunan dari f(x)dan ditulis dengan F(x) = (dibaca integral f(x) terhadap x) = lambang integral, f(x) = integran.

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

BAB 2 PERSAMAAN DIFFERENSIAL BIASA

BAB 2 PERSAMAAN DIFFERENSIAL BIASA BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan

Lebih terperinci

Bagian 7 Koordinat Kutub

Bagian 7 Koordinat Kutub Bagian 7 Koordinat Kutub Bagian 7 Koordinat Kutub mempelajari bagaimana teknik integrasi yang telah Anda pelajari dalam bagian sebelumnya dapat digunakan untuk menyelesaikan soal yang berhubungan dengan

Lebih terperinci

Kalkulus Peubah Banyak Modul Pembelajaran. January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd

Kalkulus Peubah Banyak Modul Pembelajaran. January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd Kalkulus Peubah Banyak Modul Pembelajaran January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd IDENTITAS MAHASISWA NAMA : KLS/NIM :. KELOMPOK:. A l f i a n i A t h m a P u t r i R

Lebih terperinci

PERSAMAAN DIFERENSIAL BIASA ORDE SATU

PERSAMAAN DIFERENSIAL BIASA ORDE SATU PERSAMAAN DIFERENSIAL BIASA ORDE SATU Definisi: Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen x, suatu variabel dependen y, dan satu atau lebih turunan y terhadap

Lebih terperinci

Hendra Gunawan. 23 April 2014

Hendra Gunawan. 23 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 23 April 2014 Kuliah ang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13.2 Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

Kalkulus II. Institut Teknologi Kalimantan

Kalkulus II. Institut Teknologi Kalimantan Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Kalkulus Teknologi II Kalimantan January 31, () 2018 1 / 71 Kalkulus II Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Teknologi Kalimantan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I atas Persegi Panjang Integral dalam uang Berdimensi n: atas Persegi Panjang Statistika FMIPA Universitas Islam Indonesia atas Persegi Panjang Masalah-masalah yang dipecahkan dengan menggunakan integral

Lebih terperinci

Matematika Teknik Dasar-2 10 Aplikasi Integral - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 10 Aplikasi Integral - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar- 10 Aplikasi Integral - 1 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Volume Benda-Putar Sebuah bentuk bidang yang dibatasi kurva y = f(x), sumbu-x, dan

Lebih terperinci

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP

INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP A. Soal dan Pembahasan. ( x ) dx... Jawaban : INTEGRAL (ANTI DIFERENSIAL) Tito Adi Dewanto S.TP ( x) dx x dx x C x C x x C. ( x 9) dx... x Jawaban : ( x 9) dx. (x x 9) dx x 9x C x x x. (x )(x + ) dx =.

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial Orde Satu Jurusan Matematika FMIPA-Unud Senin, 18 Desember 2017 Orde Satu Daftar Isi 1 Pendahuluan 2 Orde Satu Apakah Itu? Solusi Pemisahan Variabel Masalah Gerak 3 4 Orde Satu Pendahuluan Dalam subbab

Lebih terperinci

Teorema Divergensi, Teorema Stokes, dan Teorema Green

Teorema Divergensi, Teorema Stokes, dan Teorema Green TEOREMA DIVERGENSI, STOKES, DAN GREEN Materi pokok pertemuan ke 13: 1. Teorema divergensi Gauss URAIAN MATERI Untuk memudahkan perhitungan seringkali dibutuhkan penyederhanaan bentuk integral yang berdasarkan

Lebih terperinci

Pada integral diatas, dalam mencari penyelesaiannya, pertama diintegralkan terlebih dahulu terhadap x kemudian diintegralkan lagi terhadap y.

Pada integral diatas, dalam mencari penyelesaiannya, pertama diintegralkan terlebih dahulu terhadap x kemudian diintegralkan lagi terhadap y. PENDAHULUAN Pada bagian ini akan dibahas perluasan integral tertentu ke bentuk integral lipat dua dari fungsi dua peubah Akan dibahas bentukbentuk integral lipat dalam koordinat kartesius koordinat kutub

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

Kurikulum 2013 Antiremed Kelas 11 Matematika

Kurikulum 2013 Antiremed Kelas 11 Matematika Kurikulum 03 Antiremed Kelas Matematika Turunan Fungsi dan Aplikasinya Soal Doc. Name: K3ARMATPMT060 Version: 05-0 halaman 0. Jika f(x) = 8x maka f (x). (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika

K13 Revisi Antiremed Kelas 11 Matematika K3 Revisi Antiremed Kelas Matematika Turunan - Latihan Soal Doc. Name: RK3ARMATWJB080 Version: 06- halaman 0. Jika f(x) = 8x maka f'(x) =. (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui y = sin ( π x),

Lebih terperinci

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61 Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 61 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 61 Outline 1 Garis Singgung

Lebih terperinci

Integral yang berhubungan dengan kepentingan fisika

Integral yang berhubungan dengan kepentingan fisika Integral yang berhubungan dengan kepentingan fisika 14.1 APLIKASI INTEGRAL A. Usaha Dan Energi Hampir semua ilmu mekanika ditemukan oleh Issac newton kecuali konsep energi. Energi dapat muncul dalam berbagai

Lebih terperinci

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi Bab V Aplikasi Selain aplikasi yang sudah diperkenalkan di bab I, teori variabel kompleks masih memiliki banyak ragam aplikasi lainnya. Beberapa di antaranya akan dibahas di dalam bab ini. Perhitungan

Lebih terperinci

Open Source. Not For Commercial Use

Open Source. Not For Commercial Use Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Limit dan Kekontinuan Misalkan z = f(, y) fungsi dua peubah dan (a, b) R 2. Seperti pada limit fungsi satu peubah, limit fungsi dua peubah bertujuan untuk mengamati

Lebih terperinci

Materi UTS. Matematika Optimisasi. Semester Gasal Pengajar: Hazrul Iswadi

Materi UTS. Matematika Optimisasi. Semester Gasal Pengajar: Hazrul Iswadi Materi UTS Matematika Optimisasi Semester Gasal 6-7 Pengajar: Hazrul Iswadi Daftar Isi Pendahuluan...hal Pertemuan...hal - Pertemuan...hal - 9 Pertemuan...hal - 5 Pertemuan 4...hal 6 - Pertemuan 5...hal

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t

Lebih terperinci

Listrik Statik. Agus Suroso

Listrik Statik. Agus Suroso Listrik Statik Agus Suroso Muatan Listrik Ada dua macam: positif dan negatif. Sejenis tolak menolak, beda jenis tarik menarik. Muatan fundamental e =, 60 0 9 Coulomb. Atau, C = 6,5 0 8 e. Atom = proton

Lebih terperinci

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz dan Turunan Tingkat Tinggi Penurunan Implisit Laju yang Berkaitan

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Gradien dan Gradien Statistika FMIPA Universitas Islam Indonesia dan Gradien Turunan-turunan parsial f x (x, y) dan f y (x, y) mengukur laju perubahan (dan kemiringan garis singgung) pada arah sejajar

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

BAB IV PERSAMAAN TAKHOMOGEN

BAB IV PERSAMAAN TAKHOMOGEN BAB IV PERSAMAAN TAKHOMOGEN Kompetensi Mahasiswa mampu 1. Menentukan selesaian khusus PD tak homogen dengan metode koefisien tak tentu 2. Menentukan selesaian khusus PD tak homogen dengan metode variasi

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA

SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA Hari, tanggal: Rabu, 2 April 2014 Waktu: 60 menit Nama: NIM: 1. (50 poin) Sebuah

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 7 INTEGRAL PERMUKAAN Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

Bab 1 Vektor. A. Pendahuluan

Bab 1 Vektor. A. Pendahuluan Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang

Lebih terperinci

Catatan Kuliah FI2101 Fisika Matematik IA

Catatan Kuliah FI2101 Fisika Matematik IA Khairul Basar atatan Kuliah FI2101 Fisika Matematik IA Semester I 2015-2016 Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung Bab 6 Analisa Vektor 6.1 Perkalian Vektor Pada bagian

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50 TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 5 INTEGRAL LIPAT Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI -

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus BAB 7. GERAK ROTASI 7.1. Pendahuluan Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus Sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema,

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa hal yang menjadi landasan dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

Listrik Statik. Agus Suroso

Listrik Statik. Agus Suroso Listrik Statik Agus Suroso Muatan Listrik Ada dua macam: positif dan negatif. Sejenis tolak menolak, beda jenis tarik menarik. Muatan fundamental e =, 60 0 9 Coulomb. Atau, C = 6,5 0 8 e. Atom = proton

Lebih terperinci

Keep running VEKTOR. 3/8/2007 Fisika I 1

Keep running VEKTOR. 3/8/2007 Fisika I 1 VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Irisan Kerucut animation 1 animation 2 Irisan kerucut adalah kurva ang terbentuk dari perpotongan antara sebuah kerucut dengan bidang datar. Kurva irisan ini

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq

MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO REFERENSI E-BOOK REFERENSI ONLINE SOS Mathematics http://www.sosmath.com/diffeq/diffeq.html Wolfram Research Math World http://mathworld.wolfram.com/ordinarydifferentialequation.h

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Soal dan Solusi Materi Elektrostatika

Soal dan Solusi Materi Elektrostatika P Soal dan Solusi Materi Elektrostatika 1. Tentukan medan listrik pada jarak z di atas salah satu ujung kawat sepanjang L yang membawa muatan berdistribusi seragam dengan rapat muatan, seperti gambar berikut

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd IKIP BUDI UTOMO MALANG Analytic Geometry TEXT BOOK Alfiani Athma Putri Rosyadi, M.Pd 2012 DAFTAR ISI 1 VEKTOR 1.1 Vektor Pada Bidang... 4 1.2 Vektor Pada Ruang... 6 1.3 Operasi Vektor.. 8 1.4 Perkalian

Lebih terperinci

BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia

BAB III Diferensial. Departemen Teknik Kimia Universitas Indonesia BAB III Diferensial Departemen Teknik Kimia Universitas Indonesia BAB III. TURUNAN Kecepatan Sesaat dan Gradien Garis Singgung Turunan dan Hubungannya dengan Kekontinuan Aturan Dasar Turunan Notasi Leibniz

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Matematika bersifat universal dan banyak kaitannya dengan kehidupan nyata. Matematika berperan sebagai ratu ilmu sekaligus sebagai pelayan ilmu-ilmu yang lain. Kajian

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket Oleh : Fendi Alfi Fauzi. Lingkaran x 6) 2 + y + ) 2 menyinggung garis y di titik a), ) b), ) c) 6, ) d) 6,

Lebih terperinci

Kalkulus Variasi. Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas. Toni Bakhtiar. Departemen Matematika IPB.

Kalkulus Variasi. Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas. Toni Bakhtiar. Departemen Matematika IPB. Kalkulus Variasi Persamaan Euler, Masalah Kalkulus Variasi Berkendala, Syarat Batas Toni Bakhtiar Departemen Matematika IPB Februari 214 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 214 1

Lebih terperinci

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT

Lebih terperinci