Integral Garis. Sesi XIII INTEGRAL 12/7/2015

Ukuran: px
Mulai penontonan dengan halaman:

Download "Integral Garis. Sesi XIII INTEGRAL 12/7/2015"

Transkripsi

1 2//25 Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TK 85 Pengampu : Achfas Zacoeb esi XIII INTEGRAL zacoeb@ub.ac.id Hp Integral Garis Dari Gambar., sebuah obyek bergerak dengan lintasan tidak lurus dari titik A ke titik B. Jika gaya yang diberikan berubah nilai dan arahnya, maka usaha yang dilakukan adalah seperti Pers. (.). Gambar.. Obyek dengan lintasan tidak lurus

2 2//25 Integral Garis (lanjutan) W = i F i. Δr i (.) Jika perubahannya kontinu untuk perpindahan dari titik a ke titik b sepanjang lintasan, maka Pers. (.) berubah menjadi bentuk integral seperti Pers. (.2). b W = F. dr (.2) a Usaha yang dihasilkan merupakan integral garis dari fungsi vektor F. Integral Garis (lanjutan) Integral garis dari suatu fungsi vektor A(t) sepanjang kurva yang terdefinisi pada a t b, dapat didefinisikan seperti Pers. (.3). A. dr b = A. dr a b a b a = A i + A 2 j + A 3 k. idx + jdy + kdz = A dx + A 2 dy + A 3 dz (.3) 2

3 2//25 Integral Garis (lanjutan) Untuk obyek yang bergerak dengan lintasan tertutup dimana A = B seperti ditunjukkan Gambar.2, maka digunakan Pers. (.4). Gambar.2. Obyek dengan lintasan tertutup A. dr = A i + A 2 j + A 3 k. idx + jdy + kdz = A dx + A 2 dy + A 3 dz (.4) Integral Garis (lanjutan) ontoh : Hitung usaha yang dihasilkan sebuah obyek yang bergerak dalam vektor F = yi + x 2 j, sepanjang kurva x = 2t, y = t 2 dari t = hingga t = 2. Penyelesaian : F. dr = yi + x 2 j. dxi + dyj = ydx + x 2 dy = t 2 2dt + 2t 2 2tdt = 2t t 3 dt = 2 3 t3 2t + 8t 4 2 = satuan panjang 3 3

4 2//25 Integral Permukaan Definisi : Jika suatu permukaan 2 sisi yang demikian mulus dan n adalah vektor normal satuan positif, maka fluks (massa yang mengalir per satuan waktu) dari A(x,y,z) melalui permukaan adalah seperti Pers. (.5) yang disebut dengan integral permukaan. Fluks F yang melintasi = A. n. d (.5) Untuk menghitung integral permukaan akan lebih sederhana dengan memproyeksikan pada salah satu bidang koordinat, kemudian menghitung integral lipat 2 dari proyeksinya. Integral Permukaan (lanjutan) Jika permukaan memiliki proyeksi pada bidang xy, maka integral permukaan diberikan oleh Pers. (.). A. n. d = A. n. dx.dy (.) n.k edangkan jika proyeksi pada bidang xz, maka integral permukaan diberikan oleh Pers. (.). A. n. d = A. n. dx.dz (.) n.j Dan proyeksi pada bidang yz, maka integral permukaan diberikan oleh Pers. (.8). A. n. d = A. n. dy.dz (.8) n.i 4

5 2//25 Integral Permukaan (lanjutan) ontoh : Hitunglah A. n. d dimana A = 8zi 2j + 3yk, adalah bagian dari bidang 2x + 3y + z = 2 yang terletak pada oktan pertama dan n adalah normal satuan pada. Penyelesaian : uatu normal untuk adalah 2x + 3y + z 2 = 2i + 3j + k, sehingga : n = 2i+3j+k 2i+3j+k = Integral Permukaan (lanjutan) maka : A. n = 8zi 2j + 3yk. = 3z 3+8y 2 2x 3y 3 3+8y = = 3 2x 2i+3j+k 5

6 2//25 Integral Permukaan (lanjutan) Permukaan proyeksi R nya terhadap bidang xy. ehingga integral permukaan yang diinginkan adalah seperti gambar berikut : Integral Permukaan (lanjutan) A. n. d = A. n. dx.dy R = n.k 3 2x. R x= 2 2x dx.dy 2i+3j+k.k = 3 2x y= = dx. dy = y 2xy 2 2x 3 dx x= x= x= = 2 2x 3 2x = 24 2x + 4x2 = 24x x 2 + 4x x 3 dx R 3 2x dx. dx.dy = 24 satuan luas

7 2//25 Integral olume (lanjutan) Pandang sebuah permukaan tertutup dalam ruang yang menutup volume, maka : A d = A dxdydz dan (.9) φ d = φ dxdydz (.) Pers. (.) dapat dinyatakan sebagai limit dari jumlah. Untuk lebih jelasnya lihat Gambar.3 yang membagi ruang ke dalam M buah kubus-kubus dengan volume Δ k = Δx k Δy k Δz k, k =, 2,, M. Integral olume (lanjutan) Jika x k, y k, z k sebuah titik dalam kubus, dapat didefnisikan φ x k, y k, z k = φ k. Pandang jumlah : n φ k k k= yang diambil untuk semua kubus yang ada dalam ruang yang ditinjau. Gambar.3. Integral volume

8 2//25 Integral olume (lanjutan) Limit dari jumlah tersebut, jika M, sehingga kuantitaskuantitas terbesar k akan mendekati nol, dan jika limit ini ada, yang dinyatakan oleh Pers. (.) adalah integral volume. Integral olume (lanjutan) ontoh : Hitung f(x)d dengan adalah ruang yang dibatasi oleh permukaan-permukaan x + y + z = 5, x =, y =, dan z =, jika f x = x 2 + y 2 + z 2. Penyelesaian : 8

9 2//25 Integral olume (lanjutan) x 2 + y 2 + z 2 5 x= 5 x y= 5 x y z= 5 5 x x= y= 5 5 x x= y= 5 x= = x 2 + y 2 + z 2 = x 2 z + y 2 z + 3 z3 5 x y = x 2 + y 2 5 x y + = x 2 5 x x2 y 2 5 x y = x2 5 x 2 2 = 25x3 5x x x dx dx + x5 (5 x) x 3 dzdydx y 3 y4 4 dydx 5 x y 3 3 dydx 5 = 25 satuan volume 4 Teorema Gauss Definisi : Jika adalah volume yang dibatasi oleh suatu permukaan tertutup dan A sebuah fungsi vektor dengan turunan-turunan yang kontinu, maka :. Ad = A. nd = A. d (.) Dari Pers. (.), integral permukaan dari sebuah vektor A yang mengelilingi sebuah permukaan tertutup sama dengan integral dari divergensi A dalam volume yang diselubungi oleh permukaan di atas. Jadi, dalam mencari integral permukaan dapat juga digunakan Teorema Gauss. 9

10 2//25 Teorema Gauss (lanjutan) Agar lebih memahami teorema Gauss, lihat contoh soal berikut : ontoh oal : Hitunglah A. n. d dengan A = 2x z i + x 2 yj xz 2 k dan adalah permukaan kubus yang dibatasi oleh x =, x =, y =, y =, z =, z =. Penyelesaian : Teorema Gauss (lanjutan) Menurut teorema divergensi Gauss : A. nd =. Ad Maka,. Ad = i + k x y z. 2x z i + x 2 yj xz 2 k = 2 + x 2 2xz dxdydz Jadi, = 2x + x3 3 x2 z dydz = = y zy 3 dz z dz = 3 z 2 z2 = A. nd =. Ad = 3 = satuan 3 z dydz dxdydz

11 2//25 Teorema tokes Definisi : Jika adalah permukaan berarah dalam ruang dengan batasbatasnya adalah kurva yang tertutup, dan misalkan F(x,y,z) adalah fungsi vektor kontinu yang mempunyai turunan parsial pertama yang kontinu dalam domain yang memuat, maka : F. dr = F. n. d (.2) Dari Pers. (.2) dapat disimpulkan, integral garis dari sebuah vektor yang mengelilingi sebuah kurva tertutup sederhana sama dengan integral permukaan dari curl melalui sembarang permukaan dengan sebagai batasnya. Teorema tokes (lanjutan) Agar lebih memahami teorema tokes, lihat contoh soal berikut : ontoh oal : Hitunglah A. d dengan A = 2x y i + yz 2 j y 2 zk dimana adalah separuh dari permukaan bola x 2 + y 2 + z 2 = bagian atas dan batasnya. Penyelesaian :

12 2//25 Teorema tokes (lanjutan) Batas dari adalah suatu lingkaran dengan persamaan x 2 + y 2 =, z = dan persamaan parameternya adalah x = cos t, y = sin t, z =, dimana t 2. Berdasarkan teorema tokes A. n. d = A. dr. A. dr = 2x y i yz 2 j y 2 zk. d xi + yj + zi Jadi, 2π 2π 2π 2π = 2x y dx yz 2 dy y 2 zdz = 2 cos t sin t sin t dt = 2 sin t cos t + sin 2 t dt = sin 2t + dt 2 = cos 2t + t + sin 2t 2π = π A cos 2t 2. n. d = A. dr = π satuan Teorema Green Teorema tokes berlaku untuk permukaan-permukaan dalam ruang yang memiliki kurva sebagai batasnya, sedangkan teorema Green berlaku pada daerah tertutup dalam bidang xy yang dibatasi oleh kurva tertutup. Istilahnya, teorema Green dalam bidang adalah hal khusus dari teorema tokes. Jadi ada satu cara lagi untuk mencari besar usaha dalam bidang, yaitu dengan menggunakan teorema Green. 2

13 2//25 Teorema Green (lanjutan) Definisi : Jika R adalah suatu daerah tertutup dalam bidang xy yang dibatasi oleh sebuah kurva tertutup sederhana. M dan N adalah fungsi-fungsi kontinu dari x dan y yang memiliki turunan-turunan kontinu dalam R, maka : Mdx + Ndy = R N M x y dxdy (.3) Teorema Green (lanjutan) Jika A menyatakan medan gaya yang bekerja pada sebuah partikel dimana A = Mi + Nj, maka A. dr adalah usaha yang dilakukan dalam menggerakkan partikel tersebut mengelilingi suatu lintasan tertutup integral garis, yaitu : A. dr = Mi + Nj. dxi + dyj + dzk = Mdx + Ndy Dengan menggunakan teorema Green, maka usaha yang dilakukan adalah : = R N M x y dxdy 3

14 2//25 Teorema Green (lanjutan) Agar lebih memahami teorema Green, lihat contoh soal berikut : ontoh oal : Periksa teorema Green pada bidang untuk 2xy x 2 dx + x + y 2 dy, dimana adalah kurva tertutup yang dibatasi oleh y = x 2 dan y 2 = x. Penyelesaian : Kurva-kurva bidang tersebut berpotongan di (, ) dan (,), arah positif dalam menjalani ditunjukkan pada gambar di samping. Teorema Green (lanjutan) epanjang y = x 2, integral garisnya adalah : 2x x 2 x 2 dx + x + x 2 2 d x 2 x= x= = 2x 3 + x 2 + 2x 5 dx = epanjang y 2 = x, integral garisnya adalah : 2y 2 y y 2 2 d y 2 + y 2 + y 2 dy y= = 4y 4 2y 5 + 2y 2 dx = y= 5 Maka integral garis yang diinginkan adalah : = 5 = 3 satuan 4

15 2//25 Teorema Green (lanjutan) Dengan teorema Green : R N M x y dxdy = R x+y 2 x = 2x dxdy R x= x= x y=x 2 2xy x2 y = 2x dxdy = y 2xy x x 2 dx dxdy = x 2 2x 3 2 x 2 + 2x 3 dx x= = 3 satuan (Pemeriksaan selesai dan terbukti sama!) Latihan. Teorema Gauss : Hitunglah A. n. d dengana = 2xy z i + y 2 j x + 3y k pada daerah yang dibatasi oleh 2x + 2y + z =, x =, y =, z =. 2. Teorema tokes : Hitunglah A. n. d dengan A = 3yi xzj + yz 2 k, dimana adalah permukaan paraboloida 2z = x 2 + y 2 yang dibatasi oleh z = 2 dan sebagai batasnya. 3. Teorema Green : Hitunglah x 2 xy 3 dx + y 3 2xy dy dengan adalah suatu bujursangkar dengan titik sudut (,), (,2), (2,2), (2,). 5

16 2//25 Thanks for your kind attention!

Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TK 47 Matematika III Integral Vektor (Pertemuan VII) Dr. AZ Jurusan Teknik ipil Fakultas Teknik Universitas Brawijaya Teorema Gauss Definisi : Jika V adalah volume yang dibatasi oleh suatu permukaan tertutup

Lebih terperinci

Matematika Dasar INTEGRAL PERMUKAAN

Matematika Dasar INTEGRAL PERMUKAAN Matematika asar INTEGRAL PERMUKAAN Misal suatu permukaan yang dinyatakan dengan persamaan z = f( x,y ) dan merupakan proyeksi pada bidang XOY. Bila diberikan lapangan vektor F( x,y,z ) = f( x,y,z ) i +

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Statistika FMIPA Universitas Islam Indonesia 214 Salah satu jenis generalisasi integral tentu b f (x)dx diperoleh dengan menggantikan himpunan [a, b] yang kita integralkan menjadi himpunan berdimensi dua

Lebih terperinci

Suryadi Siregar Metode Matematika Astronomi 2

Suryadi Siregar Metode Matematika Astronomi 2 Suryadi Siregar Metode Matematika Astronomi Bab 4 Integral Garis dan Teorema Green 4. Integral Garis Definisi : Misal suatu lintasan dalam ruang dimensi m pada interval [a,b]. Andaikan adalah medan vektor

Lebih terperinci

Aljabar Vektor. Sesi XI Vektor 12/4/2015

Aljabar Vektor. Sesi XI Vektor 12/4/2015 Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XI Vektor e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Aljabar Vektor Vektor juga memiliki

Lebih terperinci

Teorema Divergensi, Teorema Stokes, dan Teorema Green

Teorema Divergensi, Teorema Stokes, dan Teorema Green TEOREMA DIVERGENSI, STOKES, DAN GREEN Materi pokok pertemuan ke 13: 1. Teorema divergensi Gauss URAIAN MATERI Untuk memudahkan perhitungan seringkali dibutuhkan penyederhanaan bentuk integral yang berdasarkan

Lebih terperinci

Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes

Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes Standar Kompetensi : 1. Memahami Teorema Green Kompetensi Dasar : 1. Menyebutkan kembali pengertian

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR INTEGRASI VEKTOR Materi pokok pertemuan ke 11: 1. Integral Biasa 2. Integral Garis URAIAN MATERI Sebelum masuk ke integral garis, Anda pelajari dulu mengenai integral biasa dari vektor. Integral Biasa

Lebih terperinci

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc KALKULUS III Teorema Integral Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc 1 INTEGRAL GARIS Integral Garis pada Fungsi Skalar Definisi : Jika f didefinisikan pada kurva diberikan secara parametrik

Lebih terperinci

Pertemuan : 7 Materi : Integral Garis dan Teorema Dasar Integral Garis Bab III. Integral Kalkulus Dari Vektor

Pertemuan : 7 Materi : Integral Garis dan Teorema Dasar Integral Garis Bab III. Integral Kalkulus Dari Vektor Pertemuan : 7 Materi : Integral Garis dan Teorema Dasar Integral Garis Bab III. Integral Kalkulus Dari Vektor Standar Kompetensi : 1. Memahami Integral Kalkulus dari Vektor. 2. Memahami Integral Garis,

Lebih terperinci

Catatan Kuliah FI2101 Fisika Matematik IA

Catatan Kuliah FI2101 Fisika Matematik IA Khairul Basar atatan Kuliah FI2101 Fisika Matematik IA Semester I 2015-2016 Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung Bab 6 Analisa Vektor 6.1 Perkalian Vektor Pada bagian

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II KALKULUS MULTIVARIABEL II Integral Garis Medan Vektor dan (Minggu ke-8) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia 1 Integral Garis Medan Vektor 2 Terkait Lintasan Teorema Fundamental untuk

Lebih terperinci

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran

Lebih terperinci

PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016)

PEMBAHASAN KISI-KISI SOAL UAS KALKULUS PEUBAH BANYAK (TA 2015/2016) PEMBAHAAN KII-KII OAL UA KALKULU PEUBAH BANYAK (TA 5/6) Arini oesatyo Putri DEEMBER 3, 5 UNIVERITA ILAM NEGERI UNAN GUNUNG DJATI BANDUNG Pembahasan oal Kisi-Kisi UA Kalkulus Peubah Banyak Tahun Ajaran

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

Bab 1 Vektor. A. Pendahuluan

Bab 1 Vektor. A. Pendahuluan Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc KALKULUS III Teorema Integral (Stokes Theorem) Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc 1 Stokes Theorem Review : Pada pembahasan sebelumnya, kepadatan sirkulasi atau curl pada bidang dua dimensi

Lebih terperinci

Pertemuan : 4 Materi : Fungsi Bernilai Vektor dan Gerak Sepanjang Kurva Bab II. Diferensial Kalkulus Dari Vektor

Pertemuan : 4 Materi : Fungsi Bernilai Vektor dan Gerak Sepanjang Kurva Bab II. Diferensial Kalkulus Dari Vektor Pertemuan : 4 Materi : Fungsi Bernilai Vektor dan Gerak Sepanjang Kurva Bab II. Diferensial Kalkulus Dari Vektor Standar Kompetensi : Setelah mengikuti perkuliahaan ini mahasiswa diharapkan dapat : 1.

Lebih terperinci

DIFERENSIAL TOTAL. 1 Kalkulus Lanjut Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65

DIFERENSIAL TOTAL. 1 Kalkulus Lanjut   Blog: aswhat.wordpress.com. dz dx dy x y dx x y dy. dz , ,04 0,65 DIFERENSIAL TOTAL 1. Pendahuluan Ingat kembali konsep diferensial pada fungsi satu variabel y = f(x). suatu diferensial dx terhadap variabel bebas didefinisikan sebagai: dy = f (x) dx selanjutnya, misalkan

Lebih terperinci

1 Nama Anggota 1:Darul Afandi ( ) Jawaban soal No 40. -

1 Nama Anggota 1:Darul Afandi ( ) Jawaban soal No 40. - Universitas Jember Jurusan Matematika - FMIPA MAM 56 Deadline: Wednesday, 9 ; :55 Analisis Kompleks Tugas Template Jawaban Nama Kelompok: Group J Nama Anggota:. Darul Afandi (8). Wahyu Nikmatus Sholihah

Lebih terperinci

4.4. KERAPATAN FLUKS LISTRIK

4.4. KERAPATAN FLUKS LISTRIK 4.4. KERAPATAN FLUKS LISTRIK Misalkan D adalah suatu medan vektor baru yang tidak bergantung pada medium dan didefinisikan oleh Didefinisikan fluks listrik dalam D sebagai Dalam satuan SI, satu garis fluks

Lebih terperinci

SIFAT-SIFAT INTEGRAL LIPAT

SIFAT-SIFAT INTEGRAL LIPAT TUGAS KALKULUS LANJUT SIFAT-SIFAT INTEGAL LIPAT Oleh: KAMELIANI 46 JUUSAN MATEMATIKA FAKULTAS MATEMATIKA AN ILMU PENGETAHUAN ALAM UNIVESITAS NEGEI MAKASSA 4 SIFAT-SIFAT INTEGAL LIPAT A. SIFAT-SIFAT INTEGAL

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Statistika FMIPA Universitas Islam Indonesia Salah satu jenis generalisasi integral tentu b f (x)dx diperoleh dengan menggantikan himpunan [a, b] yang kita integralkan menjadi himpunan berdimensi dua dan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Fungsi Implisit dan Fungsi Implisit Statistika FMIPA Universitas Islam Indonesia dan Fungsi Implisit Ingat kembali aturan rantai pada fungsi satu peubah! Jika y = f (x(t)), di mana baik f maupun t

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x,y) pada = {(x,y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc

Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc KALKULUS III Teorema Integral (Green s Theorem) Dosen Pengampu : Puji Andayani, S.Si, M.Si, M.Sc 1 Kurva Tertutup Sederhana, Daerah Terhubung sederhana dan Berganda Suatu kurva tertutup sederhana adalah

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Penerapan Integral Lipat-Dua Atina Ahdika,.i, M.i tatistika FMIPA Universitas Islam Indonesia 214 Penerapan Integral Lipat-Dua Penerapan Integral Lipat-Dua Penerapan lain dari integral lipat-dua antara

Lebih terperinci

A suatu fungsi vektor yang mempunyai derivatif kontinu, maka

A suatu fungsi vektor yang mempunyai derivatif kontinu, maka TEOEM DIVEGENI Teorema divergensi Gauss pabila V suatu ruang dibatasi dengan luasan tertutup, dan suatu fungsi vektor ang mempunai derivatif kontinu, maka V. dv.n d. d dengan n positif normal dari pada.

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR

TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR Interpretasi Geometri dari Derivatif Vektor Jika C adalah kurva yang dinyatakan dalam bentuk fungsi vektor r(t) = x(t)i + y(t)j + z(t)k maka:. Derivatif dari kurva

Lebih terperinci

Bab 1 : Skalar dan Vektor

Bab 1 : Skalar dan Vektor Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 1 Maret 017 Bab Sebelumnya 9.1 Barisan Tak Terhingga 9. Deret Tak Terhingga 9.3 Deret Positif: Uji Integral 9.4 Deret Positif: Uji Lainnya 9.5 Deret

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

Hendra Gunawan. 5 Maret 2014

Hendra Gunawan. 5 Maret 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 Maret 014 Kuliah yang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 SistemKoordinatPolar 11.1 Sistem

Lebih terperinci

FUNGSI. Sesi XI 12/4/2015

FUNGSI. Sesi XI 12/4/2015 Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XI FUNGSI dan GRAFIK e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 FUNGSI Secara intuitif,

Lebih terperinci

Kinematika Sebuah Partikel

Kinematika Sebuah Partikel Kinematika Sebuah Partikel oleh Delvi Yanti, S.TP, MP Bahan Kuliah PS TEP oleh Delvi Yanti Kinematika Garis Lurus : Gerakan Kontiniu Statika : Berhubungan dengan kesetimbangan benda dalam keadaan diam

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 7 INTEGRAL PERMUKAAN Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI

Lebih terperinci

Materi UTS. Matematika Optimisasi. Semester Gasal Pengajar: Hazrul Iswadi

Materi UTS. Matematika Optimisasi. Semester Gasal Pengajar: Hazrul Iswadi Materi UTS Matematika Optimisasi Semester Gasal 6-7 Pengajar: Hazrul Iswadi Daftar Isi Pendahuluan...hal Pertemuan...hal - Pertemuan...hal - 9 Pertemuan...hal - 5 Pertemuan 4...hal 6 - Pertemuan 5...hal

Lebih terperinci

BAB VI INTEGRAL LIPAT

BAB VI INTEGRAL LIPAT BAB VI INTEGRAL LIPAT 6.1 Pendahuluan Pada kalkulus dan fisika dasar, kita melihat sejumlah pemakaian integral misal untuk mencari luasan, volume, massa, momen inersia, dsb.nya. Dalam bab ini kita ingin

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Contoh - 1 Volume V dari sebuah silinder dengan

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 8 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMATIKA TEKNIK 2 KODE/SKS : IT042227 / 2 SKS Pertemuan Pokok Bahasan dan TIU 1 Pendahuluan Mahasiswa mengerti tentang mata kuliah Matematika Teknik 2 : bahan ajar,

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Keterdiferensialan Statistika FMIPA Universitas Islam Indonesia Fungsi y = f (x) terdiferensialkan di titik x 0 jika f (x 0 + h) f (x 0 ) lim = f (x 0 ) h 0 ( h ) f (x0 + h) f (x 0 ) lim f (x 0 ) = 0 h

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : KALKULUS 3 KODE / SKS : IT042219 / 2 SKS Pertemuan Pokok Bahasan dan TIU Geometri pada bidang, vektor vektor pada bidang : pendekatan secara geometrik dan secara

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4 a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 4 a home base to excellence TIU : Mahasiswa dapat memahami turunan fungsi dan aplikasinya TIK : Mahasiswa

Lebih terperinci

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.

Lebih terperinci

Bab 4 Hukum Gauss. A. Pendahuluan

Bab 4 Hukum Gauss. A. Pendahuluan Bab 4 Hukum Gauss A. Pendahuluan Pada pokok bahasan ini, disajikan tentang hukum Gauss yang memberikan fluks medan listrik yang melewati suatu permukaan tertutup yang melingkupi suatu distribusi muatan.

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Jurusan Matematika FMIPA Unsyiah September 9, 2011 Sebuah kurva bidang (plane curve) ditentukan oleh pasangan persamaan parametrik x = f(t), y = g(t), t dalam I dengan f dan g kontinu pada selang I. I

Lebih terperinci

Integral yang berhubungan dengan kepentingan fisika

Integral yang berhubungan dengan kepentingan fisika Integral yang berhubungan dengan kepentingan fisika 14.1 APLIKASI INTEGRAL A. Usaha Dan Energi Hampir semua ilmu mekanika ditemukan oleh Issac newton kecuali konsep energi. Energi dapat muncul dalam berbagai

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

Bab IV Persamaan Integral Batas

Bab IV Persamaan Integral Batas Bab IV Persamaan Integral Batas IV.1 Konvensi simbol ebelum memulai pembahasan, kita akan memperkenalkan sejumlah konvensi simbol yang akan digunakan pada tesis ini. imbol x, y, x 0 akan digunakan untuk

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

MEDAN LISTRIK. Oleh Muatan Kontinu. (Kawat Lurus, Cincin, Pelat)

MEDAN LISTRIK. Oleh Muatan Kontinu. (Kawat Lurus, Cincin, Pelat) MDAN LISTRIK Oleh Muatan Kontinu (Kawat Lurus, Cincin, Pelat) FISIKA A Semester Genap 6/7 Program Studi S Teknik Telekomunikasi Universitas Telkom Medan listrik akibat muatan kontinu Muatan listrik kontinu

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Gradien dan Gradien Statistika FMIPA Universitas Islam Indonesia dan Gradien Turunan-turunan parsial f x (x, y) dan f y (x, y) mengukur laju perubahan (dan kemiringan garis singgung) pada arah sejajar

Lebih terperinci

ALJABAR LINEAR. Dosen : Ari Suparwanto Tanggal Ujian : 3 April 2006, Senin Sifat : Closed Book Waktu : 120 Menit

ALJABAR LINEAR. Dosen : Ari Suparwanto Tanggal Ujian : 3 April 2006, Senin Sifat : Closed Book Waktu : 120 Menit ALJABAR LINEAR Dosen : Ari Suparwanto Tanggal Ujian : 3 April 006, Senin Sifat : Closed Book Waktu : 10 Menit 1. Misalkan V = { v v> 0}. Selidiki apakah V dengan operasi jumlahan dan perkalian berikut

Lebih terperinci

Gerak Dua Dimensi Gerak dua dimensi merupakan gerak dalam bidang datar Contoh gerak dua dimensi : Gerak peluru Gerak melingkar Gerak relatif

Gerak Dua Dimensi Gerak dua dimensi merupakan gerak dalam bidang datar Contoh gerak dua dimensi : Gerak peluru Gerak melingkar Gerak relatif Gerak Dua Dimensi Gerak dua dimensi merupakan erak dalam bidan datar Contoh erak dua dimensi : Gerak peluru Gerak melinkar Gerak relatif Posisi, Kecepatan, Percepatan r i = vektor posisi partikel di A

Lebih terperinci

9.1. Skalar dan Vektor

9.1. Skalar dan Vektor ANALISIS VEKTOR 9.1. Skalar dan Vektor Skalar Satuan yang ditentukan oleh besaran Contoh: panjang, voltase, temperatur Vektor Satuan yang ditentukan oleh besaran dan arah Contoh: gaya, velocity Vektor

Lebih terperinci

DIKTAT KALKULUS MULTIVARIABEL I

DIKTAT KALKULUS MULTIVARIABEL I DIKTAT KALKULUS MULTIVARIABEL I Oleh Atina Ahdika, S.Si, M.Si Ayundyah Kesumawati, S.Si, M.Si (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 214/215

Lebih terperinci

v i Kata Sambutan iii Sekilas Isi Buku v i ii ii B a b Gerak dalam Dua Dimensi Sumber: www.rit.edu Pada bab ini, Anda akan diajak untuk dapat menganalisis gejala alam dan keteraturannya dalam cakupan mekanika

Lebih terperinci

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas Teori Relativitas Mirza Satriawan December 7, 2010 Fluida Ideal dalam Relativitas Khusus Quiz 1 Tuliskan perumusan kelestarian jumlah partikel dengan memakai vektor-4 fluks jumlah partikel. 2 Tuliskan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 5 INTEGRAL LIPAT Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI -

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah [MA114] Sistem Koordinat Kuadran II Kuadran I P(,) z P(,,z) Kuadran III Kuadran IV R (Bidang) Oktan 1 R 3 (Ruang) 7/6/007

Lebih terperinci

Konsep Usaha dan Energi

Konsep Usaha dan Energi 1/18 FISIKA DASAR (TEKNIK SISPIL) USAHA DAN ENERGI Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Konsep Usaha dan Energi Disamping perumusan hukum newton,

Lebih terperinci

: D C adalah fungsi kompleks dengan domain riil

: D C adalah fungsi kompleks dengan domain riil BAB 4. INTEGRAL OMPLES 4. Integral Garis ompleks Misalkan ( : D adalah fungsi kompleks dengan domain riil b D [ a, b], maka integral (, dimana ( x( + iy( dapat dengan mudah a b dihitung, yaitu a i contoh

Lebih terperinci

Keep running VEKTOR. 3/8/2007 Fisika I 1

Keep running VEKTOR. 3/8/2007 Fisika I 1 VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib. : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib. : Aip Saripudin, M.T. DESKIPSI MATA KULIAH EL-121 Matematika Teknik I: S1, 3 SKS, Semester II Mata kuliah ini merupakan kuliah lanjut. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

Kalkulus II. Institut Teknologi Kalimantan

Kalkulus II. Institut Teknologi Kalimantan Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Kalkulus Teknologi II Kalimantan January 31, () 2018 1 / 71 Kalkulus II Tim Dosen Kalkulus II Tahun Persiapan Bersama Institut Teknologi Kalimantan

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 6 INTEGRAL GARIS Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI -

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

Analisis Vektor. Modul 1

Analisis Vektor. Modul 1 Modul 1 Analisis Vektor Paken Pandiangan, S.Si., M.Si. A nalisis vektor mulai dikembangkan pada pertengahan abad ke19. Pada saat ini merupakan bagian yang sangat penting bagi mereka yang mendalami ilmu

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang

Lebih terperinci

Matematika IPA UN, Tahun 2015 Retype : Neonjogja.com

Matematika IPA UN, Tahun 2015 Retype : Neonjogja.com Matematika IPA UN, Tahun 0. Diketahui premis-premis berikut:. Saya bermain atau saya tidak gagal dalam ujian.. Saya gagal dalam ujian. Kesimpulan yang sah dari permis-permis tersebut Saya tidak bermain

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6 4 ). ( -1 4 ) E. ( 5 4 ) B. ( 6 4) D. ( 1 4 ) BAB

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

JURUSAN TEKNIK ELEKTRO

JURUSAN TEKNIK ELEKTRO DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS ANDALAS FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) Mata Kuliah Matematika Teknik I Dosen Heru Dibyo Laksono

Lebih terperinci

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011 Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.

Lebih terperinci

JURUSAN TEKNIK ELEKTRO

JURUSAN TEKNIK ELEKTRO JURUSAN TEKNIK ELEKTRO DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS ANDALAS FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) Mata Kuliah Matematika Teknik

Lebih terperinci

Bab II Konsep Dasar Metode Elemen Batas

Bab II Konsep Dasar Metode Elemen Batas Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral

Lebih terperinci

4.3. MEDAN LISTRIK OLEH DISTRIBUSI MUATAN KONTINYU

4.3. MEDAN LISTRIK OLEH DISTRIBUSI MUATAN KONTINYU 4.3. MEDAN LISTRIK OLEH DISTRIBUSI MUATAN KONTINYU Selain muatan berbentuk titik, dimungkinkan juga distribusi muatan kontinyu dalam bentuk garis, permukaan atau volume seperti yang ditunjukkan pada Gambar

Lebih terperinci

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u (a, -, -) dan v (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A. -

Lebih terperinci

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY SISTEM-SISTEM KOORDINAT Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Sistem Koordinat Kartesian Dalam sistem koordinat Kartesian, terdapat tiga sumbu koordinat yaitu sumbu x, y, dan z. Suatu titik

Lebih terperinci

SEMESTER 3 ANALISIS VEKTOR PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH SURAKARTA

SEMESTER 3 ANALISIS VEKTOR PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH SURAKARTA SEMESTER 3 ANALISIS VEKTOR PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH SURAKARTA Sks : 2 sks Dosen : Sri Rejeki Nomor Telepon: 085725313171 E mail

Lebih terperinci

Matematika Teknik Dasar-2 10 Aplikasi Integral - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 10 Aplikasi Integral - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar- 10 Aplikasi Integral - 1 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Volume Benda-Putar Sebuah bentuk bidang yang dibatasi kurva y = f(x), sumbu-x, dan

Lebih terperinci

Fisika Dasar 9/1/2016

Fisika Dasar 9/1/2016 1 Sasaran Pembelajaran 2 Mahasiswa mampu mencari besaran posisi, kecepatan, dan percepatan sebuah partikel untuk kasus 1-dimensi dan 2-dimensi. Kinematika 3 Cabang ilmu Fisika yang membahas gerak benda

Lebih terperinci

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh

= + atau = - 2. TURUNAN 2.1 Definisi Turunan fungsi f adalah fungsi yang nilainya di setiap bilangan sebarang c di dalam D f diberikan oleh JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG HAND OUT TURUNAN DAN DIFERENSIASI OLEH: FIRDAUS-UPI 0716 1. GARIS SINGGUNG 1.1 Definisi Misalkan fungsi f kontinu di c. Garis singgung ( tangent line )

Lebih terperinci

Asusmi/Penyederhanaan Sistem

Asusmi/Penyederhanaan Sistem Mata Kuliah : Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XV PEMODELAN e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Model Sistem yang sebenarnya

Lebih terperinci

Catatan Kuliah MEKANIKA FLUIDA

Catatan Kuliah MEKANIKA FLUIDA Catatan Kuliah MEKANIKA FLUIDA Disusun oleh: AR ROHIM 14/371863/PPA/04607 PROGRAM STUDI S2 FISIKA DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA 2016 1 Daftar Isi

Lebih terperinci

Koordinat Polar (Ch )

Koordinat Polar (Ch ) Koordinat Polar (Ch.10.-10.) O (the pole) ray (polar axis) Dalam beberapa hal, lebih mudah mencari lokasi/posisi suatu titik dengan menggunakan koordinat polar. Koordinat polar menunjukkan posisi relatif

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang

Lebih terperinci

INTEGRAL CONTOUR. 2. Fungsi f tetap, C dipandang sebagai variabel

INTEGRAL CONTOUR. 2. Fungsi f tetap, C dipandang sebagai variabel INTEGRAL ONTOUR Tujua Perkuliaha: Mahasiswa dapat memahami kosep itegral cotour da meyelesaika masalah dalam itegral otour. Defiisi: Diberika fugsi z = z(t) utuk a t b, Mewakili sebuah litasa yag diperpajag

Lebih terperinci

11. Konvolusi. Misalkan f dan g fungsi yang terdefinisi pada R. Konvolusi dari f dan g adalah fungsi f g yang didefinisikan sebagai.

11. Konvolusi. Misalkan f dan g fungsi yang terdefinisi pada R. Konvolusi dari f dan g adalah fungsi f g yang didefinisikan sebagai. 11. Konvolusi Operasi konvolusi yang akan kita bahas di sini sebetulnya pernah kita jumpai pada pembahasan deret Fourier (ketika membuktikan kekonvergenan jumlah parsialnya). Operasi konvolusi merupakan

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

Medan Elektromagnetik 3 SKS. M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor

Medan Elektromagnetik 3 SKS. M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor Medan Elektromagnetik 3 SKS M. Hariansyah Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun Bogor 2 0 1 4 Medan Elektromagnetik I -Referensi: WILLIAM H HAYT Materi Kuliah -Analisa Vektor

Lebih terperinci

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti Kuliah 2: FUNGSI MULTIVARIABEL Indah Yanti Definisi Dasar Perhatikan fungsi f: A R n R m : x f x n = m = 1 fungsi bernilai riil satu variabel n = 1, m > 1 fungsi bernilai vektor satu variabel n > 1, m

Lebih terperinci