KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

Ukuran: px
Mulai penontonan dengan halaman:

Download "KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom"

Transkripsi

1 KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

2 Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran posisi, kecepatan, dan percepatan sebuah partikel untuk kasus 1 -D dan 2-D

3 KINEMATIKA Fisika Mekanika Optik Listrik Dll Kinematika Dinamika

4 KINEMATIKA Kinematika adalah cabang ilmu Fisika yang membahas gerak benda tanpa memperhatikan penyebab gerak benda tersebut. Penyebab gerak yang sering ditinjau adalah gaya atau momentum. Pergerakan suatu benda itu dapat berupa translasi atau perpindahan, rotasi, atau vibrasi. Dalam bab ini, dibahas mengenai gerak translasi dan rotasi saja. Sedangkan gerak vibrasi akan dibahas pada bab selanjutnya yang berkaitan dengan gerak harmonik.

5 KINEMATIKA Ada 3 besaran fisis yang digunakan untuk mengetahui gerak sebuah partikel yaitu : Posisi (r), satuannya meter posisi relatif, perpindahan ( r), jarak tempuh Kecepatan ( v ), satuannya m/s kecepatan ratarata (v rata-rata ) dan sesaat ( v ) Percepatan ( a ), satuannya m/s 2 percepatan rata-rata (a rata-rata ) dan sesaat (a)

6 GERAK TRANSLASI Contoh dari gerak translasi : menggeser meja dari suatu tempat ke tempat yang lain, mobil bergerak dari kota A ke kota B, dan sebagainya. Contoh dari gerak rotasi : Bumi mengelilingi Matahari, elektron mengelilingi inti atom, putaran baling-baling helikopter, dan lain-lain.

7 POSISI Suatu perpindahan benda dicirikan oleh perubahan posisi dari benda tersebut. Perubahan posisi benda selalu dinyatakan dalam parameter waktu. Posisi : X = f(t)

8 Gerak Translasi Gambar di bawah ini menyatakan kordinat dari posisi bis pada waktu tertentu. Dari gambar diperoleh pada jam 7.00 posisi bis masih di Bandung. Satu jam kemudian posisinya berada di Ciranjang. Jam 9.00 berada di kota Cianjur. Dan jam sudah berada di Jakarta. Jakarta Cianjur Ciranjang Bandung waktu

9 Gerak Translasi Contoh fungsi posisi terhadap waktu: X X t 2t 2 2t 1 2 t ln t untuk t 1 Persamaan posisi sebagai fungsi waktu di atas adalah dalam kerangka satu dimensi, karena benda hanya bergerak dalam arah koordinat X saja. Untuk kerangka dua dimensi atau tiga dimensi posisi tersebut harus dinyatakan dalam bentuk vektor dalam komponen arah sumbu koordinat X, komponen sumbu koordinat Y, dan komponen sumbu koordinat Z.

10 Gerak Translasi Dua dimensi : R(t) = X(t) i + Y(t) j Contoh : R(t) = t i + (t + 1)j R(t) = r(cos t i + sin t j) 5 y Tiga dimensi : R(t) = X(t) i + Y(t) j + Z(t) k Contoh : R(t) = t i + (t + 1)j k R(t) = r(cos t i + sin t j) + k t = 0 t = 2 t = 4 x

11 KECEPATAN Besaran lain dalam gerak translasi yang menyatakan perubahan posisi terhadap waktu adalah kecepatan (velocity). Umumnya posisi dinyatakan dalam bentuk vektor (kecuali untuk gerak satu dimensi), maka kecepatan juga merupakan besaran vektor. Kecepatan sebuah benda sama dengan turunan pertama dari posisi terhadap waktu. Kecepatan : t Contoh : Posisi : r(t) = t i + (t 1) 2 j k kecepatan : v(t) = i + (t 1) j v dr t dt

12 KECEPATAN Kecepatan rata-rata : Δr t r t r t0 v Δt t t 0 Sehingga persamaan posisi dapat dinyatakan : r(t) = r 0 + v. t Untuk persamaan posisi dalam satu dimensi : X(t) = X 0 + v. t r(t 0 ) dan X(t 0 ) menyatakan posisi pada keadaan awal

13 GERAK LURUS BERATURAN (GLB) Gerak lurus beraturan adalah gerak perpindahan benda pada garis lurus dan mempunyai kecepatan konstan. Persamaan gerak lurus beraturan dinyatakan oleh : x(t) = x o + vt x o : posisi awal v : kecepatan X Jika sebuah benda mengalami GLB, maka grafik X T berupa garis lurus. Kemiringan fungsi x(t) dinyatakan oleh : Xo t dx(t) dt v(t) konstan

14 CONTOH Sebuah benda bergerak dalam bidang XY yang dinyatakan oleh : x(t) = 2t 3 t 2 ; y(t) = 3t 2 2t + 1 Tentukan : a. Komponen kecepatan untuk masing-masing arah b. Besar kecepatan pada t = 1 detik Jawab : a. v = dx x dt = 6t2 2t m/s v = dy = 6t 2 m/s y dt b. v x (1) = = 4 m/s v y (1) = = 4 m/s, maka besar kecepatan : v = m/s

15 PERCEPATAN Percepatan (acceleration) adalah perubahan kecepatan terhadap waktu dan merupakan besaran vektor. Percepatan sebuah benda adalah turunan pertama dari kecepatan terhadap waktu, atau turunan kedua dari posisi terhadap waktu. Percepatan: a t dv() t dt d 2 r t dt 2 Percepatan rata-rata : a Δv Δt t v t v t t t 0 0

16 GLBB Gerak lurus berubah beraturan (GLBB) adalah gerak translasi/perpindahan benda pada garis lurus dan mempunyai percepatan konstan. Persamaan gerak lurus berubah beraturan dinyatakan oleh : x(t) = x o + v o t + ½at 2 x o : posisi awal v o : kecepatan awal a : percepatan

17 GLBB X Percepatan a bernilai negatif X o X t Percepatan a bernilai positif X o t

18 KINEMATIKA Secara umum ada 3 kasus kinematika yaitu : 1. Posisi diketahui, kecepatan dan percepatan dicari dengan cara posisi diturunkan. 2. Kecepatan diketahui, ada informasi posisi pada t tertentu. Percepatan dicari dengan cara mendeferensialkan v dan posisi dicari melalui integrasi v. 3. Percepatan diketahui, ada informasi posisi dan kecepatan pada t tertentu. Kecepatan dan posisi diperoleh melalui integrasi a.

19 CONTOH 1 Sebuah partikel bergerak pada garis lurus (sumbu X). Percepatan gerak berubah dengan waktu sebagai a(t) = 12 t 2 ms -2. a. Hitung v pada t = 2 s, jika pada t = 0 benda diam. b. Tentukan x(t) jika diketahui pada saat t = 2 s benda ada pada posisi x = 1 m. c. Tentukan laju benda ketika benda tepat menempuh jarak 66 m.

20 SOLUSI (1) a. Kecepatan v(t) = a(t) dt 12t dt 4t vo Nilai v o dapat ditentukan dari syarat awal pada t = 0 kecepatan v = 0. v(0) = 4(0) 3 + v o = 0. Sehingga diperoleh v o = 0. Dengan demikian v(t) = 4t 3 m/s. Pada t = 2 detik nilai kecepatan v(2) = = 32 m/s 3 4 b. Posisi x(t) = v(t) dt 4t dt t xo Nilai x o dapat ditentukan dari syarat awal pada t = 2 detik posisi benda pada x = 1 m. Nilai x(2) = x o = 1. Sehingga diperoleh x o = -15. Dengan demikian diperoleh x(t) = t

21 SOLUSI (2) c. x(t) = 66 = t 4 15 t 4 81 = 0 atau t = 3 detik Kecepatan pada t = 3 detik adalah v(3) = = 108 m/s

22 CONTOH 2 1. Sebuah benda titik bergerak di sumbu X. Kecepatan sebagai fungsi dari waktu terlihat pada grafik di bawah ini. v(m/s) 10 Pada t = 0 benda berada di x = 2 m t(s) a. b. c. -5 Gambarkan grafik a(t) dalam selang t = 0 dan t = 8 detik! Berapakah x 8 x 0? Berapakah panjang lintasan yang ditempuh selama selang t = 0 sampai t = 8 detik?

23 SOLUSI (1) 10 v(m/s) t(s) a. Kecepatan : 10t 10 v 5t t 1 1 t 3 3 t 6 6 t 8

24 SOLUSI (2) Untuk selang 0 < t < 1, v(t) = 10t. Percepatan : dv(t) d a(t) 10t 10 dt dt Untuk selang 1 < t < 3, v(t) = 10. Percepatan : dv(t) d a(t) 10 0 dt dt Untuk selang 3 < t < 6, v(t) = -5t Percepatan : a(t) dv(t) dt d dt 5t 25 5

25 SOLUSI (3) Untuk selang 6 < t < 8, v(t) = -5. Percepatan : dv(t) d a(t) 5 0 dt dt Dengan demikian, grafik a(t) : 10 a(m/s) t(s) -5

26 SOLUSI (4) 1. b. Untuk menentukan selisih jarak x 8 x 0 dengan menghitung luas dari daerah yang dibentuk oleh fungsi v(t) dan sumbu t. Untuk daerah pada harga v(t) positif, artinya terjadi pertambahan jarak. Sedangkan untuk harga v(t) negatif, terjadi pengurangan jarak. Dengan demikian selisih jarak x 8 x 0 dapat ditentukan dengan mengurangi luas daerah A dikurangi daerah B di bawah ini : v(m/s) Luas A = ½.(2 + 5).10 = A B Luas B = ½.(2 + 3).5 = 12,5 t(s)

27 SOLUSI (5) Luas A luas B = 22,5. Dengan demikian selisih jarak x 8 x 0 = 22,5 m 1. c. Untuk menentukan panjang lintasan dari t = 0 sampai t = 8 detik dapat dicari dengan menghitung luas total yang dibentuk fungsi v(t) dan sumbu t dari t = 0 sampai dengan t = 8 yang besarnya sama dengan Luas A + luas B = 47,5. Dengan demikian panjang lintasan sama dengan 47,5 m.

28 GERAK DUA DIMENSI Contoh dari gerak dua dimensi adalah gerak peluru dan gerak melingkar. Gerak peluru adalah gerak benda pada bidang XY di bawah pengaruh gravitasi (pada sumbu-y) dan gesekan udara (sumbu-x). Gerak pada sumbu X : x = x o + v ox t Gerak pada sumbu Y : y = y o + v oy t - ½gt 2 v ox = v o cos v oy = v o sin Dengan (x o, y o ) adalah posisi awal, (v ox, v oy ) kecepatan awal, dan g adalah percepatan gravitasi.

29 GERAK PELURU Titik tertinggi terjadi pada saat kecepatan v y (t) = v o sin - gt = 0. Dengan demikian titik tertinggi terjadi pada saat : v t 0 sin g

30 CONTOH 1 Sebuah bola golf dipukul sehingga memiliki kecepatan awal 150 m/s pada sudut 45 o dengan horizontal. Tentukan : a. Tinggi maksimum yang dapat dialami bola golf tersebut dari permukaan tanah b. Lama waktu bola berada di udara c. Jarak dari saat bola dipukul sampai kembali ke tanah

31 SOLUSI(1) a. Tinggi maksimum diperoleh pada saat v y (t) = 0, yaitu pada : 75 2 gt = 0. Diperoleh t max = 75 g 75 2 = 7,5 2 s 10 Ketinggian y max = v o sin.t max ½ g t 2 max = 150. ½ 2.7,5 2 ½.10.(7,5 2) 2 = ,5 = 562,5 m b. Lama waktu bola di udara adalah waktu t pada saat bola jatuh ke tanah, yaitu pada y = 0. y = 75 2 t - ½gt 2 = 0. Diperoleh t = 15 2 detik 2

32 SOLUSI(2) c. Jarak tempuh bola sampai ke tanah sama dengan x = v o cos. t. Dengan t menyatakan selang waktu bola golf sejak di lempar sampai kembali ke tanah. Diperoleh x = = 2250 m

33 CONTOH 2 Sebuah benda bergerak dalam bidang XY sebagai fungsi t : x(t) = 2t 3 t 2 m dan y(t) = 3t 2 2t + 1 m, t dalam detik. Tentukan : a. Komponen kecepatan untuk masing-masing arah b. Besar kecepatan pada t = 1 detik c. Waktu ketika kecepatan nol d. a(t) e. Waktu ketika arah a sejajar dengan sumbu Y

34 SOLUSI dx dt dy dt a. v x = = 6t 2 2t v y = = 6t 2 b. v x (1) = = 4 m/s v y (1) = = 4 m/s, maka besar kecepatan : 2 x 2 y v = v v 4 2 m/s c. Waktu pada kecepatan sama dengan nol, berarti waktu pada v x = v y = 0, yaitu pada t = 1 detik 3 dv dv x y d. a(t) = i j = (12t 2)i + 6j m/s dt dt e. Arah a sejajar sumbu Y berarti a x = 12t 2 = 0, yaitu pada t = 1 detik 6

35 Gerak Melingkar Gerak melingkar adalah gerak pada bidang dengan lintasan berupa lingkaran. Posisi benda dari gerak pada bidang dapat dinyatakan dalam bentuk vektor : r(t) = r [cos( t + o )i + sin( t + o )j] r(t) = r r Konstanta menyatakan kecepatan sudut, o menyatakan sudut awal, dan r menyatakan vektor satuan dari r(t). r menyatakan jari-jari lintasan yang besarnya konstan. Pada saat = 0, berlaku : r o (t) = r [cos o i + sin o j]

36 Koordinat Polar Berlaku : x o = r cos o y o = r sin o Dengan putaran n (x o, y o ) adalah posisi awal. Arah berlawanan arah jarum jam. Untuk memudahkan perhitungan dalam mencari persamaan gerak rotasi, suatu posisi dapat dinyatakan dalam koordinat polar. y o r o x o Berbeda dengan koordinat Kartesius, posisi dari suatu titik dinyatakan oleh jarak dari titik tersebut dengan titik pusat dan sudut yang dibentuk dengan sumbu x positif.

37 Koordinat Polar Vektor posisi dalam koordinat polar dinyatakan dalam : r(t) = r(t) a r Dengan r(t) menyatakan jarak titik pusat ke titik posisi sebagai fungsi waktu dan vektor satuan r r menyatakan arah dari vektor r(t) yang arahnya berubah terhadap waktu. Untuk gerak melingkar, jarak r(t) besarnya konstan yang dinyatakan sebagai jari-jari lintasan r. y o r o x o a r

38 Gerak Melingkar Kecepatan dari gerak melingkar dinyatakan oleh : v t dr dt t R d e r dt Karena R konstan, maka yang berubah terhadap waktu adalah arah vektor/vektor satuan. Diketahui dari slide sebelumnya : e r = cos( t + o )i + sin( t + o )j Jika o = 0, diperoleh : e r = cos t i + sin t j de Maka : r = (-sin t i + cos t j) dt

39 Gerak Melingkar Atau : de r = [cos( t + 90o )i + sin( t + 90 o )j] = e dt y o e R o x o e r Vektor satuan e menyatakan arah tegak lurus dengan vektor satuan e r seperti pada gambar samping. Dengan demikian kecepatan dalam gerak melingkar sama dengan : v(t) = R e

40 Gerak Melingkar Dengan demikian besar kecepatan v = r dengan arah tegak lurus vektor posisi. Arah dari kecepatan merupakan garis singgung dari lintasan lingkaran. y o a r o x o a r Vektor satuan a menyatakan arah tegak lurus dengan vektor satuan a r seperti pada gambar samping. Percepatan dari gerak melingkar dinyatakan oleh : a t dv t d(ωa ) dt r dt

41 Gerak Melingkar Beraturan Gerak melingkar beraturan terjadi jika yang menyatakan kecepatan sudut konstan. Kecepatan sudut adalah turunan sudut terhadap waktu. dθ dt t d dt ωt θ ω Jika konstan maka percepatan : da dt a t t o dv ωr da dt dt = - (cos t i + sin t j) = - a r Dengan demikian besar percepatan a = 2 r dengan arah berlawanan vektor posisi (-a r ).

42 Gerak Melingkar Percepatan yang demikian disebut percepatan sentripetal, yang dicirikan arahnya menuju titik pusat. Jika tidak konstan, maka percepatan menjadi : dv t de dω 2 a t ωr ra ω ra r rαa dt dt dt Dengan menyatakan percepatan sudut yang merupakan turunan pertama dari kecepatan sudut terhadap waktu. Percepatan yang searah dengan arah kecepatan (a ) disebut percepatan tangensial.

43 CONTOH Sebuah roda berotasi murni mengelilingi porosnya. Sebuah titik P yang berjarak 0,2 m dari sumbu rotasi menempuh sudut (dalam radian) sebagai berikut : = ( t 3 )/3 ( t 2 )/2 2 t (t dalam sekon) Tentukan : a. Kecepatan dan percepatan sudut titik P pada t = 2 s b. Laju titik P pada t = 2 s c. Percepatan tangensial dan sentripetal titik P pada t = 2 s

44 SOLUSI Jawab : dθ t a. Kecepatan sudut : = b. Pada t = 2 s diperoleh = 0. Laju titik P pada t = 2 s adalah v = 0.0,2 = 0 dt = t 2 - t - 2. c. Percepatan tangensial dan sentripetal titik P pada t = 2 s adalah : a s = 2.r = 0 a t = r Dengan menyatakan percepatan sudut yang besarnya adalah = diperoleh = 3. Dan a t = 0,6 m/s 2 dω t dt = 2 t -. Saat t = 2 s

r = r = xi + yj + zk r = (x 2 - x 1 ) i + (y 2 - y 1 ) j + (z 2 - z 1 ) k atau r = x i + y j + z k

r = r = xi + yj + zk r = (x 2 - x 1 ) i + (y 2 - y 1 ) j + (z 2 - z 1 ) k atau r = x i + y j + z k Kompetensi Dasar Y Menganalisis gerak parabola dan gerak melingkar dengan menggunakan vektor. P Uraian Materi Pokok r Kinematika gerak translasi, terdiri dari : persamaan posisi benda, persamaan kecepatan,

Lebih terperinci

Kinematika Gerak KINEMATIKA GERAK. Sumber:

Kinematika Gerak KINEMATIKA GERAK. Sumber: Kinematika Gerak B a b B a b 1 KINEMATIKA GERAK Sumber: www.jatim.go.id Jika kalian belajar fisika maka kalian akan sering mempelajari tentang gerak. Fenomena tentang gerak memang sangat menarik. Coba

Lebih terperinci

Fisika Umum Suyoso Kinematika MEKANIKA

Fisika Umum Suyoso Kinematika MEKANIKA GERAK LURUS MEKANIKA A. Kecepatan rata-rata dan Kecepatan sesaat Suatu benda dikatan bergerak lurus jika lintasan gerak benda itu merupakan garis lurus. Perhatikan gambar di bawah: Δx A B O x x t t v v

Lebih terperinci

21:10:20. Fisika I. Mahasiswa mengenali dan mampu mendeskripsikan. Dalam 1D) (Gerak. gerak benda dalam besaran-besaran: besaran: posisi,

21:10:20. Fisika I. Mahasiswa mengenali dan mampu mendeskripsikan. Dalam 1D) (Gerak. gerak benda dalam besaran-besaran: besaran: posisi, KINEMATIKA (Gerak Dalam 1D) Kompetensiyang diharapkan: Mahasiswa mengenali dan mampu mendeskripsikan gerak benda dalam besaran-besaran: besaran: posisi, kecepatan, dan percepatan KINEMATIKA Kinematika

Lebih terperinci

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Definisi KINEMATIKA Kinematika adalah cabang ilmu fisika yang

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 2) Gerak dalam Satu Dimensi (Kinematika) Kerangka Acuan & Sistem Koordinat Posisi dan Perpindahan Kecepatan Percepatan GLB dan GLBB Gerak Jatuh Bebas Mekanika

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 2) Gerak dalam Satu Dimensi (Kinematika) Kerangka Acuan & Sistem Koordinat Posisi dan Perpindahan Kecepatan Percepatan GLB dan GLBB Gerak Jatuh Bebas Mekanika

Lebih terperinci

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika KULIAH 3: Gerakan dua dan tiga dimensi Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Gerak 2 dimensi lintasan berada dalam

Lebih terperinci

BAB KINEMATIKA DENGAN ANALISIS VEKTOR

BAB KINEMATIKA DENGAN ANALISIS VEKTOR 1 BAB KINEMATIKA DENGAN ANALISIS VEKTOR I. SOAL PILIHAN GANDA 01. Grafik disamping ini menggunakan posisi x sebagai fungsi dari waaktu t. benda mulai bergerak saat t = 0. Dari graaafik ini dapat diambil

Lebih terperinci

BAB III GERAK LURUS. Gambar 3.1 Sistem koordinat kartesius

BAB III GERAK LURUS. Gambar 3.1 Sistem koordinat kartesius BAB III GERAK LURUS Pada bab ini kita akan mempelajari tentang kinematika. Kinematika merupakan ilmu yang mempelajari tentang gerak tanpa memperhatikan penyebab timbulnya gerak. Sedangkan ilmu yang mempelajari

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

KINEMATIKA PARTIKEL 1. KINEMATIKA DAN PARTIKEL

KINEMATIKA PARTIKEL 1. KINEMATIKA DAN PARTIKEL FISIKA TERAPAN KINEMATIKA PARTIKEL TEKNIK ELEKTRO D3 UNJANI TA 2013-2014 1. KINEMATIKA DAN PARTIKEL Kinematika adalah bagian dari mekanika yg mempelajari tentang gerak tanpa memperhatikan apa/siapa yang

Lebih terperinci

Kinematika. Gerak Lurus Beraturan. Gerak Lurus Beraturan

Kinematika. Gerak Lurus Beraturan. Gerak Lurus Beraturan Kinematika Gerak Lurus Beraturan KINEMATIKA adalah Ilmu gerak yang membicarakan gerak suatu benda tanpa memandang gaya yang bekerja pada benda tersebut (massa benda diabaikan). Jadi jarak yang ditempuh

Lebih terperinci

S M A 10 P A D A N G

S M A 10 P A D A N G Jln. Situjuh Telp : 071 71 Kode Pos : 19 Petuntuk : Silangilah option yang kamu anggap benar! 1. Grafik di samping menggabarkan posisi x sebagai fungsi dari waktu t. Benda mulai bergerak saat t = 0 s.

Lebih terperinci

PENGERTIAN KINEMATIKA

PENGERTIAN KINEMATIKA PENGERTIAN KINEMATIKA Kinematika adalah mempelajari mengenai gerak benda tanpa memperhitungkan penyebab terjadi gerakan itu. Benda diasumsikan sebagai benda titik yaitu ukuran, bentuk, rotasi dan getarannya

Lebih terperinci

FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO

FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO i FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO Departemen Fisika Universitas Airlangga, Surabaya E-mail address, P. Carlson: i an cakep@yahoo.co.id URL: http://www.rosyidadrianto.wordpress.com Puji

Lebih terperinci

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika KULIAH 3: Gerakan dua dan tiga dimensi Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Gerak 2 dimensi lintasan berada dalam

Lebih terperinci

TRAINING CENTER OLIMPIADE INTERNASIONAL

TRAINING CENTER OLIMPIADE INTERNASIONAL TRAINING CENTER OLIMPIADE INTERNASIONAL 7 th International Junior Science Olympiad (IJSO) 11 th Initational World Youth Mathematics Intercity Competition (IWYMIC) MODUL FISIKA GERAK (Sumber: College Physics,

Lebih terperinci

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh

Lebih terperinci

III. KINEMATIKA PARTIKEL. 1. PERGESERAN, KECEPATAN dan PERCEPATAN

III. KINEMATIKA PARTIKEL. 1. PERGESERAN, KECEPATAN dan PERCEPATAN III. KINEMATIKA PARTIKEL Kinematika adalah bagian dari mekanika yang mempelajari tentang gerak tanpa memperhatikan apa/siapa yang menggerakkan benda tersebut. Bila gaya penggerak ikut diperhatikan maka

Lebih terperinci

KINEMATIKA 1. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

KINEMATIKA 1. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. KINEMATIKA 1 Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. KINEMATIKA 1 LAJU: Besaran Skalar. Bila benda memerlukan waktu t untuk menempuh jarak d, maka laju rata-rata

Lebih terperinci

Gerak satu dimensi ialah : gerak benda dimana perubahan posisi benda hanya terjadi pada satu dimensi atau satu sumbu koordinat

Gerak satu dimensi ialah : gerak benda dimana perubahan posisi benda hanya terjadi pada satu dimensi atau satu sumbu koordinat (Pertemuan ke 3) Gerak Gerak adalah : perubahan posisi benda secara berkelanjutan (kontinu) Gerak dalam fisika terbagi 3 yaitu : Translasi (gerak mobil di jalan raya) Rotasi (gerak perputaran bumi pada

Lebih terperinci

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus

Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus BAB 7. GERAK ROTASI 7.1. Pendahuluan Gambar 7.1 Sebuah benda bergerak dalam lingkaran yang pusatnya terletak pada garis lurus Sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas 11 FISIKA Kinematika dengan Analisis Vektor - 03 - Gerak Parabola - Latihan Soal Doc. Name: AR11FIS0103 Version : 2012-07 halaman 1 01. N Gerak I o Gerak II 1 Gerak lurus Gerak lurus Beraturan

Lebih terperinci

Kinematika. Hoga saragih. hogasaragih.wordpress.com 1

Kinematika. Hoga saragih. hogasaragih.wordpress.com 1 Kinematika Hoga saragih hogasaragih.wordpress.com 1 BAB II Penggambaran Gerak Kinematika Dalam Satu Dimensi Mempelajari tentang gerak benda, konsep-konsep gaya dan energi yang berhubungan serta membentuk

Lebih terperinci

KINEMATIKA 1. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

KINEMATIKA 1. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. KINEMATIKA 1 Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. KINEMATIKA 1 LAJU: Besaran Skalar. Bila benda memerlukan waktu t untuk menempuh jarak d, maka laju rata-rata

Lebih terperinci

Kinematika Sebuah Partikel

Kinematika Sebuah Partikel Kinematika Sebuah Partikel oleh Delvi Yanti, S.TP, MP Bahan Kuliah PS TEP oleh Delvi Yanti Kinematika Garis Lurus : Gerakan Kontiniu Statika : Berhubungan dengan kesetimbangan benda dalam keadaan diam

Lebih terperinci

DAFTAR ISI. BAB 2 GRAVITASI A. Medan Gravitasi B. Gerak Planet dan Satelit Rangkuman Bab Evaluasi Bab 2...

DAFTAR ISI. BAB 2 GRAVITASI A. Medan Gravitasi B. Gerak Planet dan Satelit Rangkuman Bab Evaluasi Bab 2... DAFTAR ISI KATA SAMBUTAN... iii KATA PENGANTAR... iv DAFTAR ISI... v BAB 1 KINEMATIKA GERAK... 1 A. Gerak Translasi... 2 B. Gerak Melingkar... 10 C. Gerak Parabola... 14 Rangkuman Bab 1... 18 Evaluasi

Lebih terperinci

θ t = θ t Secara grafik θ-t : kecepatan sudut dapat ditentukan menggunakan tangen sudut kemiringan grafik terhadap sumbu t dθ dt d dt Gerak Melingkar

θ t = θ t Secara grafik θ-t : kecepatan sudut dapat ditentukan menggunakan tangen sudut kemiringan grafik terhadap sumbu t dθ dt d dt Gerak Melingkar Gerak Melingkar Posisi dari suatu titik yang mengalami gerak melingkar dinyatakan dengan θ yaitu besar sudut yang telah ditempuh dari awal perhitungan. Kecepatan sudut ω Adalah besar sudut yang ditempuh

Lebih terperinci

Karena hanya mempelajari gerak saja dan pergerakannya hanya dalam satu koordinat (sumbu x saja atau sumbu y saja), maka disebut sebagai gerak

Karena hanya mempelajari gerak saja dan pergerakannya hanya dalam satu koordinat (sumbu x saja atau sumbu y saja), maka disebut sebagai gerak BAB I. GERAK Benda dikatakan melakukan gerak lurus jika lintasan yang ditempuhnya membentuk garis lurus. Ilmu Fisika yang mempelajari tentang gerak tanpa mempelajari penyebab gerak tersebut adalah KINEMATIKA.

Lebih terperinci

KINEMATIKA STAF PENGAJAR FISIKA IPB

KINEMATIKA STAF PENGAJAR FISIKA IPB KINEMATIKA STAF PENGAJAR FISIKA IPB KINEMATIKA Mempelajari gerak sebagai fungsi dari waktu tanpa mempedulikan penyebabnya Manfaat Perancangan suatu gerak: Jadwal kereta, pesawat terbang, dll Jadwal pits

Lebih terperinci

MATERI gerak lurus GERAK LURUS

MATERI gerak lurus GERAK LURUS MATERI gerak lurus Pertemuan I Waktu : Jarak, Perpindahan, Kelajuan, dan kecepatan :3 JP GERAK LURUS Gerak lurus adalah gerakan suatu benda/obyek yang lintasannya berupa garis lurus (tidak berbelok-belok).

Lebih terperinci

GLB - GLBB Gerak Lurus

GLB - GLBB Gerak Lurus Dexter Harto Kusuma contoh soal glbb GLB - GLBB Gerak Lurus Fisikastudycenter.com- Contoh Soal dan tentang Gerak Lurus Berubah Beraturan (GLBB) dan Gerak Lurus Beraturan (GLB), termasuk gerak vertikal

Lebih terperinci

MEKANIKA. Oleh WORO SRI HASTUTI DIBERIKAN PADA PERKULIAHAN KONSEP DASAR IPA. Pertemuan 5

MEKANIKA. Oleh WORO SRI HASTUTI DIBERIKAN PADA PERKULIAHAN KONSEP DASAR IPA. Pertemuan 5 MEKANIKA Oleh WORO SRI HASTUTI DIBERIKAN PADA PERKULIAHAN KONSEP DASAR IPA Pertemuan 5 KINEMATIKA DAN DINAMIKA Sub topik: PARTIKEL Kinematika Dinamika KINEMATIKA mempelajari gerakan benda dengan mengabaikan

Lebih terperinci

BAB KINEMATIKA KINEMA

BAB KINEMATIKA KINEMA BAB KINEMATIKA Kinematika Mempelajari tentang gerak benda tanpa memperhitungkan penyebab gerak atau perubahan gerak. Asumsi bendanya sebagai benda titik yaitu ukuran, bentuk, rotasi dan getarannya diabaikan

Lebih terperinci

GuruMuda.Com. Konsep, Rumus dan Kunci Jawaban ---> Alexander San Lohat 1

GuruMuda.Com. Konsep, Rumus dan Kunci Jawaban ---> Alexander San Lohat  1 Indikator 1 : Membaca hasil pengukuran suatu alat ukur dan menentukan hasil pengukuran dengan memperhatikan aturan angka penting. Pengukuran dasar : Pelajari cara membaca hasil pengukuran dasar. dalam

Lebih terperinci

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi Fisika Umum (MA101) Topik hari ini: Kinematika Rotasi Hukum Gravitasi Dinamika Rotasi Kinematika Rotasi Perpindahan Sudut Riview gerak linear: Perpindahan, kecepatan, percepatan r r = r f r i, v =, t a

Lebih terperinci

GERAK BENDA DALAM BIDANG DATAR DENGAN PERCEPATAN TETAP

GERAK BENDA DALAM BIDANG DATAR DENGAN PERCEPATAN TETAP 34 MODUL PERTEMUAN KE 4 MATA KULIAH : (2 sks) MATERI KULIAH: Gerak Peluru (Proyektil); Gerak Melingkar Beraturan, Gerak Melingkar Berubah Beraturan, Besaran Angular dan Besaran Tangensial. POKOK BAHASAN:

Lebih terperinci

GERAK LURUS. Posisi Materi Kecepatan Materi Percepatan Materi. Perpindahan titik materi Kecepatan Rata-Rata Percepatan Rata-Rata

GERAK LURUS. Posisi Materi Kecepatan Materi Percepatan Materi. Perpindahan titik materi Kecepatan Rata-Rata Percepatan Rata-Rata GERAK LURUS (Rumus) Posisi Materi Kecepatan Materi Percepatan Materi Perpindahan titik materi Kecepatan Rata-Rata Percepatan Rata-Rata Kecepatan Sesaat Percepatan Sesaat Panjang Vektor Besar Kecepatan

Lebih terperinci

Doc. Name: XPFIS0201 Version :

Doc. Name: XPFIS0201 Version : Xpedia Fisika Soal Mekanika - Kinematika Doc. Name: XPFIS0201 Version : 2017-02 halaman 1 01. Manakah pernyataan di bawah ini yang benar? (A) perpindahan adalah besaran skalar dan jarak adalah besaran

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika terdiri dari dua (2) bagian yaitu : soal isian singkat (24 soal) dan soal pilihan

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

v i Kata Sambutan iii Sekilas Isi Buku v i ii ii B a b Gerak dalam Dua Dimensi Sumber: www.rit.edu Pada bab ini, Anda akan diajak untuk dapat menganalisis gejala alam dan keteraturannya dalam cakupan mekanika

Lebih terperinci

Soal Gerak Lurus = 100

Soal Gerak Lurus = 100 Soal Gerak Lurus 1. Sebuah bola bergerak ke arah Timur sejauh 8 meter, lalu membentur tembok dan berbalik arah sejauh meter. Jarak yang ditempuh bola adalah... Jarak, berarti semua dijumlah 8 meter + meter

Lebih terperinci

Bab II Kinematika dan Dinamika Benda Titik

Bab II Kinematika dan Dinamika Benda Titik Bab II Kinematika dan Dinamika Benda Titik Sumber : www.wallpaper.box.com Suatu benda dikatakan bergerak apabila kedudukannya senantiasa berubah terhadap suatu titik acuan tertentu. Seorang pembalap sepeda

Lebih terperinci

GERAK LURUS Kedudukan

GERAK LURUS Kedudukan GERAK LURUS Gerak merupakan perubahan posisi (kedudukan) suatu benda terhadap sebuah acuan tertentu. Perubahan letak benda dilihat dengan membandingkan letak benda tersebut terhadap suatu titik yang diangggap

Lebih terperinci

Antiremed Kelas 10 Fisika

Antiremed Kelas 10 Fisika Antiremed Kelas 0 Fisika UAS Doc. Name:K3AR0FIS0UAS Doc. Version: 205-0 2 halaman 0. Perhatikan tabel berikut! Diketahui usaha merupakan hasil perkalian gaya denga jarak, sedangkan momentum merupakan hasil

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Tabel 2. Saran Perbaikan Validasi SARAN PERBAIKAN VALIDASI. b. Kalimat soal

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Tabel 2. Saran Perbaikan Validasi SARAN PERBAIKAN VALIDASI. b. Kalimat soal 19 NOMOR BUTIR SOAL BAB IV HASIL PENELITIAN DAN PEMBAHASAN 1 a. Indicator Tabel 2. Saran Perbaikan asi SARAN PERBAIKAN VALIDASI b. Kalimat soal 2 a. indicator b. kalimat soal 3 a. Indicator b. Grafik diperbaiki

Lebih terperinci

BAHAN AJAR ANDI RESKI_15B08049_KELAS C PPS UNM

BAHAN AJAR ANDI RESKI_15B08049_KELAS C PPS UNM Dalam kehidupan sehari-hari kita sering menemui benda-benda yang bergerak melingkar beraturan misalnya: gerak bianglala, gerak jarum jam, gerak roda sepeda/motor/mobil, gerak baling-baling kipas angin,

Lebih terperinci

Antiremed Kelas 10 Fisika

Antiremed Kelas 10 Fisika Antiremed Kelas Fisika Persiapan UAS Fisika Doc. Name:ARFISUAS Doc. Version: 26-7 halaman. Perhatikan tabel berikut! No Besaran Satuan Dimensi Gaya Newton [M][L][T] 2 2 Usaha Joule [M][L] [T] 3 Momentum

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas FISIKA Persiapan UAS - Latihan Soal Doc. Name: K3ARFIS0UAS Version : 205-02 halaman 0. Jika sebuah partikel bergerak dengan persamaan posisi r= 5t 2 +, maka kecepatan rata -rata antara

Lebih terperinci

9/26/2011 PENYELESAIAN 1 PENYELESAIAN NO 2

9/26/2011 PENYELESAIAN 1 PENYELESAIAN NO 2 PENYELESAIAN 1 Pada gerak selama 20 detik berlaku: V 0 =(15 km/jam)(1000m/km)(1/3600 jam/s)=4,17 m/s V 1 = 60 km/jam = 16,7 m/s t = 20 detik 1. = ½ (V 0 +V 1 ) = ½ (4,17 + 16,7)m/s =10,4 m/s 2. a = (V

Lebih terperinci

Fisika Umum (MA-301) Gerak Linier (satu dimensi) Posisi dan Perpindahan. Percepatan Gerak Non-Linier (dua dimensi)

Fisika Umum (MA-301) Gerak Linier (satu dimensi) Posisi dan Perpindahan. Percepatan Gerak Non-Linier (dua dimensi) Fisika Umum (MA-301) Topik hari ini (minggu 2) Gerak Linier (satu dimensi) Posisi dan Perpindahan Kecepatan Percepatan Gerak Non-Linier (dua dimensi) Gerak Linier (Satu Dimensi) Dinamika Bagian dari fisika

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

GLBB & GLB. Contoh 1 : Besar percepatan konstan (kelajuan benda. bertambah secara konstan)

GLBB & GLB. Contoh 1 : Besar percepatan konstan (kelajuan benda. bertambah secara konstan) GLBB & GLB Suatu benda dikatakan melakukan gerak lurus berubah beraturan (GLBB) jika percepatannya selalu konstan. Percepatan merupakan besaran vektor (besaran yang mempunyai besar dan arah). Percepatan

Lebih terperinci

4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D

4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D 9:4:04 Posisi, Kecepatan dan Percepatan Angular 9:4:04 Partikel di titik P bergerak melingkar sejauh θ. Besarnya lintasan partikelp (panjang busur) sebanding sebanding dengan: s = rθ Satu keliling lingkaran

Lebih terperinci

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT MEKANIKA Pengukuran, Besaran & Vektor 1. Besaran yang dimensinya ML -1 T -2 adalah... A. Gaya B. Tekanan C. Energi D. Momentum E. Percepatan 2. Besar tetapan Planck adalah

Lebih terperinci

Keep running VEKTOR. 3/8/2007 Fisika I 1

Keep running VEKTOR. 3/8/2007 Fisika I 1 VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor

Lebih terperinci

TEST KEMAMPUAN DASAR FISIKA

TEST KEMAMPUAN DASAR FISIKA TEST KEMAMPUAN DASAR FISIKA Jawablah pertanyaan-pertanyaan di bawah ini dengan pernyataan BENAR atau SALAH. Jika jawaban anda BENAR, pilihlah alasannya yang cocok dengan jawaban anda. Begitu pula jika

Lebih terperinci

Besaran Fisika pada Gerak Melingkar

Besaran Fisika pada Gerak Melingkar MATERI POKOK BESARAN FISIKA PADA GERAK MELINGKAR I. Kompetensi Dasar Menganalisis besaran fisika pada gerak melingkar dengan laju konstan II. Indikator Hasil Belajar Siswa dapat : 1. Mengetahui pengertian

Lebih terperinci

K13 Revisi Antiremed Kelas 10 FISIKA

K13 Revisi Antiremed Kelas 10 FISIKA K13 Revisi Antiremed Kelas 10 FISIKA Gerak Parabola - Latihan Soal 01 Doc. Name: RK13AR10FIS0401 Version : 2016-10 halaman 1 01. No Gerak I Gerak II 1 Gerak lurus Gerak lurus Beraturan 2 Gerak lurus 3

Lebih terperinci

Gerak Jatuh Bebas. Sehingga secara sederhana persaman GLBB sebelumya dapat diubah menjadi sbb:

Gerak Jatuh Bebas. Sehingga secara sederhana persaman GLBB sebelumya dapat diubah menjadi sbb: Gerak Jatuh Bebas Gerak jatuh bebas adalah gerak yang timbul akibat adanya gaya gravitasi dan benda tidak berada dalam kesetimbangan. Artinya benda terlepas dan tidak ditopang oleh apapun dari segala sisi.

Lebih terperinci

Antiremed Kelas 10 FISIKA

Antiremed Kelas 10 FISIKA Antiremed Kelas 0 FISIKA Dinamika, Partikel, dan Hukum Newton Doc Name : K3AR0FIS040 Version : 04-09 halaman 0. Gaya (F) sebesar N bekerja pada sebuah benda massanya m menyebabkan percepatan m sebesar

Lebih terperinci

Lembar Kegiatan Siswa

Lembar Kegiatan Siswa 1 Lembar Kegiatan Siswa Tujuan : 1) Menunjukan peristiwa benda yang melakukan gerak parabola. ) Menginterprestasikan gerak parabola merupakan perpaduan dua gerak yang memiliki arah horizontal dan vertikal.

Lebih terperinci

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1 Jurusan Fisika-Unej BENDA TEGAR Kuliah FI-1101 Fisika 004 Dasar Dr. Linus Dr Pasasa Edy Supriyanto MS Bab 6-1 Jurusan Fisika-Unej Bahan Cakupan Gerak Rotasi Vektor Momentum Sudut Sistem Partikel Momen

Lebih terperinci

FISIKA. Untuk SMA dan MA Kelas XI. Sri Handayani Ari Damari

FISIKA. Untuk SMA dan MA Kelas XI. Sri Handayani Ari Damari FISIKA 2 FISIKA Untuk SMA dan MA Kelas XI Sri Handayani Ari Damari 2 Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Hak cipta buku ini dibeli oleh Departemen Pendidikan Nasional

Lebih terperinci

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya.

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. Dinamika Page 1/11 Gaya Termasuk Vektor DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. GAYA TERMASUK VEKTOR, penjumlahan gaya = penjumlahan

Lebih terperinci

PERSIAPAN UN FISIKA 2015 SMA NO SOAL JAWABAN 01 Perhatikan gambar berikut!

PERSIAPAN UN FISIKA 2015 SMA NO SOAL JAWABAN 01 Perhatikan gambar berikut! NO SOAL JAWABAN 01 Perhatikan gambar berikut! Jono menempuh lintasan ABC dan Jinni menempuh lintasan BDC. Jarak dan perpindahan Jono dan Jinni adalah. A. Jono; 12 m dan 4 m, Jinni; 16 m dan 4 m B. Jono;

Lebih terperinci

Lampiran 1 RENCANA PELAKSANAAN PEMBELAJARAN SIKLUS I

Lampiran 1 RENCANA PELAKSANAAN PEMBELAJARAN SIKLUS I Lampiran 1 RENCANA PELAKSANAAN PEMBELAJARAN SIKLUS I SatuanPendidikan : MA Taqwiyatul Waton Mata Pelajaran : Fisika Kelas/Semester : XI/1 AlokasiWaktu : 6 jam pelajaran (3 x pertemuan) Dilaksanakan : Pada

Lebih terperinci

A. Pendahuluan dan Pengertian

A. Pendahuluan dan Pengertian Pernahkah Anda melihat atau mengamati pesawat terbang yang mendarat di landasannya? Berapakah jarak tempuh hingga pesawat tersebut berhenti? Ketika Anda menjatuhkan sebuah batu dari ketinggian tertentu,

Lebih terperinci

Xpedia Fisika. Soal Mekanika

Xpedia Fisika. Soal Mekanika Xpedia Fisika Soal Mekanika Doc Name : XPPHY0199 Version : 2013-04 halaman 1 01. Tiap gambar di bawah menunjukkan gaya bekerja pada sebuah partikel, dimana tiap gaya sama besar. Pada gambar mana kecepatan

Lebih terperinci

GERAK ROTASI. Hoga saragih. hogasaragih.wordpress.com

GERAK ROTASI. Hoga saragih. hogasaragih.wordpress.com GERAK ROTASI Hoga saragih Benda tegar yang dimaksud adalah benda dengan bentuk tertentu yang tidak berubah, sehinga partikelpartikel pembentuknya berada pada posisi tetap relatif satu sama lain. Tentu

Lebih terperinci

Chapter 5. Penyelesian: a. Dik: = 0,340 kg. v x. (t)= 2 12t 2 a x. x(t) = t 4t 3. (t) = 24t t = 0,7 a x. = 24 x 0,7 = 16,8 ms 2

Chapter 5. Penyelesian: a. Dik: = 0,340 kg. v x. (t)= 2 12t 2 a x. x(t) = t 4t 3. (t) = 24t t = 0,7 a x. = 24 x 0,7 = 16,8 ms 2 Chapter 5. 0,34 kg partikel bergerak pada sebuah bidang xy dengan x(t) -5,00 +,00t - 4,00t 3 dan y(t) 5,00 + 7,00t 9,00t, x dan y dalam meter dan t dalam sekon. Pada saat t 0,7s (a). Berapa besar gaya

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

KINEMATIKA DENGAN ANALISIS VEKTOR...

KINEMATIKA DENGAN ANALISIS VEKTOR... Daftar Isi KATA SAMBUTAN... iii KATA PENGANTAR... iv DAFTAR ISI... v BAB KINEMATIKA DENGAN ANALISIS VEKTOR... A. Posisi Titik Materi pada Suatu Bidang... B. Kecepatan... 4 C. Percepatan... 9 D. Gerak Lurus...

Lebih terperinci

BAB 2 MENERAPKAN HUKUM GERAK DAN GAYA

BAB 2 MENERAPKAN HUKUM GERAK DAN GAYA 43 BAB MENERAPKAN HUKUM GERAK DAN GAYA Sumber: Serway dan Jewett, Physics for Scientists and Engineers, 6 th edition, 004 Pernahkah Anda membayangkan bagaimana kalau dalam kehidupan ini tidak ada yang

Lebih terperinci

Pelatihan Ulangan Semester Gasal

Pelatihan Ulangan Semester Gasal Pelatihan Ulangan Semester Gasal A. Pilihlah jawaban yang benar dengan menuliskan huruf a, b, c, d, atau e di dalam buku tugas Anda!. Perhatikan gambar di samping! Jarak yang ditempuh benda setelah bergerak

Lebih terperinci

Percepatan rata-rata didefinisikan sebagai perubahan kecepatan dibagi waktu yang diperlukan untuk perubahan tersebut.

Percepatan rata-rata didefinisikan sebagai perubahan kecepatan dibagi waktu yang diperlukan untuk perubahan tersebut. PERCEPATAN Sebuah benda yang kecepatannya berubah tiap satuan waktu dikatakan mengalami percepatan. Sebuah mobil yang kecepatannya diperbesar dari nol sampai 90 km/jam berarti dipercepat. Apabila sebuah

Lebih terperinci

Antiremed Kelas 11 Fisika

Antiremed Kelas 11 Fisika Antiremed Kelas 11 Fisika Kinematika dengan Analisis Vektor - 04 - Gerak Melingkar - Latihan Soal Doc. Name: AR11FIS0104 Version: 2012-07 halaman 1 01. Sudut pusat yang dibentuk oleh 3/4 putaran adalah.

Lebih terperinci

ULANGAN UMUM SEMESTER 1

ULANGAN UMUM SEMESTER 1 ULANGAN UMUM SEMESTER A. Berilah tanda silang (x) pada huruf a, b, c, d atau e di depan jawaban yang benar!. Kesalahan instrumen yang disebabkan oleh gerak brown digolongkan sebagai... a. kesalahan relatif

Lebih terperinci

KINEMATIKA GERAK LURUS

KINEMATIKA GERAK LURUS KINEMATIKA GERAK LURUS Mata Pelajaran Kelas Nomor Modul : Fisika : I (Satu) : Fis.X.0 Penulis: Drs. Setia Gunawan Penyunting Materi: Drs. I Made Astra, M.Si Penyunting Media: Dr. Nurdin Ibrahim, M.Pd.

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB XVII Gerak Lurus Beraturan dan Gerak Lurus Berubah Beraturan Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT

Lebih terperinci

Mahasiswa memahami konsep tentang gerak lurus beraturan dan gerak lurus berubah beraturan

Mahasiswa memahami konsep tentang gerak lurus beraturan dan gerak lurus berubah beraturan BAB 5 GERAK LURUS BERATURAN DAN GERAK LURUS BERUBAH BERATURAN A. Tujuan Umum Mahasiswa memahami konsep tentang gerak lurus beraturan dan gerak lurus berubah beraturan B. Tujuan Khusus Mahasiswa dapat memahami

Lebih terperinci

GERAK MELINGKAR. Gerak Melingkar Beraturan

GERAK MELINGKAR. Gerak Melingkar Beraturan KD: 3.1 Menganalisis gerak lurus,parabola dan gerak melingkar dengan menggunakan vektor. GERAK MELINGKAR Gerak melingkar yaitu Gerak suatu benda dengan lintasan yang berbentuk lingkaran.contoh :Compact

Lebih terperinci

Gerak. Gerak adalah perubahan posisi pada suatu kerangka acuan

Gerak. Gerak adalah perubahan posisi pada suatu kerangka acuan Fisika Olah Raga Gerak Gerak adalah perubahan posisi pada suatu kerangka acuan Jarak dan perpindahan Jarak didefinisikan sebagai panjang lintasan yang ditempuh. Merupakan besaran skalar diberi simbul s

Lebih terperinci

GERAK MELINGKAR BERATURAN

GERAK MELINGKAR BERATURAN Pengertian Gerak melingkar GERAK MELINGKAR BERATURAN Gerak melingkar beraturan adalah gerak yang lintasannya berbentuk lingkaran dengan laju konstan dan arah kecepatan tegak lurus terhadap arah percepatan.

Lebih terperinci

PEMERINTAH KABUPATEN MUARO JAMBI D I N A S P E N D I D I K A N

PEMERINTAH KABUPATEN MUARO JAMBI D I N A S P E N D I D I K A N PEMERINTAH KABUPATEN MUARO JAMBI D I N A S P E N D I D I K A N Alamat : Komplek perkantoran Pemda Muaro Jambi Bukit Cinto Kenang, Sengeti UJIAN SEMESTER GANJIL SEKOLAH MENENGAH ATAS (SMA) TAHUN PELAJARAN

Lebih terperinci

Mahasiswa memahami konsep gerak parabola, jenis gerak parabola, emnganalisa dan membuktikan secara matematis gerak parabola

Mahasiswa memahami konsep gerak parabola, jenis gerak parabola, emnganalisa dan membuktikan secara matematis gerak parabola BAB 6. Gerak Parabola Tujuan Umum Mahasiswa memahami konsep gerak parabola, jenis gerak parabola, emnganalisa dan membuktikan secara matematis gerak parabola Tujuan Khusus Mahasiswa dapat memahami tentang

Lebih terperinci

GERAK LURUS BERUBAH BERATURAN

GERAK LURUS BERUBAH BERATURAN GERAK LURUS BERUBAH BERATURAN Suatu benda dikatakan melakukan gerak lurus berubah beraturan (GLBB) jika percepatannya selalu konstan. Percepatan merupakan besaran vektor (besaran yang mempunyai besar dan

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/36 FISIKA DASAR (TEKNIK SISPIL) BENDA TEGAR Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Rotasi Benda Tegar Benda tegar adalah sistem partikel yang

Lebih terperinci

Xpedia Fisika DP SNMPTN 05

Xpedia Fisika DP SNMPTN 05 Xpedia Fisika DP SNMPTN 05 Doc. Name: XPFIS9910 Version: 2012-06 halaman 1 Sebuah bola bermassa m terikat pada ujung sebuah tali diputar searah jarum jam dalam sebuah lingkaran mendatar dengan jari-jari

Lebih terperinci

Besaran Dasar Gerak Lurus

Besaran Dasar Gerak Lurus Oleh : Zose Wirawan Besaran Dasar Gerak Lurus Pendahuluan Gerak Lurus adalah suatu gerak benda yang lintasannya berupa garis lurus. Ini adalah jenis gerak paling sederhana yang ada didalam kehidupan seharihari.

Lebih terperinci

BAB II MEKANIKA & ENERGI GERAK --- alifis.wordpress.com

BAB II MEKANIKA & ENERGI GERAK --- alifis.wordpress.com BAB II MEKANIKA & ENERGI GERAK alifis@corner --- alifis.wordpress.com.1 PENGANTAR Pada bab ini disajikan materi tentang ilmu yang mengupas tentang kinematika, dinamika dan statika; konsep usaha dan energi,

Lebih terperinci

Andaikan sebutir partikel bergerak searah sumbu-x. Posisi partikel setiap waktu dinyatakan oleh jaraknya dari titik awal (acuan) O.

Andaikan sebutir partikel bergerak searah sumbu-x. Posisi partikel setiap waktu dinyatakan oleh jaraknya dari titik awal (acuan) O. BAB III GERAK LURUS 3.1 PENDAHULUAN Kinematika partikel mempelajari gerak suatu partikel tanpa meninjau penyebab partikel itu dapat bergerak. Gerakan ini mengamati bentuk lintasan yang ditulis dalam persamaan

Lebih terperinci

KINEM4TIK4 Tim Fisika

KINEM4TIK4 Tim Fisika KINEM4TIK4 Tim Fisika GERAK PADA SATU DIMENSI POSISI, LAJU, KECEPATAN DAN PERCEPATAN P O S I S I Posisi dari suatu partikel adalah lokasi dari suatu partikel relatif terhadap titik referensi tertentu.

Lebih terperinci