Keterbatasan Operator Integral Fraksional Di Ruang Lebesgue Tak Homogen

Ukuran: px
Mulai penontonan dengan halaman:

Download "Keterbatasan Operator Integral Fraksional Di Ruang Lebesgue Tak Homogen"

Transkripsi

1 Ketebatasa Oeato Itegal Faksioal Di uag Lebesgue Tak Homoge Hey Pibawato Suyawa Juusa Matematika Fakultas Sais a Tekologi Uivesitas Saata Dhama Yogyakata heyibs@staff.us.ac.i Abstak Dalam makalah ii aka ibuktika ketebatasa oeato itegal faksioal I i uag Lebesgue tak homoge ega megguaka ketebatasa oeato maksimal aial Hay-Littlewoo a ketaksamaa Hebeg. Selautya, ketebatasa I tesebut iteaka aa embuktia ketaksamaa Olse i uag Lebesgue tak homoge. Kata kuci: Oeato itegal faksioal, oeato maksimal aial Hay- Littlewoo, uag Lebesgue tak homoge, ketaksamaa Olse. Peahulua Misalka Qx (, meyataka kubus yag beusat i x a memuyai ai-ai (yaitu setegah aag sisi > 0; a Qxk (,, ega k > 0, meyataka kubus kosetis ega ai-ai k. Misalka uga C aalah kostata ositif, yag alam makalah ii tiak elu sama ai bais ke bais. uag metik isii haya ibicaaka yag ilegkai ega ukua Boel μ isebut uag homoge aabila μ memeuhi koisi oublig: μ( Qx (,2 Cμ( Qx (,. Semetaa itu, (, μ ega μ yag tiak memeuhi koisi oublig tetai memeuhi koisi gowth μ( Qx (, C, utuk 0 <, isebut sebagai uag tak homoge. Bebeaa hasil yag bekeaa ega uag tak homoge aat ilihat misalya aa [2, 9, 2]. Di uag tak homoge, oeato itegal faksioal I iefiisika ega f( y I f( x: = ( y. x μ Semas Matematika a Peiika Matematika

2 Ketebatasa Oeato Itegal Faksioal Di uag Lebesgue Tak Homoge Pehatika bahwa i uag homoge, agkat ai x y aalah. Oeato, yag ikeal ula sebagai otesial iesz, etama kali ielaai oleh Hay a Littlewoo [6, 7] seta Sobolev [3], seagka hasil selautya i uag homoge aat ilihat aa [, 4, 5, 8, 0]. Dalam [3], oeato I telah ibuktika tebatas ai uag Lebesgue tak homoge L ( μ ke L ( μ. Dalam makalah ii, ketebatasa tesebut aka ibuktika ulag a kemuia iguaka utuk membuktika ketaksamaa Olse i uag Lebesgue tak homoge. I Ketebatasa Oeato I Dibeika f aalah sebaag fugsi teuku- μ aa Boel yag memeuhi koisi gowth. Diefiisika a ( μ f : L ( μ = f( y ( y, < { } f : L ( μ = esssu f( x : x, ega μ aalah ukua ega ess su { f ( x : x } meyataka batas atas tekecil esesial ai f. uag Lebesgue tak homoge L ( μ = L (, μ,, aalah uag kelas-kelas ekuivale f seemikia sehigga f : L ( μ <. Di uag Lebesgue tak homoge, iketahui I besifat tebatas. Teoema 2. [2, 3] Dibeika 0 < <. Jika < < a =, maka I tebatas ai L ( μ ke L ( μ. Bukti ketebatasa I i uag Lebesgue tesebut aat ieoleh megguaka ketaksamaa Hebeg yag melibatka oeato maksimal aial Hay-Littlewoo M ega Mf( x : = su f( y ( y. 0 μ > Q( x, Oeato M ii betie lemah-(, a betie kuat- (,. - 20

3 Teoema 2.2 [3] Oeato maksimal M memeuhi C μ { x : Mf( x > } ( μ( f x x a Mf : L ( μ C f : L ( μ. Bukti: Ambil f L ( μ a efiisika { : ( } E = x Mf x >. Jika x, maka teaat > 0 sehigga E x Q( x, x x f( y μ( y >. Selautya, Lema Cove Vitali membeika koleksi kubus { Qx (, } (ega x a = yag seasag-seasag salig leas seemikia sehigga E Akibatya, x E Q( x, Q( x,3. U U x E x μ( E μ( Q( x,3 C (3 C ( μ( f y y Q( x, C f( y μ( y. Hal ii membuktika bahwa C μ{ x : Mf( x > } ( ( f x μ x. Utuk membuktika bagia selautya, ambil sebaag x a kubus Qx (,. Dega emikia, Semas Matematika a Peiika Matematika

4 Ketebatasa Oeato Itegal Faksioal Di uag Lebesgue Tak Homoge f ( y ( y esssu f( y ( y (, μ Q x μ Q( x, f : L ( ( y μ μ Q( x, = f : L ( μ ( μ y Q( x, = f : L ( μ μ( Q( x, C f : L ( μ. Akibatya, su f( y ( y C f : L (, 0 μ μ > Q( x, yag membeika ketaksamaa yag iigika. Catat bahwa oeato yag betie kuat- (, beimlikasi bahwa oeato tesebut betie lemah- (,. Jai M meuaka oeato subliie yag betie lemah-(, a (., Selautya, ega megguaka Teoema Iteolasi Macikiewicz ieoleh hasil beikut. Akibat 2.3 [3] Oeato maksimal M tebatas i L ( μ utuk < <. Dega megguaka ketebatasa M i L ( μ aka ibuktika ketaksamaa Hebeg yag atiya ieluka utuk membuktika ketebatasa oeato I i uag Lebesgue tak homoge. Teoema 2.4 (Ketaksamaa Hebeg. Dibeika 0 < < a f fugsi tebatas ega tumua komak. Maka utuk < belaku I f( x C f : L ( μ Mf( x. Bukti: Ambil sebaag t > 0. Dega meuliska f( y f( y I f( x μ( y + (, < t μ y x y t x y x y aka icai batas utuk I a II. Utuk suku etama, I, belaku I II - 22

5 f( y I = μ( y < t = k = 0 k k 2 t < 2 t 2 2 t k+ k+ (,2 0 (2 Q x t k = t 2 k 2 2 ( t k = 0 = Ct Mf ( x. f( y Mf x μ( y f( y μ( y Selautya utuk suku keua, yaitu II, telebih ahulu iehatika kasus = sebagai beikut. II = f( y μ( y f ( y μ( y t ( t f : L( μ. Kemuia utuk kasus < <, ilih β = (. Dalam hal ii, aalah agkat sekawa ai, yaitu memeuhi + =. Oleh kaea β > 0, maka ega megguaka ketaksamaa Höle ieoleh f( y II = μ( y ( f( y μ( y μ( y ( μ( y = f : L ( μ ( μ( y = f : L ( μ k k+ 2 t < 2 t + β k = 0 f : L ( μ k = 0 μ k (2 t k + ( Qx (,2 t + β Semas Matematika a Peiika Matematika

6 Ketebatasa Oeato Itegal Faksioal Di uag Lebesgue Tak Homoge β kβ C f : L ( μ 2 t 2 k = 0 β = C f : L ( μ t ( = Ct f : L ( μ. Catat bahwa aabila iilih = a C =, maka ieoleh ketaksamaa yag sama ega kasus = i atas. Dega emikia, utuk < belaku I f( x I + II ( C t Mf( x + t f : L ( μ utuk setia t > 0. Selautya, ega memilih Mf ( x t = f : L ( μ a mesubstitusikaya ke alam ketaksamaa teakhi, ieoleh ( Mf ( x Mf ( x I f( x C Mf( x C f : L ( μ + f : L ( μ f : L ( μ + Mf ( x Mf ( x Mf ( x = C + f : L ( μ + f : L ( μ f : L ( μ Mf ( x = C f : L ( μ = C f : L ( μ Mf( x. Dega megguaka fakta bahwa fugsi maksimal Mf tebatas i L ( μ, maka bukti selesai. Sekaag aka ibuktika bahwa oeato itegal faksioal I besifat tebatas i uag Lebesgue tak homoge. Bukti Teoema 2.. Dai Ketaksamaa Hebeg ieoleh I f( x C f : L ( μ Mf( x. - 24

7 Hal ii beakibat Jai belaku ( ( μ μ I f( x ( x C f : L ( ( ( Mf x μ x yaitu I tebatas ai L ( μ ke L ( μ. ( μ = C f : L ( μ Mf( x ( x = C f : L ( μ Mf : L ( μ C f : L ( μ f : L ( μ = C f : L ( μ. : I f L ( μ C f : L ( μ, Ketaksamaa Olse Seeti halya ega hasil i uag homoge (lihat [0], isii aka ibuktika ketaksamaa Olse i uag Lebesgue tak homoge. Ketaksamaa Olse ii meuukka ketebatasa oeato WI utuk otesial yag ietubasi W aa esamaa Schöige. Teoema 3.. Utuk < a = belaku WI f : L ( μ C W : L ( μ f : L ( μ, yaitu WI tebatas i L ( μ, aabila W L ( μ. Bukti: Dega megguaka ketaksamaa Höle ieoleh ( μ ( μ WI f ( y μ( y W ( y ( y I f ( y ( y. Aabila iambil aka agkat- ai keua uas ketaksamaa, maka ( WI f y μ y ( W y μ y ( I f y μ y ( ( ( ( ( (. Selautya ega megguaka ketebatasa I ai L ( μ ke L ( μ, ieoleh WI f : L ( μ C W : L ( μ f : L ( μ. Peutu Semas Matematika a Peiika Matematika

8 Ketebatasa Oeato Itegal Faksioal Di uag Lebesgue Tak Homoge Dega megguaka ketebatasa oeato maksimal Hay-Littlewoo a Ketaksamaa Hebeg aat ibuktika ketebatasa oeato itegal faksioal i uag Lebesgue tak homoge. Selautya ketebatasa oeato itegal faksioal ii iteaka aa embuktia ketaksamaa Olse i uag Lebesgue tak homoge. Hasilhasil ii sekaligus meukug fakta aa eelitia i aea aalisis Fouie yaki bayak teoi i alam aalisis Fouie yag teta belaku aabila koisi oublig igatika oleh koisi gowth. Dafta Pustaka [] Aams, D.., A ote o iesz otetials, Duke Math. J. 42 (975, [2] Cueva, J. G., a Gatto, A. E., Boueess oeties of factioal itegal oeatos associate to o-oublig measues, Stuia Math 62 (2004, o. 3, [3] Cueva, J. Gacia, a Matell, J. M., Two weight om ieualities fo maximal oeato a factioal itegals o o-homogeeous saces, Iiaa Uivesity Mathematics Joual 50 (200, o. 3, [4] Guawa, H., A ote o the geealize factioal iegal oeatos, J. Ioes. Math. Soc. (MIHMI 9 (2003, [5] Guawa, H. a Eiai, Factioal itegals a geealize Olse ieualities, to aea i Kyugook Math. J. [6] Hay, G. H., a Littlewoo, J. E., Some oeties of factioal itegals. I, Math. Zeit. 27 (927, [7] Hay, G. H., a Littlewoo, J. E., Some oeties of factioal itegals. II, Math. Zeit. 34 (932, [8] Nakai, E., ecet toics o factioal itegal oeatos (Jaaese, Sūgaku 56 (2004, [9] Nazaov, F., Teil, S., a Volbeg, A., Weak tye estimates a Cotla ieualities fo Caleo-Zygmu oeatos o o-homogeeous saces, Iteat. Math. es. Notices 9 (998, [0] Olse, P. A., Factioal itegatio, Moey saces a a Schöige euatio, Comm. Patial Diffeetial Euatios 20 (995,

9 [] Sawao, Y., Sobukawa, T., a Taaka, H., Limitig case of the boueess of factioal itegal oeatos o o-homogeeous sace, J. Ieual. Al. At. ID (2006, 6. [2] Sihwaigum, I., Suyawa, H. P., a Guawa, H. Factioal itegal oeatos a Olse ieualities o o-homogeeous saces, to aea i Aust. J. of Math. Aal. a Al. [3] Sobolev, S., O a theoem i fuctioal aalysis (ussia, Mat. Sob. 46 (983, [Eglish taslatio i Ame. Math. Soc. Tasl. Se (963, 39-68]. Semas Matematika a Peiika Matematika

0 < α < n d ), we define here the

0 < α < n d ), we define here the OPERATOR INTEGRA FRAKSIONA DAN KETAKSAAAN OSEN DI RUANG ORREY TAK HOOGEN YANG DIPERUU Iha Sihwaigum Hea Guawa a Woo Seta uhi KK Aalisis a Geometi Fakultas atematika a Ilmu Pegetahua Alam Istitut Tekologi

Lebih terperinci

KETAKSAMAAN TIPE LEMAH UNTUK OPERATOR MAKSIMAL DI RUANG MORREY TAK HOMOGEN YANG DIPERUMUM

KETAKSAMAAN TIPE LEMAH UNTUK OPERATOR MAKSIMAL DI RUANG MORREY TAK HOMOGEN YANG DIPERUMUM JMP : Volume 4 Nomor 2, Desember 2012, hal. 265-270 KETAKSAMAAN TIPE LEMAH UNTUK OPERATOR MAKSIMAL DI RUANG MORREY TAK HOMOGEN YANG DIPERUMUM Sri Maryai Uiversitas Jederal Soedirma sri.maryai@usoed.ac.id

Lebih terperinci

OPERATOR INTEGRAL FRAKSIONAL DAN KETAKSAMAAN OLSEN DI RUANG TAK HOMOGEN TESIS

OPERATOR INTEGRAL FRAKSIONAL DAN KETAKSAMAAN OLSEN DI RUANG TAK HOMOGEN TESIS OPERATOR INTEGRAL FRAKSIONAL DAN KETAKSAMAAN OLSEN DI RUANG TAK HOMOGEN TESIS Karya tulis sebagai salah satu syarat utuk memeroleh gelar Magister dari Istitut Tekologi Badug Oleh HERRY PRIBAWANTO SURYAWAN

Lebih terperinci

Karakterisasi Produk Tensor l ( Δ) l. Muslim Ansori

Karakterisasi Produk Tensor l ( Δ) l. Muslim Ansori Ruag Basa Sesh ( Δ ),< < da Bebeaa Pemasaaha Kaatesas Podu Teso ( Δ) ( Δ) Musm Aso Juusa Matemata, FMIPA, Uvestas Lamug J. Soemat Bodoegoo No. Bada Lamug 3545 E-ma: asomath@ahoo.com ABSTRACT I ths ae we

Lebih terperinci

Pemetaan Linear Yang Mengawetkan Invers Drazin Matriks Atas Lapangan

Pemetaan Linear Yang Mengawetkan Invers Drazin Matriks Atas Lapangan Pemetaa Liea Yag Megawetka Ives azi Matiks Atas Lapaga ibeika matiks x atas lapaga Sutopo Juusa Matematika Fakultas Matematika da Pegetahua Alam Uivesitas Gadjah Mada sutopo_mipa@ugm.ac.id Abstact F lapaga

Lebih terperinci

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1 4. KOMBINATORIKA 4. Atua Utuk Suatu Peistiwa Evet sesuatu yag tejadi. Jika peistiwa A dapat tejadi dalam m caa da peistiwa B dapat tejadi dalam N caa, maka tedapat (m, ) caa kedua peistiwa tejadi besama-sama.

Lebih terperinci

EKSISTENSI INVERS GRUP DARI MATRIKS BLOK. Mahasiswa Program S1 Matematika 2

EKSISTENSI INVERS GRUP DARI MATRIKS BLOK. Mahasiswa Program S1 Matematika 2 ESSTENS NVERS GRU DR TRS LO Riaa Wedya Rola ae usaii ahasiswa ogam S atematika Dose Juusa atematika Fakultas atematika da lmu egetahua lam ampus iawidya ekabau 89 doesia email: iaa_wedya@yahoocom STRCT

Lebih terperinci

TEOREMA PEMBATASAN DIMENSI DUA. Hendra Gunawan Jurusan Matematika ITB Jl. Ganesha 10 Bandung

TEOREMA PEMBATASAN DIMENSI DUA. Hendra Gunawan Jurusan Matematika ITB Jl. Ganesha 10 Bandung TEOREMA PEMBATASAN IMENSI UA Henda Gunawan Juusan Matematika ITB Jl Ganesha Bandung Abstak alam makalah ini kami buktikan teoema embatasan dimensi dua dengan menggunakan ketaksamaan Babenko-Hausdoff-Young

Lebih terperinci

Menentukan Pembagi Bersama Terbesar dengan Algoritma

Menentukan Pembagi Bersama Terbesar dengan Algoritma Meetuka Pembagi Besama Tebesa dega Algoitma Macelius Hey M. (135108) Pogam Studi Tekik Ifomatika Sekolah Tekik Elekto da Ifomatika Istitut Tekologi Badug, Jl. Gaesha 10 Badug 4013, Idoesia 135108@std.stei.itb.ac.id

Lebih terperinci

PERSAMAAN DIFFERENSIAL

PERSAMAAN DIFFERENSIAL PSAMAAN DIFFNSIA (DIFFNTIA QUATION) Suatu ersamaa imaa teraat hubuga atara variabel bebas, variabel tak bebas a turua-turuaa iamaka ersamaa ifferesial. Cotoh : f (,,,,.. ) 0 z z g (,, z,,, ) 0 Aa jeis

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 1, No.2, September 2012 IfiityJual Ilmiah Pogam Studi Matematia STKIP Siliwagi Badug, Vol, No., Septembe HIMPUNAN KOMPAK PADA RUANG METRIK Oleh : Cee Kustiawa Juusa Pedidia Matematia FPMIPA Uivesitas Pedidia Idoesia eeustiawa@yahoo.om

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN Dose Pegampu : Pof. D. Si Wahyui DISUSUN OLEH: Nama : Muh. Zaki Riyato Nim : 02/156792/PA/08944 Pogam Studi : Matematika JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

Ring Noetherian dan Ring Artinian

Ring Noetherian dan Ring Artinian Jual Saismat, Maet 2013, Halama 79-83 ISSN 2086-6755 htt://ojs.um.ac.id/idex.h/saismat Vol. II, No. I Rig Noetheia da Rig Atiia The Atiia Rig ad The Noetheia Rig Fitiai Juusa Matematia Seolah Tiggi Ilmu

Lebih terperinci

KAJIAN MATEMATIS DAN SIMULASI NUMERIK TENTANG KEKONVERGENAN HARGA OPSI CALL TIPE EROPA MODEL BINOMIAL KE MODEL BLACK-SCHOLES

KAJIAN MATEMATIS DAN SIMULASI NUMERIK TENTANG KEKONVERGENAN HARGA OPSI CALL TIPE EROPA MODEL BINOMIAL KE MODEL BLACK-SCHOLES KAJIAN MATEMATIS DAN SIMULASI NUMERIK TENTANG KEKONVERGENAN HARGA OPSI CALL TIPE EROPA MODEL BINOMIAL KE MODEL BLACK-SCHOLES Bey Yog (bey_y@upar.ac.i) Jurusa Matematika FTIS Uiversitas Katolik Parahyaga

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD)

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) Muhamad Zaki Riyato NIM: 02/156792/PA/08944 E-mail: zaki@mail.ugm.ac.id http://zaki.math.web.id Dose Pembimbig: Pof. D. Si Wahyui Pedahulua Sebelum melagkah

Lebih terperinci

PERBANDINGAN PENAKSIR REGRESI LINIER SEDERHANA PADA SAMPLING BERPERINGKAT, SAMPLING EKSTRIM BERPERINGKAT DAN SAMPLING MEDIAN BERPERINGKAT

PERBANDINGAN PENAKSIR REGRESI LINIER SEDERHANA PADA SAMPLING BERPERINGKAT, SAMPLING EKSTRIM BERPERINGKAT DAN SAMPLING MEDIAN BERPERINGKAT PBANDINGAN PENAKSIR REGRESI LINI SEDHANA PADA SAMPLING BPINGKAT, SAMPLING EKSTRIM BPINGKAT DAN SAMPLING MEDIAN BPINGKAT E. W. Aitoag *, Haiso, R. Efedi Mahasiswi Pogam S Matematika Dose Juusa Matematika

Lebih terperinci

KARAKTERISTIK OPERATOR HIPONORMAL-p PADA RUANG HILBERT. Gunawan Universitas Muhammadiyah Purwokerto

KARAKTERISTIK OPERATOR HIPONORMAL-p PADA RUANG HILBERT. Gunawan Universitas Muhammadiyah Purwokerto JMP : Volue 6 Noor, Deseber 014, hal. 105-114 KARAKERISIK OPERAOR HIPONORMAL- PADA RUANG HILBER Guawa Uiversitas Muhaadiyah Purwokerto Eail: gu.oge@gail.co ABRAC. his article discusses the defiitio ad

Lebih terperinci

MASALAH PENELUSURAN (KASUS KONTINU)

MASALAH PENELUSURAN (KASUS KONTINU) MASALAH PENELUSUAN KASUS KONINU Oleh : Noii Hasi Dose Pogam Si Sisem Ifomasi UNIKOM Absak Sisem kool opimm aalah sa sisem yag meacag opimasi ilai, baik maksimm map miimm, ai sa fgsi objekif. Sisem ii bepa

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika

Lebih terperinci

BAB II STATISTIK MAXWELL-BOLTZMAN

BAB II STATISTIK MAXWELL-BOLTZMAN BAB II STATISTIK MAXWELL-BOLTZMAN A. Kapasitas Paas Jeis Zat Paat. Paa zat paat yag berbetuk kristal, atom-atom atau molekul-molekul pembaguya tersusu secara teratur. Atom-atom atau molekulya terikat satu

Lebih terperinci

Kecepatan putar sebuah motor servo dengan input konstan digambar sebagai berikut: Time (s)

Kecepatan putar sebuah motor servo dengan input konstan digambar sebagai berikut: Time (s) UJIAN TENAH SEMESTER ANJIL TAHUN / JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS DIPONEORO Mata Uji : Sistem Kotrol Aalog Sifat : Terbuka Hari, taggal : Rabu, Nopember Waktu : 6.3 8. (9 meit) Ruag

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi

Lebih terperinci

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh,

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh, Deet Bolak-balik Alteatig Seies Deet bolak-balik adalah deet yag suku-sukuya begati tada. Sebagai cotoh, + 4 + + + Deet bolak-balik beikut: = + a, dega a positif, kovege jika memeuhi dua syaat i. Setiap

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b]

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] ESSENTILLY SMLL RIEMNN SUMS FUNGSI TERINTEGRL HENSTOCK-UNFOR P [a,b] Solikhi, Sumato, Siti Khabibah 3,,3 Jurusa Matematika FSM Uiversitas ioegoro Jl Prof H Soedarto, SH Semarag 5075 solikhi@liveudiacid,

Lebih terperinci

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T

Lebih terperinci

CATATAN KULIAH Pertemuan VII: Konsep Total Derivatif dan Aplikasinya pada Komparatif Statik

CATATAN KULIAH Pertemuan VII: Konsep Total Derivatif dan Aplikasinya pada Komparatif Statik CATATAN KULIAH ertemua VII: Kosep Total erivati a Aplikasia paa Komparati tatik A. ieresial Masalah ag ihaapi: Bagaimaa aalisis komparati-statik jika tiak aa solusi betuk-rigkas reuce-orm ikareaka oleh

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Jural Matematika Muri da Terapa εpsilo Vol. 07, No.01, (2013), Hal. 33 44 PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Program Studi Matematika Fakultas Sais da Tekologi UIN Sua Kalijaga Yogyakarta

Lebih terperinci

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel BAB III PENAKSIR DERET FOURIER 3. Peaksi Dalam saisika, peaksi adalah sebuah saisik (fugsi dai daa sampel obsevasi) yag diguaka uuk meaksi paamee populasi yag idak dikeahui (esimad) aau fugsi yag memeaka

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

Rancangan Percobaan. Arum Handini Primandari, M.Sc.

Rancangan Percobaan. Arum Handini Primandari, M.Sc. Kosep Dasar Statistika utuk Racaga Percobaa Arum aii Primaari, M.Sc. Operator Pejumlaha Operator pejumlaha: Sifat: i1 i i1 i1 k k kx k x i1 i i1 i1 i i i i i1 i1 i1 i a bx a b x x y x y x x x... x i i

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB IV METODOLOGI PENELITIAN

BAB IV METODOLOGI PENELITIAN BAB IV ETODOLOGI PENELITIAN IV Lagkah-Lagkah Aalisis Struktur yag aka ijaika moel alam peelitia ii aalah struktur bagua latai a latai, yag iasumsika terbuat ari baja Struktur terlebih ahulu imoel ega megguaka

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

Matematika II 7/23/2013 ISI. Pengertian-Pengertian. Turunan Fungsi-Fungsi

Matematika II 7/23/2013 ISI. Pengertian-Pengertian. Turunan Fungsi-Fungsi 7// Suarato Suirham Matematika II ISI Turua Fugsi-Fugsi: Fugsi Poliom Perkalia Fugsi, Pagkat ari Fugsi, Fugsi Rasioal, Fugsi Imlisit FugsiTrigoometri, TrigoometriIersi, Logaritmik, Eksoesial Itegral: Itegral

Lebih terperinci

DSP Application Research Centre, Electrical Engineering Dept. SOLUSI UAS 5 JUNI 2000 TA 1999 / 2000

DSP Application Research Centre, Electrical Engineering Dept. SOLUSI UAS 5 JUNI 2000 TA 1999 / 2000 DSP Applicatio Research Cetre, Electrical Egieerig Dept. SOLUSI UAS 5 JUNI TA 999 /. Sistem Liier ega fugsi trasfer : ( s + H ( s ( s + 4( s + a. Tetuka respose impulse sistem. Apakah sistem stabil? (

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

OPTIKA FISIS. S = d. sin

OPTIKA FISIS. S = d. sin OPTIKA FISIS A. Iterferesi Cahaya : Peraua atara ua atau lebih gelombag cahaya yag meghasilka ola tertetu. Utuk egamata Iterferesi gelombag cahaya, agar hasilya aat iamati ierluka syarat, bahwa cahaya

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

f ( x ) 0 maka disebut PD tak homogen.

f ( x ) 0 maka disebut PD tak homogen. II LANDASAN TEORI Defiisi (Tuua Fugsi f ) Tuua fugsi f pada biaga a diyataka dega f ( a) adaah f ( a+ h) f ( a) f ( a) = im () h h jika imit ii ada (Keyszig 993) Defiisi (Tuua Pasia) Misaka f adaah fugsi

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd

KELUARGA EKSPONENSIAL Untuk Memenuhi Tugas Mata Kuliah Statistika Inferensial Dosen Pengampu: Nendra Mursetya Somasih Dwipa, M.Pd KELUARGA EKSPONENSIAL Utuk Memeuhi Tugas Mata Kuliah Statistika Iferesial Dose Pegampu: Nedra Mursetya Somasih Dwipa, M.Pd Disusu Oleh : V A4 Kelompok. Nuuk Rohaigsih (444009). Rochayati (444000) 3. Siam

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

Ukuran Dispersi Multivariat

Ukuran Dispersi Multivariat Bab IV Ukua Disesi Mulivaia Pada bab ii, eama-ama aka dikemukaka defiisi eag veko vaiasi vaiabel-vaiabel sada (VVVS sebagai ukua disesi mulivaia akala seluuh vaiabel yag eliba adalah vaiabel sada. Selajuya

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa Soal-soal Latiha:. Misalka kita aka meyusu kata-kata yag dibetuk dari huru-huru dalam kata SIMALAKAMA, jika a. huru S mucul setelah huru K (misalya, ALAMAKSIM). b. huru A mucul berdekata. c. tidak memuat

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi II. TINJAUAN PUSTAKA Pada bab ii aka dibeika bebeapa kosep dasa, istilah istilah da defiisi yag eat kaitaya dega masalah yag haus dibahas yaitu megeai bayakya caa megkostuksi Dyck path dega pajag k upstokes

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] Jl. Prof. H. Soedarto, S.H. Semarang 50275

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] Jl. Prof. H. Soedarto, S.H. Semarang 50275 ESSENTILLY SMLL RIEMNN SUMS FUNGSI TERINTEGRL HENSTOCK-DUNFORD PD [ab] Solikhi Sumato Siti Khabibah 3 3 Jurusa Matematika FSM Uiversitas Dioegoro Jl Prof H Soedarto SH Semarag 575 solikhi@liveudiacid khabibah_ku@yahoocoid

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

APLIKASI PETA KENDALI STATISTIK DALAM MENGONTROL HASIL PRODUKSI SUATU PERUSAHAAN

APLIKASI PETA KENDALI STATISTIK DALAM MENGONTROL HASIL PRODUKSI SUATU PERUSAHAAN APLIKASI PETA KENDALI STATISTIK DALAM MENGONTOL HASIL PODUKSI SUATU PEUSAHAAN Muhamma Arafat Abullah Jurusa Matematika FMIPA Uiversitas Sulawesi Barat e-mail: arafatmaar@gmail.com Abstrak Paper ii membahas

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

BARISAN, (1 p< ) Aniswita 1

BARISAN, (1 p< ) Aniswita 1 βeta -ISSN: 85-5893 e-issn: 54-458 Vol 6 No Mei 3 Hal 46-57 βeta3 TRMA NVRGNAN FUNGSI TRINTGRAL HNSTC- URZWIL SRNTA AN FUNGSI BRSIFAT LCALLY SMALL RIMANN SUMS LSRS ARI RUANG UCLI RUANG BARISAN < Aiswita

Lebih terperinci

Bab II Sistem Dengan Fase Nonminimum Dan Iterative Learning Control

Bab II Sistem Dengan Fase Nonminimum Dan Iterative Learning Control Bab II Sistem Dea Fase Nomiimum Da Iterative Leari Cotrol Paa baia ii, aka ibahas sistem plat oliear ea ase o miimum a hal-hal ya terkait ea plat oliear. Pembahasa teta iversi stabil a iterative leari

Lebih terperinci

PENDUGA RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KUARTIL VARIABEL BANTU PADA PENGAMBILAN SAMPEL ACAK SEDERHANA DAN PENGATURAN PERINGKAT MEDIAN

PENDUGA RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KUARTIL VARIABEL BANTU PADA PENGAMBILAN SAMPEL ACAK SEDERHANA DAN PENGATURAN PERINGKAT MEDIAN PEDUGA RASIO UTUK RATA-RATA POPULASI MEGGUAKA KUARTIL VARIABEL BATU PADA PEGAMBILA SAMPEL ACAK SEDERHAA DA PEGATURA PERIGKAT MEDIA ur Khasaah, Etik Zukhroah, da Dewi Reto Sari S. Prodi Matematika Fakultas

Lebih terperinci

JFET (Junction Field Effect Transistor)

JFET (Junction Field Effect Transistor) JFET (Juctio Field Effect Trasistor) truktur JFET rai () rai () - ate () ate () V ource () V ource () JFET Kaal JFET Kaal Perhatika (uutk kaal ) bahwa terdaat struktur juctio atara ate () dega ource(),

Lebih terperinci

Pelabelan E-cordial pada Graf Hasil Cartesian Product

Pelabelan E-cordial pada Graf Hasil Cartesian Product Pelabela E-cordial pada Gra Hasil Cartesia Product Kholis Widyasmedi, R. Heri Soelistyo Program Studi Matematika Jurusa Matematika Fakultas Sais da Matematika Uiversitas Dipoegoro Email: widyasmedi@gmail.com

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

PIRAMIDA PASCAL: SUATU PENGEMBANGAN SEGITIGA PASCAL

PIRAMIDA PASCAL: SUATU PENGEMBANGAN SEGITIGA PASCAL PIRAMIDA PASCAL: SUATU PENGEMBANGAN SEGITIGA PASCAL I Waya Pua Astawa SMKN Abag, Kab. Kaagasem, Bali Abstact. The ability to expad ad geealize is oe of the most impotat facilities a teache ca help a studet

Lebih terperinci

Muniya Alteza

Muniya Alteza NILAI WAKTU UANG 1. Kosep dasar ilai waktu uag (time value of moey) 2. Nilai masa depa (future value) 3. Nilai sekarag (preset value) 4. Auitas (auity) 5. Perpetuitas (perpetuity) 6. Buga tahua efektif/

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT Prosidig Semirata2015 bidag MIPA BKS-PTN Barat Uiversitas Tajugpura Potiaak EKSISTENSI DAN KETUNGGALAN TITIK TETAP DARI PEMETAAN KANNAN DI RUANG MODULAR (THE EXISTENCE AND UNIQUENESS OF A FIXED POINT FOR

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain:

Pendugaan Parameter. Selang Kepercayaan dengan Distribusi z (Tabel hal 175) Nilai α dan Selang kepercayaan yang lazim digunakan antara lain: Peahulua Peugaa Parameter Peugaa Parameter Populai ilakuka ega megguaka ilai Statitik Sampel, Mial :. x iguaka ebagai peuga bagi µ. iguaka ebagai peuga bagi σ 3. p atau p$ iguaka ebagai peuga bagi π Peugaa

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

PELUANG. Misalkan n = A,B,C,D Terjadinya 2 kemungkinan kejadian yaitu : AB, AC,AD, BA,BC,BD, CA,CB,CD, DA,DB,DC = 12 kemungkinan

PELUANG. Misalkan n = A,B,C,D Terjadinya 2 kemungkinan kejadian yaitu : AB, AC,AD, BA,BC,BD, CA,CB,CD, DA,DB,DC = 12 kemungkinan SMA - ELUANG A. Kaidah emutasi da kombiasi. emutasi : Bayakya kemugkia dega mempehatika uuta ada Misalka A,B,,D Tejadiya 2 kemugkia kejadia yaitu : AB, A,AD, BA,B,BD, A,B,D, DA,DB,D 2 kemugkia 4 ; 2 Rumusya

Lebih terperinci

Ruang Vektor. Modul 1 PENDAHULUAN

Ruang Vektor. Modul 1 PENDAHULUAN Modul Ruag Vektor Dr. Irawati D PENDAHULUAN alam buku materi okok Aljabar II ii kita secara erlaha-laha mulai megubah edekata kita dari edekata secara komutasi mejadi edekata yag lebih umum. Yag dimaksud

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

PERSAMAAN DIFERENSIAL

PERSAMAAN DIFERENSIAL PERSAMAAN DIFERENSIAL A. Persamaa Diferesial Liier Tigkat Satu Betuk umum ersamaa diferesial liier tigkat satu adalah sebagai berikut: P( ) y Q( ) d atau y P( ) y Q( ) Rumus eyelesaia umum utuk ersamaa

Lebih terperinci

p q r sesuai sifat operasi hitung bentuk pangkat

p q r sesuai sifat operasi hitung bentuk pangkat Adi Nuhidayat, S.Pd PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERUMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN TAHUN PELAJARAN

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa Modul 1 Kekelirua dalam Perhituga Numerik da Selisih Terhigga Biasa D PENDAHULUAN Dr. Wahyudi, M.Pd. i dalam pemakaia praktis, peyelesaia akhir yag diigika dari solusi suatu permasalaha (soal) dalam matematika

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

Karakteristik Resistansi Daging Ayam Tiren Dan Daging Ayam Normal

Karakteristik Resistansi Daging Ayam Tiren Dan Daging Ayam Normal Aggara Wahyu Dwiatmaa,kk/ Karakteristik Resistasi Dagig Ayam Tire a Dagig Ayam Normal Karakteristik Resistasi Dagig Ayam Tire Da Dagig Ayam Normal Aggara Wahyu Dwiatmaa a Fria Agug Rakhmai Mahasiswa Program

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS DIKTAT KULIAH ANALISIS PENGANTAR ANALISIS REAL I (Itroductio to Real Aalysis I) M Zaki Riyato, SSi e-mail: zaki@mailugmacid http://zakimathwebid COPYRIGHT 008-009 Pegatar Aalisis Real I HALAMAN PERSEMBAHAN

Lebih terperinci

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jural Matematika Muri da Terapa εpsilo Vol.8 No.2 (24) Hal. 39-45 APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama, Yui Yulida, Thresye Program Studi Matematika

Lebih terperinci