9.1 RELATIONS AND THEIR PROPERTIES

Ukuran: px
Mulai penontonan dengan halaman:

Download "9.1 RELATIONS AND THEIR PROPERTIES"

Transkripsi

1 CHAPTER 9 RELATION

2 9. RELATIONS AND THEIR PROPERTIES 2

3 Relasi Hubungan antar anggota himpunan direpresentasikan dengan menggunakan struktur yang disebut relasi. Untuk mendeskripsikan relasi antar anggota dua himpunan A dan B, dapat digunakan pasangan terurut dengan anggota pertamanya diambil dari A dan anggota keduanya diambil dari B. Karena ini merupakan relasi antara dua himpunan, maka disebut relasi biner. Definisi Misalkan A dan B himpunan. Suatu relasi biner dari A ke B adalah subhimpunan dari AB. Untuk relasi biner R berlaku R AB. Digunakan notasi arb untuk menyatakan (a,b)r dan arb untuk menyatakan (a,b)r. Jika (a, b) merupakan anggota R, a dikatakan berelasi dengan b oleh R. 3

4 Contoh Misalkan O himpunan orang, A himpunan angkutan kota, dan N relasi yang mendeskripsikan siapa yang menaiki angkot tertentu. O = {Aang, Bida, Charlie, Dina}, A = {Cicaheum-Ledeng (CL), Kelapa-Dago (KD), Stasiun- Sadang Serang (SS)} N = {(Aang, CL), (Bida, CL), (Bida, KD), (Charlie, SS)} Artinya Aang naik Cicaheum-Ledeng, Bida naik Cicaheum-Ledeng dan Kelapa-Dago, Charlie naik Stasiun-Sadang Serang, dan Dina tidak menaiki salah satu dari angkot tersebut. 4

5 Fungsi sebagai Relasi Fungsi f dari A ke B memasangkan tepat satu anggota B pada setiap anggota A. Grafik dari f adalah himpunan pasangan terurut (a,b) sehingga b = f(a). Karena grafik dari f merupakan subhimpunan dari AB, maka grafik merupakan relasi dari A ke B. Untuk setiap aa, terdapat tepat satu pasangan terurut di dalam grafik dengan a sebagai anggota pertama. Sebaliknya, jika R suatu relasi dari A ke B sehingga setiap anggota A merupakan anggota pertama dari tepat satu pasangan terurut di R, maka dapat didefinisikan suatu fungsi dengan R sebagai grafiknya. Ini dilakukan dengan memasangkan pada setiap anggota aa tepat satu bb sehingga (a, b)r. Relasi adalah perumuman dari fungsi. 5

6 Relasi pada Himpunan Definisi Suatu relasi pada himpunan A adalah relasi dari A ke A. Relasi pada himpunan A adalah subhimpunan dari AA. Contoh 2 Misalkan A = {, 2, 3, 4}. Himpunan terurut manakah yang terdapat dalam relasi R = {(a, b) a < b}? Solusi. R = { (, 2), (, 3), (, 4), (2, 3), (2, 4), (3, 4)} 6

7 Contoh 2 (2) R X X X X X X

8 Banyaknya Relasi pada Himpunan Ada berapa relasi berbeda yang dapat didefinisikan pada himpunan A dengan n anggota? Suatu relasi pada A adalah subhimpunan dari AA. Ada berapa anggota AA? Terdapat n 2 anggota AA Ada berapa subhimpunan dari AA? Banyaknya subhimpunan yang dapat dibentuk dari suatu himpunan dengan m anggota adalah 2 m. Jadi, ada 2 n2 subhimpunan dapat dibentuk dari AA. Sehingga, dapat didefinisikan 2 n2 relasi berbeda pada A. 8

9 Definisi. Sifat Relasi Relasi R pada himpunan A disebut refleksif jika (a,a)r untuk setiap anggota aa. Apakah relasi berikut pada {, 2, 3, 4} refleksif? R = {(, ), (, 2), (2, 3), (3, 3), (4, 4)} R = {(, ), (2, 2), (2, 3), (3, 3), (4, 4)} R = {(, ), (2, 2), (3, 3)} Definisi. Tidak. Ya. Tidak. Relasi R pada himpunan A disebut simetris jika (b,a)r setiap kali (a,b)r untuk setiap a,ba. Relasi R pada himpunan A disebut antisimetris jika a = b 9 setiap kali (a,b)r dan (b,a)r.

10 Contoh 3 Apakah relasi berikut pada {, 2, 3, 4} simetris atau antisimetris? R = {(, ), (, 2), (2, ), (3, 3), (4, 4)} R = {(, )} R = {(, 3), (3, 2), (2, )} simetris simetris & antisimetris antisimetris R = {(4, 4), (3, 3), (, 4)} antisimetris

11 Sifat Relasi (2) Definisi. Relasi R pada himpunan A disebut transitif jika setiap kali (a,b)r dan (b,c)r, maka (a,c)r untuk a,b,ca. Apakah relasi berikut pada {, 2, 3, 4} transitif? R = {(, ), (, 2), (2, 2), (2, ), (3, 3)} R = {(, 3), (3, 2), (2, )} R = {(2, 4), (4, 3), (2, 3), (4, )} Ya. Tidak. Tidak.

12 Menghitung Relasi Ada berapa banyak relasi refleksif yang berbeda yang dapat didefinisikan pada himpunan A yang memuat n anggota? Solusi. Relasi pada A adalah subhimpunan dari AA, yang memuat n 2 anggota. Jadi, relasi yang berbeda pada A dapat dibangun dengan memilih subhimpunan yang berbeda dari n 2 anggota, sehingga terdapat 2 n2 relasi. Namun, suatu relasi refleksif harus memuat n anggota (a,a) untuk setiap aa. Konsekuensinya, kita hanya dapat memilih di antara n 2 n = n(n ) anggota untuk membangun relasi refleksif, sehingga terdapat 2 n(n ) relasi. 2

13 Kombinasi Relasi Relasi adalah himpunan, sehingga operasi himpunan dapat diaplikasikan. Jika ada dua relasi R dan R 2, dan keduanya dari himpunan A ke himpunan B, maka terdapat kombinasi R R 2, R R 2, atau R R 2 yang merupakan suatu relasi dari A ke B. Definisi. Misalkan R relasi dari A ke B dan S relasi dari B ke C. Komposisi dari R dan S adalah relasi yang memuat himpunan terurut (a,c), dengan aa, cc, di mana terdapat anggota bb sehingga (a,b)r dan (b,c)s. Komposisi dari R dan S dinotasikan oleh SR. Jika relasi R memuat pasangan (a, b) dan relasi S memuat pasangan (b,c), maka SR memuat pasangan (a,c). 3

14 Contoh 4 Contoh. Misalkan D dan S relasi pada A = {, 2, 3, 4}. D = {(a, b) b = 5 - a} b sama dengan (5 a) S = {(a, b) a < b} a lebih kecil dari b D = {(, 4), (2, 3), (3, 2), (4, )} S = {(, 2), (, 3), (, 4), (2, 3), (2, 4), (3, 4)} SD = { (2, 4), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)} D memetakan suatu anggota a ke anggota (5 a), dan setelah itu S memetakan (5 a) pada semua anggota yang lebih besar dari (5 a), yang menghasilkan SD = {(a,b) b > 5 a} atau SD = {(a,b) a + b > 5}. 4

15 Kuasa dari Relasi Definisi. Misalkan R relasi pada himpunan A. Kuasa R n, n =, 2, 3,, didefinisikan secara induktif R = R R n+ = R n R Dengan kata lain: R n = RR R (sebanyak n kali) Teorema. Relasi R pada A transitif jika dan hanya jika R n R untuk setiap bilangan bulat positif n. 5

16 9.3 REPRESENTING RELATIONS 6

17 Representasi Relasi Tiga cara untuk merepresentasikan relasi: pasangan terurut, matriks nol-satu, dan graf berarah (digraf). Jika R relasi dari A = {a, a 2,, a m } ke B = {b, b 2,, b n }, maka R dapat direpresentasikan oleh matriks nol-satu M R = [m ij ] dengan m ij =, jika (a i,b j )R, dan m ij =, jika (a i,b j )R. M R merupakan matriks mxn. 7

18 Representasi Relasi dengan Matriks Contoh. Bagaimana merepresentasikan relasi R = {(2, ), (3, ), (3, 2)} sebagai matriks nol-satu? Solusi. Matriks M R diberikan oleh M R 8

19 Sifat Matriks Representasi Relasi Matriks yang merepresentasikan relasi refleksif? Setiap elemen diagonal dari matriks M ref haruslah M ref Matriks yang merepresentasikan relasi simetris? Matriksnya juga simetri, yaitu M R = (M R ) t. M R matriks simetri, relasi simetris. M R matriks tak-simetri, relasi tak-simetris.

20 Operasi pada Matriks Representasi Misalkan relasi R dan S direpresentasikan oleh matriks 2 S R S R M M M M S Apakah matriks yang merepresentasikan RS and RS? Solusi. Matriks-matriks tersebut adalah S R S R M M M M R

21 Hasil kali Boolean Misalkan A = [a ij ] matriks nol-satu mk and B = [b ij ] matriks nol-satu kn. Maka hasil kali Boolean dari A dan B, dinotasikan oleh AB, adalah matriks mn dengan entri ke-(i, j) [c ij ], dengan c ij = (a i b j ) (a i2 b 2i ) (a ik b kj ). c ij = jika dan hanya jika paling sedikit satu dari (a in b nj ) = untuk suatu n; selain itu c ij =. 2

22 Matriks komposisi Misalkan diasumsikan bahwa matriks nol-satu M A = [a ij ], M B = [b ij ] dan M C = [c ij ] merepresentasikan relasi A, B, dan C. Untuk M C = M A M B : c ij = jika dan hanya jika paling sedikit satu dari bentuk (a in b nj ) = untuk suatu n; selain itu c ij =. Dalam bahasa relasi, ini berarti C memuat (x i, z j ) jika dan hanya jika terdapat elemen y n sehingga (x i, y n ) anggota relasi A dan (y n, z j ) anggota relasi B. Jadi, C = B A (komposisi dari A dan B). 22

23 Komposisi dan Komposit Ini memberikan aturan berikut: M B A = M A M B Jadi, matriks yang merepresentasikan komposisi dari relasi A dan B adalah hasil kali Boolean dari matriks yang merepresentasikan A dan B. Secara analog, kita dapat menemukan matriks yang merepresentasikan kuasa dari relasi: M R n = M [n] R (kuasa Boolean ke-n). 23

24 Contoh Cari matriks yang merepresentasikan R 2, dengan matriks yang merepresentasikan R sbb 24 M R Solusi. Matriks untuk R 2 diberikan oleh [2] 2 R M R M

25 Digraf Definisi. Graf berarah (atau digraf) memuat himpunan titik (atau vertex) V dan himpunan E yang terdiri dari pasangan terurut dari anggotaanggota V yang disebut sisi (atau arc). Vertex a disebut vertex awal dari sisi (a,b), dan vertex b disebut vertex akhir dari sisi ini. Kita dapat menggunakan panah untuk mengilustrasikan digraf. 25

26 Representasi Relasi dengan Digraf Contoh. Ilustrasikan digraph dengan V = {a, b, c, d}, E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}. a b d c Sisi dalam bentuk (b,b) disebut loop. 26

27 Korespondensi satu-satu antara Relasi dan Digraf Jelas kita dapat merepresentasikan setiap relasi R pada himpunan A dengan menggunakan digraf di mana anggota A adalah vertex dan pasangan (a, b)r sisi. Sebaliknya, setiap digraf dengan vertex V dan sisi E dapat direpresentasikan oleh relasi pada V yang memuat setiap pasangan di E. Korespondesi satu-satu antara relasi dan digraf berarti bahwa setiap pernyataan yang berlaku untuk relasi juga berlaku untuk digraf, dan sebaliknya. 27

28 9.4 CLOSURES OF RELATIONS 28

29 Apakah closure dari suatu relasi? Definisi. Misalkan R relasi pada himpunan A. R dapat atau tidak dapat memiliki suatu sifat P, seperti refleksifitas, kesimetrian, atau transitifitas. Jika terdapat relasi S dengan sifat P yang memuat R sehingga S adalah subhimpunan dari setiap relasi dengan sifat P yang memuat R, maka S disebut sebagai closure dari R terhadap P. Closure dari relasi terhadap suatu sifat mungkin tidak ada. 29

30 Contoh Cari closure refleksif dari relasi R = {(, ), (, 2), (2, ), (3, 2)} pada himpunan A = {, 2, 3}. Solusi. Setiap relasi refleksif pada A harus memuat elemen (, ), (2, 2), dan (3, 3). Dengan menambahkan (2, 2) dan (3, 3) pada R, kita memperoleh relasi refleksif S, yang diberikan oleh S = {(, ), (, 2), (2, ), (2, 2), (3, 2), (3, 3)}. S refleksif, memuat R, dan termuat dalam setiap relasi refleksif yang mengandung R. Jadi, S adalah closure refleksif dari R. 3

31 Closure Refleksif dari Relasi Closure refleksif dari relasi R pada A adalah R, dengan = {(a,a) a A} Soal. Cari closure refleksif dari relasi R = {(a, b) a > b} pada himpunan bilangan bulat positif. 3

32 Closure Simetris dari Relasi Closure simetris dari relasi R pada A adalah R R -, dengan R - = {(b,a) (a,b) R} Contoh 2. Cari closure simetris dari relasi R = {(a, b) a > b} pada himpunan bilangan bulat positif. Solusi. Closure simetris dari R diberikan oleh R R - = {(a, b) a > b} {(b, a) a > b} = {(a, b) a b} 32

33 Contoh 3 Cari closure transitif dari relasi R = {(, 3), (, 4), (2, ), (3, 2)} pada himpunan A = {, 2, 3, 4}. Solusi. R akan menjadi transitif, jika untuk setiap pasangan (a, b) dan (b, c) di R juga terdapat pasangan (a, c) di R. Jika kita tambahkan pasangan yang hilang: (, 2), (2, 3), (2, 4), dan (3, ), apakah R akan menjadi transitif? Tidak, karena relasi R yang diperluas memuat (3, ) dan (, 4), tetapi tidak memuat (3, 4). Dengan menambahkan elemen baru pada R, juga ditambahkan syarat baru untuk transitifitas. Untuk menyelesaikan masalah ini, perlu dilihat lintasan dalam digraf. 33

34 Ilustrasi Bayangkan R adalah relasi yang merepresentasikan koneksi kereta di Pulau Jawa. Sebagai contoh, jika (Jakarta,Bandung) anggota R, maka terdapat suatu koneksi langsung dari Jakarta ke Bandung. Jika R memuat (Jakarta,Bandung) dan (Bandung,Yogyakarta), berarti terdapat koneksi tak langsung dari Jakarta ke Yogyakarta. Karena terdapat koneksi tak langsung, tidak mungkin dengan hanya melihat R kita dapat menentukan kota-kota mana saja yang dihubungkan pleh kereta. Closure transitif dari R memuat tepat pasangan kota yang terkoneksi, baik langsung maupun tidak langsung. 34

35 Lintasan dalam Digraf Definisi. Suatu lintasan dari a ke b dalam digraf G adalah barisan dari satu atau lebih sisi (x,x ), (x,x 2 ), (x 2,x 3 ),, (x n-,x n ) di G, dengan x = a dan x n = b. Dengan kata lain, lintasan adalah suatu barisan sisi dengan verteks akhir dari suatu sisi sama dengan verteks awal dari sisi berikutnya. Lintasan ini dinotasikan oleh x,x,x 2,,x n dan dikatakan memiliki panjang n. Suatu lintasan yang dimulai dan diakhiri pada verteks yang sama disebut cycle. 35

36 Contoh Lintasan dalam Digraf Pandang digraf berikut a b d Apakah c,a,b,d,b lintasan? Apakah d,b,b,b,d,b,d cycle? Apakah ada cycle yang memuat c? c Ya. Ya. Tidak. 36

37 Arti Lintasan dalam Relasi Karena terdapat korespondensi satu-satu antara digraf dan relasi, definisi lintasan dalam di graf dapat ditransfer ke relasi: Definisi. Terdapat lintasan dari a ke b dalam suatu relasi R, jika terdapat suatu barisan dari elemen a,x,x 2,,x n-,b dengan (a,x )R, (x,x 2 )R,, dan (x n-,b)r. Teorema. Misalkan R suatu relasi pada himpunan A. Terdapat lintasan dari a ke b dengan panjang n jika dan hanya jika (a,b)r n. Bukti. Dengan induksi Matematika 37

38 Relasi Konektifitas Dengan menggunakan contoh jaringan kereta api, closure transitif dari suatu relasi memuat pasangan verteks dalam digraf yang terkoneksi oleh suatu lintasan. Definisi. Misalkan R relasi pada himpunan A. Relasi konektifitas R* memuat pasangan (a,b) sehingga terdapat lintasan antara a dan b di R. Sedangkan R n memuat pasangan (a,b) sehingga a dan b terkoneksi oleh suatu lintasan dengan panjang n. Jadi, R* adalah gabungan dari R n untuk semua bilangan asli n: R * n R n R R 2 R

39 Teorema. Closure transitif dari relasi R sama dengan relasi konektifitas R*. Bukti. Closure Transitif dari Relasi Jelas, R R*. Untuk membuktikan R* adalah closure transitif dari R, harus ditunjukkan a. R* transitif dan b. R* S, untuk semua S yang memuat R. 39

40 Bagaimana cara menghitung R*? Lema. Misalkan A himpunan dengan A = n dan R relasi pada A. Jika terdapat lintasan di R dari a ke b, maka terdapat lintasan dengan panjang tidak melebihi n. Lebih jauh lagi, jika a b dan terdapat lintasan di R dari a ke b, maka terdapat lintasan dengan panjang tidak lebih dari (n ). Amati bahwa jika lintasan dari a ke b melalui setiap verteks lebih dari satu maka haruslah graf memuat cycle. Cycle-cycle ini dapat dihapus dari lintasan dan lintasan yang tereduksi akan tetap menghubungkan a dan b. 4

41 Teorema 2 Misalkan R relasi pada himpunan A dengan n anggota, Maka closure transitif R* diberikan oleh: R* = RR 2 R 3 R n Untuk matriks representasi relasi R, M R, berlaku: M R* = M R M R [2] M R [3] M R [n] 4

42 42 Closure transitif dari relasi R = {(, 3), (, 4), (2, ), (3, 2)} pada himpunan A = {, 2, 3, 4}. R dapat direpresentasikan oleh matriks M R : M R Contoh 3 (2) M R [2] M R [3] M R [4] M R [4] [3] [2] * R R R R R M M M M M

43 Solusi. Closure transitif dari relasi Contoh 3 (3) R = {(, 3), (, 4), (2, ), (3, 2)} pada himpunan A = {, 2, 3, 4} diberikan oleh relasi {(, ), (, 2), (, 3), (, 4), (2, ), (2, 2), (2, 3), (2, 4), (3, ), (3, 2), (3, 3), (3, 4)} 43

MATEMATIKA SISTEM INFORMASI 1

MATEMATIKA SISTEM INFORMASI 1 RELASI MATEMATIKA SISTEM INFORMASI Apa itu Relasi? Relasi ( hubungan ) himpunan A ke B adalah pemasangan anggota-anggota A dengan anggota-anggota B. RELASI R : A B, artinya R relasi dari himpunan A ke

Lebih terperinci

MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI

MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI RELASI MATEMATIKA DASAR PROGRAM STUDI AGROTEKNOLOGI Apa itu Relasi? Relasi ( hubungan ) himpunan A ke B adalah pemasangan anggota-anggota A dengan anggota-anggota B. RELASI R : A B, artinya R relasi dari

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 2

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 2 Relasi Relasi antara himpunan A dan himpunan B didefinisikan sebagai cara pengawanan anggota himpunan A dengan anggota himpunan B. ilustrasi grafis dapat dilihat sebagai berikut: - Relasi Biner Relasi

Lebih terperinci

Relasi dan Fungsi. Ira Prasetyaningrum

Relasi dan Fungsi. Ira Prasetyaningrum Relasi dan Fungsi Ira Prasetyaningrum Relasi Terdapat dua himpunan X dan Y, Cartesian product XxY adalah himpunan dari semua pasangan terurut (x,y) dimana x X dan y Y XxY = {(x, y) x X dan y Y} Contoh

Lebih terperinci

KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. KALKULUS (Relasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang

Lebih terperinci

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1: MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A = a a M a 2 m a a a 2 22 M m 2

Lebih terperinci

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:

Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1: MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A a a a 2 m a a a 2 22 m2 a a a

Lebih terperinci

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). BAB 3 RELASI DEFINISI Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah

Lebih terperinci

PERKALIAN CARTESIAN DAN RELASI

PERKALIAN CARTESIAN DAN RELASI RELASI Anggota sebuah himpunan dapat dihubungkan dengan anggota himpunan lain atau dengan anggota himpunan yang sama. Hubungan tersebut dinamakan relasi. Contoh Misalkan M = {Ami, Budi, Candra, Dita} dan

Lebih terperinci

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Ekivalen Relasi ekivalen digunakan untuk merelasikan obyek-obyek yang memiliki kemiripan dalam suatu hal tertentu. Definisi.

Lebih terperinci

MATEMATIKA DISKRIT RELASI

MATEMATIKA DISKRIT RELASI MATEMATIKA DISKRIT RELASI Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh

Lebih terperinci

Matematika Diskret. Mahmud Imrona Rian Febrian Umbara RELASI. Pemodelan dan Simulasi

Matematika Diskret. Mahmud Imrona Rian Febrian Umbara RELASI. Pemodelan dan Simulasi Matematika Diskret Mahmud Imrona Rian Febrian Umbara Pemodelan dan Simulasi RELASI 1 9/26/2017 Hasil Kali Kartesian Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan

Lebih terperinci

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) } Pertemuan 9 Relasi Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b

Lebih terperinci

2. Himpunan E yang merupakan himpunan pasangan berurut V V yang tak harus berbeda dari semua titik, elemen dari E disebut arc dari digraf D.

2. Himpunan E yang merupakan himpunan pasangan berurut V V yang tak harus berbeda dari semua titik, elemen dari E disebut arc dari digraf D. BAB 2 DIGRAF DWI-WARNA PRIMITIF Pada Bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. konsep dasar yang dimaksud adalah yang berkaitan

Lebih terperinci

BAB I PEMBAHASAN 1. PENGERTIAN RELASI

BAB I PEMBAHASAN 1. PENGERTIAN RELASI BAB I PEMBAHASAN 1. PENGERTIAN RELASI Misalkan relasi pada himpunan A dan B adalah dua himpunan sebarang, suatu relasi dari A ke B adalah himpunan bagian dari A x B yaitu pasangan terurut (a,b) dimana

Lebih terperinci

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. KALKULUS (Relasi Ekivalen) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Ekivalen Relasi ekivalen digunakan untuk merelasikan obyek-obyek yang memiliki kemiripan dalam suatu hal tertentu. Definisi.

Lebih terperinci

BAB 2 DIGRAF DWIWARNA PRIMITIF

BAB 2 DIGRAF DWIWARNA PRIMITIF BAB 2 DIGRAF DWIWARNA PRIMITIF Pada bab ini akan dibahas teorema, definisi dan landasan teori pada penelitian ini. Berikut akan dibahas mengenai digraf, digraf dwiwarna dan hubungan keduanya dengan primitifitas,

Lebih terperinci

BAB 2 DIGRAPH DWIWARNA PRIMITIF

BAB 2 DIGRAPH DWIWARNA PRIMITIF BAB 2 DIGRAPH DWIWARNA PRIMITIF Pada bagian ini akan diberikan beberapa konsep dasar seperti teorema dan definisi sebagai landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi

Lebih terperinci

Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan, Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit

Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan, Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit 8/29/24 Kode MK/ Nama MK Matematika Diskrit 8/29/24 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/24 8/29/24 Relasi dan Fungsi Tujuan Mahasiswa memahami

Lebih terperinci

22 Matematika Diskrit

22 Matematika Diskrit .. Relasi Ekivalen Definisi : Sebuah relasi pada sebuah himpunan A disebut relasi ekivalen jika dan hanya jika relasi tersebut bersifat refleksif, simetris dan transitif. Dua elemen yang dihubungkan dengan

Lebih terperinci

PERTEMUAN Relasi dan Fungsi

PERTEMUAN Relasi dan Fungsi 4-1 PERTEMUAN 4 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : matdis@netcourrier.com HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 4. Relasi dan

Lebih terperinci

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah notasi untuk

Lebih terperinci

Relasi. Oleh Cipta Wahyudi

Relasi. Oleh Cipta Wahyudi Relasi Oleh Cipta Wahyudi Definisi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh

Lebih terperinci

Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan terurut (a, b) untuk a A dan b B.

Hasil kali kartesian antara himpunan A dan himpunan B, ditulis AxB adalah semua pasangan terurut (a, b) untuk a A dan b B. III Relasi Banyak hal yang dibicarakan berkaitan dengan relasi. Dalam kehidupan sehari-hari kita mengenal istilah relasi bisnis, relasi pertemanan, relasi antara dosen-mahasiswa yang disebut perwalian

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf

Lebih terperinci

Matematika Komputasi RELASI. Gembong Edhi Setyawan

Matematika Komputasi RELASI. Gembong Edhi Setyawan Matematika Komputasi RELASI Gembong Edhi Setyawan DEFINISI Relasi dari himpunan A ke himpunan B adalah pemasangan anggota-anggota himpunan A dengan anggota-anggota himpunan B Relasi Biner : Hubungan antara

Lebih terperinci

BAB II RELASI DAN FUNGSI

BAB II RELASI DAN FUNGSI 9 BAB II RELASI DAN FUNGSI Dalam kehidupan nyata, senantiasa ada hubungan (relasi) antara dua hal atau unsur-unsur dalam suatu kelompok. Misalkan, hubungan antara suatu urusan dengan nomor telepon, antara

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

Materi 3: Relasi dan Fungsi

Materi 3: Relasi dan Fungsi Materi 3: Relasi dan Fungsi I Nyoman Kusuma Wardana STMIK STIKOM Bali Definisi Relasi & Fungsi Representasi Relasi Relasi biner Sifat-sifat relasi biner Relasi inversi Mengkombinasikan relasi Komposisi

Lebih terperinci

Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Relasi dan Fungsi Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Himpunan. Mempunyai elemen atau anggota. Terdapat hubungan.

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

RELASI DAN FUNGSI. Nur Hasanah, M.Cs

RELASI DAN FUNGSI. Nur Hasanah, M.Cs RELASI DAN FUNGSI Nur Hasanah, M.Cs Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan

Lebih terperinci

BAB I MATRIKS DEFINISI : NOTASI MATRIKS :

BAB I MATRIKS DEFINISI : NOTASI MATRIKS : BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

BAB II MODEL KOMPUTASI FINITE STATE MACHINE. Pada Bab II akan dibahas teori dasar matematika yang digunakan

BAB II MODEL KOMPUTASI FINITE STATE MACHINE. Pada Bab II akan dibahas teori dasar matematika yang digunakan BAB II MODEL KOMPUTASI FINITE STATE MACHINE Pada Bab II akan dibahas teori dasar matematika yang digunakan dalam pemodelan sistem kontrol elevator ini, yaitu mengenai himpunan, relasi, fungsi, teori graf

Lebih terperinci

RELASI. Cece Kustiawan, FPMIPA, UPI

RELASI. Cece Kustiawan, FPMIPA, UPI RELASI 1. Pasangan Berurutan 2. Fungsi Proposisi dan Kalimat Terbuka 3. Himpunan Jawaban dan Grafik Relasi 4. Jenis-jenis Relasi 5. Domain dan Range suatu Relasi Pasangan Berurutan (cartesian Product)

Lebih terperinci

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

MATRIKS. Notasi yang digunakan NOTASI MATRIKS MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.

Lebih terperinci

RELASI SMTS 1101 / 3SKS

RELASI SMTS 1101 / 3SKS RELASI SMTS 0 / 3SKS LOGIKA MATEMATIKA Disusun Oleh : Dra. Noeryanti, M.Si 6 DAFTAR ISI Cover pokok bahasan... 6 Daftar isi... 7 Judul Pokok Bahasan... 8 5.. Pengantar... 8 5.2. Kompetensi... 8 5.3. Uraian

Lebih terperinci

Diketahui : A = {1,2,3,4,5,6,7} B = {1,2,3,5,6,12} C = {2,4,8,12,20} (A B) C = {1,3,5,6} {x x ϵ A dan x ϵ B} (B C) = {2,12}

Diketahui : A = {1,2,3,4,5,6,7} B = {1,2,3,5,6,12} C = {2,4,8,12,20} (A B) C = {1,3,5,6} {x x ϵ A dan x ϵ B} (B C) = {2,12} KELAS A =========================================================================== 1. Diketahui A = {1,2,3,4,5,6,7}, B = {1,2,3,5,6,12}, dan C = {2,4,8,12,20}. Tentukan hasil dari operasi himpunan berikut

Lebih terperinci

Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}.

Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}. Modul 2 RELASI A. Pendahuluan Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}. Apabila (a, b) R, maka a dihubungkan dengan b oleh relasi R, ditulis

Lebih terperinci

Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}.

Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}. RELASI A. Pendahuluan Definisi 1. Relasi biner R antara A dan B adalah himpunan bagian dari A x B. A x B = {(a, b) a A dan b B}. Apabila (a, b) R, maka a dihubungkan dengan b oleh relasi R, ditulis a R

Lebih terperinci

Aljabar Linier Lanjut. Kuliah 1

Aljabar Linier Lanjut. Kuliah 1 Aljabar Linier Lanjut Kuliah 1 Materi Kuliah (Review) Multiset Matriks Polinomial Relasi Ekivalensi Kardinal Aritmatika 23/8/2014 Yanita, FMIPA Matematika Unand 2 Multiset Definisi Misalkan S himpunan

Lebih terperinci

RELASI DAN FUNGSI. /Nurain Suryadinata, M.Pd

RELASI DAN FUNGSI. /Nurain Suryadinata, M.Pd RELASI DAN FUNGSI Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-365/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata,

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,

Lebih terperinci

MATEMATIKA DISKRIT BAB 2 RELASI

MATEMATIKA DISKRIT BAB 2 RELASI BAB 2 RELASI Kalau kita mempunyai himpunan A ={Edi, Tini, Ali, Diah} dan himpunan B = {Jakarta, Bandung, Surabaya}, kemudian misalnya Edi bertempat tinggal di Bandung, Tini di Surabaya, Ali di Jakarta,

Lebih terperinci

Himpunan. Modul 1 PENDAHULUAN

Himpunan. Modul 1 PENDAHULUAN Modul 1 Himpunan Dra. Kusrini, M.Pd. PENDAHULUAN D alam Modul 1 ini ada 3 kegiatan belajar, yaitu Kegiatan Belajar 1, Kegiatan Belajar 2, dan Kegiatan Belajar 3. Dalam Kegiatan Belajar 1, Anda akan mempelajari

Lebih terperinci

Relasi & Fungsi. Kuliah Matematika Diskrit 20 April Pusat Pengembangan Pendidikan - Universitas Gadjah Mada

Relasi & Fungsi. Kuliah Matematika Diskrit 20 April Pusat Pengembangan Pendidikan - Universitas Gadjah Mada Relasi & Fungsi Kuliah Matematika Diskrit 20 April 2006 Hasil Kali Kartesian Misalkan A dan B adalah himpunan-himpunan. Hasil kali Kartesian A dengan B (simbol: A x B) adalah himpunan semua pasangan berurutan

Lebih terperinci

Relasi dan Fungsi. Program Studi Teknik Informatika FTI-ITP

Relasi dan Fungsi. Program Studi Teknik Informatika FTI-ITP Relasi dan Fungsi Program Studi Teknik Informatika FTI-ITP 2 Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m

Lebih terperinci

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 PENGANTAR TOPOLOGI EDISI PERTAMA Dosen Pengampu: Siti Julaeha, M.Si UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 by Matematika Sains 2012 UIN SGD, Copyright 2015 BAB 0. HIMPUNAN, RELASI, FUNGSI,

Lebih terperinci

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j. MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun

Lebih terperinci

Pertemuan 2 Matriks, part 2

Pertemuan 2 Matriks, part 2 Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen

Lebih terperinci

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum Bab I. Sekilas Tentang Konsep Dasar Grup antonius cp 2 1. Tertutup, yakni jika diambil sebarang dua elemen dalam G maka hasil operasinya juga akan merupakan elemen G dan hasil tersebut adalah tunggal.

Lebih terperinci

Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan

Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan Relasi dan Fungsi Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan adalah dengan himpunan pasangan terurut.

Lebih terperinci

2. Matrix, Relation and Function. Discrete Mathematics 1

2. Matrix, Relation and Function. Discrete Mathematics 1 2. Matrix, Relation and Function Discrete Mathematics Discrete Mathematics. Set and Logic 2. Relation 3. Function 4. Induction 5. Boolean Algebra and Number Theory MID 6. Graf dan Tree/Pohon 7. Combinatorial

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER

Lebih terperinci

Matriks, Relasi, dan Fungsi

Matriks, Relasi, dan Fungsi Matriks, Relasi, dan Fungsi 2 Matriks Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: mn m m n n a a a a

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi. BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan

Lebih terperinci

Himpunan dan Fungsi. Modul 1 PENDAHULUAN

Himpunan dan Fungsi. Modul 1 PENDAHULUAN Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada

Lebih terperinci

Diktat Kuliah. Oleh:

Diktat Kuliah. Oleh: Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional

Lebih terperinci

Oleh : Winda Aprianti

Oleh : Winda Aprianti Oleh : Winda Aprianti Relasi Definisi Relasi Relasi antara himpunan A dan himpunan B merupakan himpunan yang berisi pasangan terurut yang mengikuti aturan tertentu (relasi biner). Relasi biner R antara

Lebih terperinci

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) Matriks -

Lebih terperinci

MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT)

MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks dan Jenisnya Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan) Beberapa Aplikasi Matriks

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada Bagian ini akan dijelaskan beberapa definisi dan teorema terkait graf, matriks adjency, terhubung, primitifitas, dan scrambling index sebagai landasan teori yang menjadi acuan

Lebih terperinci

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. Diskusi Kelompok (I) Waktu: 100 menit Selasa, 23 September 2008 Pengajar: Hilda Assiyatun, Djoko Suprijanto 1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. (a) Mahasiswa perlu membawakan

Lebih terperinci

VERTEX EXPONENT OF A TWO-COLOURED DIGRAPH WITH 2 LOOPS ABSTRACT

VERTEX EXPONENT OF A TWO-COLOURED DIGRAPH WITH 2 LOOPS ABSTRACT vi VERTEX EXPONENT OF A TWO-COLOURED DIGRAPH WITH 2 LOOPS ABSTRACT A digraph D in which each of its arcs is coloured by either red or blue is called two-coloured digraph. A strongly connected of two-coloured

Lebih terperinci

BAB 2 RELASI. 1. Produk Cartesian

BAB 2 RELASI. 1. Produk Cartesian BAB 2 RELASI 1. Produk Cartesian Notasi-notasi yang digunakan dari produk cartesian : (a, b) pasangan terurut dari elemen a dan b; (a 1, a 2,, a n ) n-tuple dari elemen-elemen a 1,, a n ; A x B = {(a,

Lebih terperinci

DAFTAR ISI PERSETUJUAN PERNYATAAN PENGHARGAAN ABSTRAK ABSTRACT DAFTAR GAMBAR BAB 1. PENDAHULUAN 1

DAFTAR ISI PERSETUJUAN PERNYATAAN PENGHARGAAN ABSTRAK ABSTRACT DAFTAR GAMBAR BAB 1. PENDAHULUAN 1 DAFTAR ISI Halaman PERSETUJUAN PERNYATAAN PENGHARGAAN ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR i ii iii iv v vi viii BAB 1. PENDAHULUAN 1 1.1. Latar Belakang Penelitian 1 1.2. Perumusan Masalah 3 1.3.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang

Lebih terperinci

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf BAB 2 GRAF PRIMITIF Pada bagian ini akan dijelaskan mengenai definisi graf, istilah-istilah dalam graf, matriks ketetanggaan, graf terhubung, primitivitas graf, dan scrambling index. 2.1 Definisi Graf

Lebih terperinci

5. Representasi Matrix

5. Representasi Matrix 5. Representasi Matrix Oleh : Ade Nurhopipah Pokok Bahasan : 1. Matrix Ketetanggaan 2. Walk Pada Graph dan Digraph 3. Matrix Insidensi Sumber : Aldous, Joan M.,Wilson, Robin J. 2004. Graph and Applications.

Lebih terperinci

BAB II RELASI & FUNGSI

BAB II RELASI & FUNGSI BAB II RELASI & FUNGSI. Pengantar Pada bab telah dipelajari logika proposisi, Himpunan, beserta sifat-sifat yang berlaku yang mana teori tersebut mendasari pembahasan paba bab 2. Pada bab 2 ini dibahas

Lebih terperinci

Diberikan sebarang relasi R dari himpunan A ke B. Invers dari R yang dinotasikan dengan R adalah relasi dari B ke A sedemikian sehingga

Diberikan sebarang relasi R dari himpunan A ke B. Invers dari R yang dinotasikan dengan R adalah relasi dari B ke A sedemikian sehingga Departent of Matheatics FMIPA UNS Lecture 3: Relation C A. Universal, Epty, and Equality Relations Diberikan sebarang hipunan A. Maka A A dan erupakan subset dari A A dan berturut-turut disebut relasi

Lebih terperinci

Relasi. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Relasi dan Fungsi. Agi Putra Kharisma, ST., MT.

Relasi. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Relasi dan Fungsi. Agi Putra Kharisma, ST., MT. Relasi Learning is not child's play, we cannot learn without pain. - Aristotle 1 Misal: M = {Susan, Sinta, Ami, Mila} G = {Dangdut, Blues, Jazz, Pop} S adalah relasi yang mendeskripsikan mahasiswa yang

Lebih terperinci

BAB 2 DIGRAPH. Representasi dari sebuah digraph D dapat dilihat pada contoh berikut. Contoh 2.1. Representasi dari digraph dengan 5 buah verteks.

BAB 2 DIGRAPH. Representasi dari sebuah digraph D dapat dilihat pada contoh berikut. Contoh 2.1. Representasi dari digraph dengan 5 buah verteks. BAB 2 DIGRAPH Pada bab ini akan dijelaskan teori-teori dasar tentang digraph yang meliputi definisi dua cycle, primitifitas dari digraph, eksponen, dan lokal eksponen. Dengan demikian, akan mempermudah

Lebih terperinci

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu BAB IV RELASI DAN FUNGSI Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu relasi, relasi invers, relasi identitas, pengertian fungsi, bayangan invers

Lebih terperinci

Representasi Graph dan Beberapa Graph Khusus

Representasi Graph dan Beberapa Graph Khusus Modul 2 Representasi Graph dan Beberapa Graph Khusus Prof. Dr. Didi Suryadi, M.Ed. Dr. Nanang Priatna, M.Pd. W PENDAHULUAN alaupun representasi graph secara piktorial merupakan hal yang sangat menarik

Lebih terperinci

Pengantar Matematika Diskrit

Pengantar Matematika Diskrit Pengantar Matematika Diskrit Referensi : Rinaldi Munir, Matematika Diskrit, Informatika Bandung 2005 1 Matematika Diskrit? Bagian matematika yang mengkaji objek-objek diskrit Benda disebut diskrit jika

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks

Lebih terperinci

Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Matematika Diskret (Relasi dan Fungsi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

Pengolahan Dasar Matriks Bagus Sartono

Pengolahan Dasar Matriks Bagus Sartono Pengolahan Dasar Matriks Bagus Sartono bagusco@gmail.com Departemen Statistika FMIPA IPB Notasi Dasar Matriks A mxn, m A n, [a ij ] mxn : matriks berukuran m x n (m baris, n kolom) a ij adalah elemen matriks

Lebih terperinci

RELASI FUNGSI. (Kajian tentang karakteristik, operasi, representasi fungsi)

RELASI FUNGSI. (Kajian tentang karakteristik, operasi, representasi fungsi) Outline RELASI DAN FUNGSI (Kajian tentang karakteristik, operasi, representasi fungsi) Drs., M.App.Sc PS. Pendidikan Matematika FKIP PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTAT MATEMATIKA II (MATRIK) Drs. A. NABABAN PURNAWAN, S.Pd.,M.T JURUSAN PENDIDIKAN TEKNIK MESIN FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA 2004 MATRIKS I. PENGERTIAN

Lebih terperinci

BAB 2 KONSEP DASAR 2.1 HIMPUNAN DAN FUNGSI

BAB 2 KONSEP DASAR 2.1 HIMPUNAN DAN FUNGSI BAB 2 KONSEP DASAR Pada bab 2 ini, penulis akan memperkenalkan himpunan, fungsi dan sejumlah konsep awal yang terkait dengan semigrup, dimana sebagian besar akan sangat diperlukan hingga bagian akhir dari

Lebih terperinci

Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015

Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Matematika Teknik I: Matriks, Inverse, dan Determinan Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Dadang Amir Hamzah (STT) Matematika Teknik I Semester 3, 2015 1 / 33 Outline 1 Matriks Dadang

Lebih terperinci

METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n

METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV Norma Puspita, ST MT Matriks Matriks adlah susunan bilangan (elemen) yang disusun menurut baris dan kolom sehingga berbentuk persegi panjang Matriks dinotasikan

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

PEWARNAAN GRAF: POLINOMIAL KROMATIK DAN TEOREMA INVERSI MOBIUS

PEWARNAAN GRAF: POLINOMIAL KROMATIK DAN TEOREMA INVERSI MOBIUS PEWARNAAN GRAF: POLINOMIAL KROMATIK DAN TEOREMA INVERSI MOBIUS Nurul Miftahul Jannah, Dr. Agung Lukito, M.S. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya

Lebih terperinci

KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS. 1. Pendahuluan

KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS. 1. Pendahuluan KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS Tri Anggoro Putro, Siswanto, Supriyadi Wibowo Program Studi Matematika FMIPA UNS Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas

Lebih terperinci

BAB 3 ALJABAR MAX-PLUS. beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut

BAB 3 ALJABAR MAX-PLUS. beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut BAB 3 ALJABAR MAX-PLUS Sebelum membahas Aljabar Max-Plus, akan diuraikan terlebih dahulu beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut dipenuhi oleh suatu Aljabar Max-Plus.

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

Makalah Himpunan dan Logika Matematika Poset dan Lattice

Makalah Himpunan dan Logika Matematika Poset dan Lattice Makalah Himpunan dan Logika Matematika Poset dan Lattice Dosen : Dra. Linda Rosmery Tambunan, M.Si Disusun oleh : Zoelia Gurning (160384202050) Yoga (160384202054) Muhammad Wiriantara (160384202063) Eci

Lebih terperinci

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan

Lebih terperinci

PELABELAN TOTAL SISI AJAIB PADA GRAF BINTANG

PELABELAN TOTAL SISI AJAIB PADA GRAF BINTANG Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 85 89 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PELABELAN TOTAL SISI AJAIB PADA GRAF BINTANG DINA IRAWATI Program Studi Matematika, Fakultas Matematika

Lebih terperinci

Adri Priadana ilkomadri.com. Relasi

Adri Priadana ilkomadri.com. Relasi Adri Priadana ilkomadri.com Relasi Relasi Hubungan antara elemen himpunan dengan elemen himpunan lain dinyatakan dengan struktur yang disebut relasi. Relasi antara himpunan A dan B disebut relasi biner,

Lebih terperinci