BAB 2 LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa pengertian dari optimasi bersyarat dengan kendala persamaan menggunakan multiplier lagrange serta penerapannya yang akan digunakan sebagai landasan berfikir dalam melakukan penelitian ini, yang akan dipergunakan pada bab pembahasan. 2.1 Optimasi Suatu permasalahan optimasi disebut nonlinear jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinear pada salah satu atau keduanya. Optimasi merupakan masalah yang berhubungan dengan keputusan yang terbaik, maksimum, minimum dan memberikan cara penentuan solusi yang memuaskan. Salah satu bentuk umum masalah optimasi adalah untuk menentukan bersyarat x = (x 1, x 2,, x n ) sehingga mencapai tujuannya untuk memaksimumkan/ meminimumkan f(x) dengan kendala g n (x) 0 dan untuk x 0. dengan f(x) dan g n (x) adalah fungsi yang diketahui dengan n variabel keputusan. Dalam masalah optimasi terdapat dua bentuk masalah optimasi yaitu optimasi bersyarat dan optimasi tak bersyarat Optimasi Tak Bersyarat Optimasi tak bersyarat merupakan masalah optimasi yang tidak memiliki syarat atau tidak memiliki batasan- batasan, sehingga untuk x = (x 1, x 2,, x n ) mempunyai fungsi tujuan adalah memaksimumkan/ meminimumkan f(x).

2 10 Syarat perlu dan syarat cukup untuk suatu penyelesaian x = x * merupakan penyelesian optimal saat f(x) merupakan fungsi yang dapat diturunkan adalah pada x = x *, untuk j = 1,2,, n. Dimana f(x) dengan kondisi ini juga mencukupi, sehingga mencari solusi untuk x * tereduksi menjadi penyelesaian dari sistem n persamaan yang diperoleh dengan n turunan parsial sama dengan nol Optimasi Bersyarat Optimasi bersyarat adalah masalah optimasi yang memiliki syarat atau memiliki batasan - batasan yang merupakan masalah pemodelan matematika dalam optimasi fungsi yang mensyaratkan beberapa kondisi atau syarat untuk diperoleh solusi optimal yaitu syarat yang mengoptimumkan fungsi tujuan. Maksimumkan / Minimumkan z = f(x), x = {x 1, x 2,, x n } Dengan kendala g 1 (x) (, =, ) = b 1 g 2 (x) (, =, ) = b 2 g m (x) (, =, ) = b m Disini jika terjadi bahwa m > n maka tidak dapat diselesaikan. Akan tetapi untuk dapat menyelesaikannya maka m n (jumlah kendala lebih kecil daripada variabel). Metode yang dapat digunakan untuk menyelesaikan masalah optimasi adalah metode pengali Lagrange, karena metode Lagrange tersebut prinsip kerjanya sederhana dan mudah dimengerti. Metode ini dimulai dengan pembentukan fungsi Lagrange yang didefinisikan sebagai : L(x, λ) = f(x) + m i 1 λ i g i (x)

3 11 Teorema : Syarat perlu bagi sebuah fungsi f(x) dengan kendala g j (x) = 0, untuk j = 1, 2,, m agar mempunyai minimum relatif pada titik x * adalah derivasi parsial pertama dari fungsi Lagrangenya yang didefinisikan sebagai L(x, λ) = ( x 1,x 2,,x n, 1, 2,..., m ) terhadap setiap argumennya mempunyai nilai nol. (Luknanto, 2000: 12) Teorema: Syarat harus bagi sebuah fungsi f(x) agar mempunyai minimum(atau maximum) relatif pada titik x * adalah jika fungsi kuadrat Q, yang didefinisikan sebagai Q n n i 1 j 1 x i 2 L x j dx dx i j Dievaluasi pada x = x * harus definit positif (atau negatif) untuk semua nilai dx yang memenuhi semua kendala. (Luknanto, 2000: 13) Syarat perlu agar Q n n i 1 j 1 x i 2 L x j dx dx i j menjadi definit positif( atau negatif) untuk setiap variasi nilai dx adalah setiap akar dari polynomial z i, yang didapat dari determinan persamaan dibawah ini harus positif (atau negatif). (L 11 - z) L 12 L 13 L 1n g 11 g 12 g m1 L 21 (L 22 -z) L 23 L 2n g 12 g 22 g 2n L n1 L n2 L n3 (L nn -z) g m1 g m2 g mn g 11 g 12 g 13 g 1n = 0 g 21 g 22 g 23 g 2n g m1 g m2 g m3 g mn Dengan L 11 = dan g ij = (Luknanto, 2000 : 13)

4 12 Arti dari pengali Lagrange secara fisik yang menarik dimisalkan terdapat permasalahan optimasi dengan satu kendala sebagai berikut: maksimumkan/ minimumkan f(x) dengan kendala g(x) = b Fungsi Lagrangenya adalah L (x, λ) = f (x) + λ(b-g (x)) Syarat perlu untuk penyelesaian diatas adalah = 0 Maka persamaan diatas menghasilkan : b g(x) = 0 atau b = g(x) didapat; Atau Atau Atau df dg

5 13 menghasilkan yang final yaitu df =λdb karena b = g(x) atau df = λ * db Dapat diambil suatu kesimpulan bahwa dari persamaan diatas pada penyelesaian optimum, perubahan fungsi tujuan f, berbanding lurus dengan perubahan Kendala b dengan faktor sebesar pengali Lagrange λ. 2.2 Metode Pengali Lagrange Sejauh ini proses optimasi dilakukan tanpa menggunakan kendala, padahal seringkali persoalan optimasi dihadapkan pada kendala - kendala tertentu. Sebagai contoh persoalan dasar dalam teori konsumen adalah bagaimana menentukan tingkat konsumsi yang memberikan kepuasan optimal dengan tingkat pendapatan tertentu. Multiplier Langrange adalah sebuah konsep populer dalam menangani permasalahan ini untuk program-program non-linear. Sesuai namanya, konsep ini dikemukakan oleh Joseph Louis Langrange ( ). Teori ini dapat digunakan untuk menangani optimalitas dari permasalahan program non-linear. Metode pengali Lagrange merupakan sebuah tehnik dalam menyelesaikan masalah optimasi dengan kendala persamaan. Inti dari metode pengali Lagrange adalah mengubah persoalan titik ekstrem terkendala menjadi persoalan ekstrem bebas kendala. Fungsi yang terbentuk dari tranformasi tersebut dinamakan fungsi Lagrange. misalkan permasalahan yang dihadapi adalah Maksimumkan (Minimumkan) z = f(x), x = {x 1, x 2,, x n } Dengan kendala g 1 (x) (, =, ) = b 1 g 2 (x(, =, )) = b 2 g m (x) (, =, ) = b m

6 14 Fungsi baru Lagrange yang telah dimodifikasi menjadi L(x, λ) = f(x) + m i 1 λ i g i (x) 2.3 Matrik Hessian Matrik adalah susunan bilangan yang diatur berdasarkan baris dan kolom. Bilangan bilangan tersebut dinamakan entri dalam matrik atau disebut juga elemen (unsur). Matrik Hessian adalah matrik yang setiap elemennya dibentuk dari turunan parsial kedua dari suatu fungsi. Misalkan f(x) fungsi dengan n variabel yang memiliki turunan parsial kedua dan turunannya kontinu, matrik Hessian f(x) ditulis H adalah : H = Matrik Hessian dapat digunakan untuk melakukan uji turunan kedua fungsi lebih dari satu variabel, yaitu untuk mengidentifikasi optimum relatif dari nilai fungsi tersebut. Penggolongan titik stasioner fungsi dua variabel dengan menggunakan matriks Hessian misalkan f(x) = F(x 1,, x n ) adalah fungsi bernilai real dimana semua turunan parsialnya kontinu. Misalnya x 0 adalah titik stasioner dari F dan didefinisikan H = H(x 0 ) dengan persamaan H ij = F xi, yj (x 0 ). H (x 0 ) adalah Hessian dari F pada x 0.

7 15 Titik stasioner dapat digolongkan sebagai berikut : 1. x 0. Adalah suatu minimum relatif dari F jika jika H(x 0. ) definit positif 2. x 0. Adalah suatu maksimum relatif dari F jika H(x 0. ) definit negatif 3. x 0. Adalah suatu titik pelana dari F jika H(x 0. ) indefinite (Leon,1998 : 313) Contoh : 1 Untuk mendapatkan titik ekstrim dari suatu fungsi dipakai sebuah contoh sebagai berikut : Solusi : Titik ekstrim harus memenuhi syarat : Persamaan diatas dipenuhi oleh titik titik (0, 0), (0, -8/3), (-4/3, 0), dan (-4/3, -8/3) Untuk mengetahui titik maksimum dan minimum maka digunakannya matrik Hessian untuk menyelidikinya. Derivasi kedua dari f adalah :,, dan Jadi matrik Hessian menjadi 6x x sehingga H 1 = [6x 1 + 4] dan H 2 = 6x x 2 + 8

8 16 Tabel 2.1. Nilai matrik Hessian untuk masing masing titik ekstrim. ( x 1, x 2 ) Matrik H H 1 H 2 Sifat H Sifat ( x 1, x 2 ) f(x 1, x 2 ) (0, 0) Definit positif Minimum 6 (0, -8/3) Tak tentu Titik belok 418 / 27 (-4/3, 0) Tak tentu Titik belok 194/ 27 (-4/3, -8/3) Definit nefgatif Maksimum 50/ 3 dibawah ini : Grafik f(x) disajikan dalam ruang tiga dimensi diperlihatkan dalam gambar Maksimum (-4/3, -8/3) -2-1 Titik belok (0, -8/3) ,5 10 7,5 (-) X 2-0,5-1 (-) 0 Minimum (0,0) X 1 Gambar Grafik dari + + +

9 Matrik Definit Positif Bentuk kuadrat pada ( x 1, x 2, x n ) adalah ekspresi yang dapat kita tulis sebagai X 1 [ x 1, x 2, x n ] A X 2 X n Dengan A merupakan matrik simetrik n x n. Jadi misalkan X 1 X = X 2 X n maka bentuk ini dapat ditulis sebagai X t AX contoh : 2 Misalkan sebuah matrik simetrik berikut : A = Untuk mengkaji apakah matriks A bersifat definite positif, maka; X t AX = [x 1 x 2 x 3 ] X 1 X 2 X 3

10 18 X t AX = [x 1 x 2 x 3 ] 2x 1 x 2 -x 1 + 2x 2 x 3 -x 2 + 2x 3 Sehingga hasilnya adalah X t AX = x 1 (2x 1 -x 2 ) + x 2 (-x 1 + 2x 2 x 3 ) + x 3 (-x 2 +2x 3 ) X t AX = 2 - x 1 x 2 - x 1 x x 2 x 3 - x 2 x 3 + X t AX = 2-2x 1 x x 2 x 3 + X t AX = + ( 2x 1 x 2 + ) + ( -2x 2 x 3 + ) + X t AX = + ( ) 2 + ( - ) 2 + Dari sini dapat disimpulkan bahwa matrik A bersifat definit positif karena memenuhi: + ( ) 2 + ( - ) 2 + > 0 kecuali jika x 1 = x 2 = x 3 = 0 Sebaliknya matrik A dan bentuk kuadrat X t AX disebut : 1. Definit negatif jika X t AX < 0, untuk semua x 0 2. Semidefinit positif jika X t AX 0, untuk semua x 3. Semidefinit negatif jika X t AX 0, untuk semua x 4. Indefinit bila tidak termasuk golongan diatas Himpunan syarat perlu dan syarat cukup untuk bentuk bentuk definit positif dan negatif yaitu : 1. Syarat perlu dan syarat cukup untuk bentuk definit positif Suatu himpunan syarat perlu dan syarat cukup bentuk X t AX sebagai definit positif adalah h 11 h 12 h 13 h 11 > 0, h 11 h 12 > 0, h 21 h 22 h 23 > 0,, A > 0 h 21 h 22 h 31 h 32 h 33

11 19 Jika n minor dari A adalah positif, maka X t AX adalah definit positif dan X t AX hanya definit positif, jika minor minor ini positif. 2. Syarat perlu dan syarat cukup untuk bentuk definit negatif Suatu himpunan syarat perlu dan syarat cukup bentuk X t AX sebagai definit negatif atau setaranya untuk X t (-A)X sebagai definite positif adalah h 11 h 12 h 13 h 11 < 0, h 11 h 12 > 0, h 21 h 22 h 23 < 0,, (-1) n A > 0 h 21 h 22 h 31 h 32 h 33 Dimana a ij adalah elemen elemen dari A (bukan A). 2.5 Maksimum dan Minimum Suatu fungsi y = f(x) dikatakan mempunyai maksimum lokal (maksimum relatif) dimana x = a bila f(a) lebih besar dari sembarang nilai f(x) lainnya dari x sekitar a, dan dikatakan mempunyai minimum lokal (minimum relatif) pada x = a bila f(a) lebih kecil dari sembarang nilai f(x) lain untuk x sekitar a. Maksimum dan minimum local suatu fungsi adalah maksimum dan minimum absolut dari suatu fungsi mempunyai jarak yang lebih besar lagi dan terletak pada titik yang paling tinggi atau paling rendah dari jarak tersebut, melebihi maksimum atau minimum lokal. Jadi f(x) mempunyai nilai maksimum absolute pada nilai x = a 1 dengan batas b apabila nilai f(x) pada x = a 1 mempunyai nilai paling tinggi, f(a 1 ) > f(x), sedangkan f(x) mempunyai nilai maksimum lokal pada batas b, apabila f(x) pada x =a 2. Dengan demikian suatu fungsi yang mempunyai titik maksimum kurvanya berbentuk cembung keatas dan fungsi yang mempunyai titik minimum kurvanya berbentuk cembung kebawah.

12 20 f(x) Maksimum lokal f(c) Maksimum lokal Minimum lokal Minimum lokal f(b) x = b Gambar Grafik 1 Sebaliknya, titik kritis x dan f dapat dianalisa dengan menggunakan turunan kedua dari f di x : 1. Jika turunan kedua bernilai positif, x adalah minimum 2. Jika turunan kedua bernilai negatif, x adalah maksimum 3. Jika turunan kedua bernilai nol, x mungkin maksimum, minimum, ataupun tidak kedua- duanya. Menurunkan fungsi dan mencari titik titik kritis merupakan salah satu cara yang sederhana untuk mencari nilai minimum dan maksimum, yang dapat digunakan untuk optimasi. Hal ini juga mempunyai aplikasi tersendiri dalam proses sketsa grafik, jika diketahui minimum dan maksimum dari fungsi yang diturunkan tersebut sebuah grafik dapat digunakan untuk mengamati meningkat atau menurun dari titik titik kritis. Uji turunan kedua masih dapat digunakan untuk menganalisa titik titik kritis dengan menggunakan matrik Hessian dari turunan parsial kedua fungsi dititik kritis. Apabila f(x) = 0 atau f 1 (a) tidak tertentu jika a = 0, maka a merupakan titik kritis yaitu maksimum atau minimum.

13 21 Contoh : 3 Tentukan nilai ekstrim dari fungsi f(x) = pada (-, ) Penyelesaian : Turunan pertama dari f(x) adalah f (x) = 0 maka 0 f (x) = ( x + 1)(x 3) =0 sehingga nilai x = -1 dan x = 3 maka titik kritis f (x) adalah -1 dan 3. Maka turunan kedua dari f(x) adalah f (x) = 2x 2 sehingga nilai untuk mengujinya maka bahwa (x + 1)(x - 3) > 0 pada (-, -1) dan (3, ) maka menurut uji dari turunan pertama dapat disimpulkan bahwa merupakan nilai minimum dan untuk diperlihatkan oleh gambar dibawah ini. merupakan nilai minimum grafiknya y 3 2 maksimum x -2 Minimum Gambar 2.3. Grafik nilai maksimum dan minimum

14 Fungsi Utilitas Marginal Fungsi utilitas merupakan fungsi yang menjelaskan besarnya utilitas (kepuasan, kegunaan) yang diperoleh seseorang dari mengkonsumsi suatu barang atau jasa. Pada umumnya semakin banyak jumlah suatu barang dikonsumsi semakin besar utilitas yang diperoleh, kemudian mencapai titik puncaknya (titik jenuh) pada jumlah konsumsi tertentu, sesudah itu justru menjadi berkurang atau bahkan negatif jika jumlah barang yang dikonsumsi terus menerus ditambah. Utilitas total merupakan fungsi dari jumlah barang yang dikonsumsi. Adapun persamaan utilitas total (total utility, U) dari mengkonsumsi suatu jenis barang berupa fungsi kuadrat parabolic, dengan kurva berbentuk parabola terbuka kebawah. Utilitas marginal (marginal utility, MU) merupakan utilitas tambahan yang diperoleh dari setiap unit barang yang dikonsumsi. Secara matematik, fungsi utilitas marginal merupakan derivative pertama dari fungsi utilitas total. Jika fungsi utilitas total dinyatakan dengan U= f(q) dimana U melambangkan utilitas total dan Q jumlah barang yang dikonsumsi, maka utilitas marginal : MU = U = du / dq (Dumairy, 1996 : 226 ) U U = f(q) 0 Q MU Gambar 2.4. Grafik bentuk kurva utilitas

15 23 Karena fungsi utilitas total yang non liner pada umumnya berbentuk fungsi kuadrat, fungsi utilitas marginalnya akan berbentuk fungsi liner. Kurva utilitas marginal (MU) selalu mencapai nol tepat pada saat kurva utilitas total (U) berada pada posisi puncaknya. Contoh : 4 U = f(q) = 90Q 5Q 2 MU = U = 90 10Q U maksimum pada MU = 0 MU = 0 Sehingga nilai Q = 9 Maka, U maksimum = 90(9) 5(9) 2 = = 405 Diperlihatkan oleh gambar dibawah ini : U, MU 405 U = 90Q 5Q Q MU = 90-10Q Gambar 2.5. Grafik kurva fungsi U = f(q) = 90Q 5Q 2 dan MU = U = 90 10Q

16 Produk Marginal Produk marginal ( marjinal product, MP) ialah produk tambahan yang dihasilkan dari suatu unit tambahan faktor produksi yang digunakan. Secara matematik fungsi produk marjinal merupakan derivative pertama dari fungsi produk total. Jika fungsi produk total dinyatakan P = f(x) dimana P melambangkan jumlah produk total dan x adalah jumlah masukan, maka produk marginal : MP = P = dp/ dx Karena fungsi produk total yang non liner pada umumnya berbentuk fungsi kubik, fungsi produk marjinalnya akan berbentuk fungsi kuadrat. Kurva produk marginal (MP) selalu mencapai nilai ektrimnya, dalam hal ini nilai maksimum, tepat pada saat kurva produk total ( P) berada pada posisi titik beloknya. Produk total mencapai puncaknya ketika produk marjinalnya nol. Produk total menurun bersamaan dengan produk marginal menjadi negatif. Produk marjinal negatif menunjukkan bahwa penambahan penggunaan masukan yang bersangkutan justru akan mengurangi jumlah produk total. (Dumairy, 1996: 227) Contoh 5. Produksi total P = f(x) = 9x 2 x 3 produk marjinalnya adalah MP = P = 18x 3x 2 Sehingga P maksimum pada P = 0 yaitu pada x = 6 dengan P maksimum = 108 P berada dititik belok dan MP maksimum pada P = (MP) = 0 yaitu pada x = 3

17 25 Diperlihatkan oleh gambar dibawah ini : P,MP 108 P=f(X) x MP = g(x) Gambar Kurva fungsi P = f(x) = 9x 2 x 3 dan MP = P = 18x 3x 2

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, sebenarnya orang selalu melakukan optimasi untuk memenuhi kebutuhannya. Tetapi optimasi yang dilakukan masyarakat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemrograman Non linier Pemrograman non linier adalah suatu bentuk pemrograman yang berhubungan dengan suatu perencanaan aktivitas tertentu yang dapat diformulasikan dalam model

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, optimasi selalu dilakukan untuk memenuhi kebutuhan. Tetapi optimasi yang dilakukan masyarakat awam lebih banyak

Lebih terperinci

BAB 3.Penerapan Diferensial Fungsi Sederhana dalam Ekonomi

BAB 3.Penerapan Diferensial Fungsi Sederhana dalam Ekonomi BAB 3.Penerapan Diferensial Fungsi Sederhana dalam Ekonomi A. Elastisitas Elastisitas merupakan persentase perubahan y terhadap persentase perubahan x. 1.1 Elastisitas Permintaan Elastisitas Permintaan

Lebih terperinci

BAB I PENDAHULUAN. dilakukan masyarakat awam lebih banyak dilandasi oleh insting daripada teori

BAB I PENDAHULUAN. dilakukan masyarakat awam lebih banyak dilandasi oleh insting daripada teori 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam kehidupan sehari-hari disadari atau tidak, sebenarnya orang selalu melakukan optimasi untuk memenuhi kebutuhannya. Tetapi optimasi yang dilakukan masyarakat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua

Lebih terperinci

OPTIMASI (Pemrograman Non Linear)

OPTIMASI (Pemrograman Non Linear) OPTIMASI (Pemrograman Non Linear) 3 SKS PILIHAN Arrival Rince Putri, 013 1 Silabus I. Pendahuluan 1. Perkuliahan: Silabus, Referensi, Penilaian. Pengantar Optimasi 3. Riview Differential Calculus II. Dasar-Dasar

Lebih terperinci

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks

Lebih terperinci

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John... (Caturiyati) SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemrograman Non Linier Pemrograman Non linier merupakan pemrograman dengan fungsi tujuannya saja atau bersama dengan fungsi kendala berbentuk non linier yaitu pangkat dari variabelnya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn

Lebih terperinci

MATEMATIKA EKONOMI FUNGSI KUBIK

MATEMATIKA EKONOMI FUNGSI KUBIK MATEMATIKA EKONOMI FUNGSI KUBIK OLEH: KELOMPOK 4: WINDA WULANSARI (1110532012) CITRA HENDRIANTI TANJUNG (1110512114) TRI REZEKI R. HARAHAP (1110532011) VELLYANA PUTRI (1110532020) ANGGY ARILMA PUTRA (1110533006)

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 Materi Pokok : Integral Pertemuan Ke- : 1 dan Alokasi Waktu : x pertemuan (4 x 45 menit) Standar Kompetensi : Menggunakan konsep integral dalam pemecahan masalah

Lebih terperinci

BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear

BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear BAB III PEMBAHASAN Pada bab ini akan dijelaskan tentang konsep dasar metode kuadrat terkecil yang digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear dan langkah-langkah penyelesaiannya

Lebih terperinci

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange Pertemuan Minggu ke-11 1. Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange 1. BIDANG SINGGUNG, HAMPIRAN Tujuan mempelajari: memperoleh persamaan bidang singgung terhadap permukaan z

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Optimasi (Optimization) adalah aktivitas untuk mendapatkan hasil terbaik di dalam suatu keadaan yang diberikan. Tujuan akhir dari semua aktivitas tersebut adalah meminimumkan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Metode Pengali Lagrange adalah sebuah konsep populer dalam menangani permasalahan optimasi untuk program-program nonlinier. Sesuai namanya, konsep ini dikemukakan oleh

Lebih terperinci

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com 2 himmawatipl@yahoo.com Abstrak

Lebih terperinci

OPTIMASI BERSYARAT DENGAN KENDALA PERSAMAAN MENGGUNAKAN MULTIPLIER LAGRANGE SERTA PENERAPANNYA SKRIPSI SANDRA RIZAL

OPTIMASI BERSYARAT DENGAN KENDALA PERSAMAAN MENGGUNAKAN MULTIPLIER LAGRANGE SERTA PENERAPANNYA SKRIPSI SANDRA RIZAL OPTIMASI BERSYARAT DENGAN KENDALA PERSAMAAN MENGGUNAKAN MULTIPLIER LAGRANGE SERTA PENERAPANNYA SKRIPSI SANDRA RIZAL 060803016 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika BAB 2 PROGRAM LINIER DAN TAK LINIER 2.1 Program Linier Program linier (Linear programming) adalah suatu masalah matematika yang mempunyai fungsi objektif dan kendala berbentuk linier untuk meminimalkan

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Pengoptimalan merupakan ilmu Matematika terapan dan bertujuan untuk mencapai suatu titik optimum. Dalam kehidupan sehari-hari, baik disadari maupun tidak, sebenarnya

Lebih terperinci

(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I..

(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I.. 3. Aplikasi Turunan a. Nilai ekstrim Bagian ini dimulai dengan pengertian nilai ekstrim suatu fungsi yang mencakup nilai ekstrim maksimum dan nilai ekstrim minimum. Definisi 3. Diberikan fungsi f: I R,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI 1 I PENDAHULUAN 11 Latar Belakang Setiap perusahaan menyadari bahwa total biaya produksi sangat berkaitan dengan outputnya Jika perusahaan meningkatkan kapasitas produksi, maka perusahaan tersebut tentunya

Lebih terperinci

vii Tinjauan Mata Kuliah

vii Tinjauan Mata Kuliah vii M Tinjauan Mata Kuliah atematika merupakan alat yang sangat penting dalam mempelajari ilmu-ilmu ekonomi dan bisnis. Oleh karena itu, mahasiswa dituntut untuk mengetahui berbagai konsep matematika.

Lebih terperinci

BAB III TURUNAN DALAM RUANG DIMENSI-n

BAB III TURUNAN DALAM RUANG DIMENSI-n BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi

Lebih terperinci

10. TEOREMA NILAI RATA-RATA

10. TEOREMA NILAI RATA-RATA 10. TEOREMA NILAI RATA-RATA 10.1 Maksimum dan Minimum Lokal Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan bahwa f mencapai nilai maksimum lokal di c apabila f(x)

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

Matematika Ekonomi. Oleh: Osa Omar Sharif Institut Manajemen Telkom

Matematika Ekonomi. Oleh: Osa Omar Sharif Institut Manajemen Telkom Matematika Ekonomi Oleh: Osa Omar Sharif Institut Manajemen Telkom Diferensiasi f (x) = Lim x 0 [(f(x+ x)-f(x))/ x] ELASTISITAS Elastisitas adalah pengukuran tingkat respon/kepekaan satu variabel terhadap

Lebih terperinci

BAB I DASAR SISTEM OPTIMASI

BAB I DASAR SISTEM OPTIMASI BAB I DASAR SISTEM OPTIMASI. Pendahuluan Teknik optimasi merupakan suatu cara yang dilakukan untuk memberikan hasil terbaik yang diinginkan. Teknik optimasi ini banyak memberikan menfaat dalam mengambil

Lebih terperinci

UM UGM 2017 Matematika Dasar

UM UGM 2017 Matematika Dasar UM UGM 07 Matematika Dasar Soal UTUL UGM - Matematika Dasar 07 (Kode Soal 84) Halaman 0. Tujuh bilangan membentuk barisan aritmetika. Jika jumlah tiga bilangan pertama sama dengan 33 dan jumlah tiga bilangan

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Salah satu observasi yang berguna dalam bidang komputasi di tahun 1970 adalah observasi terhadap permasalahan relaksasi Lagrange. Josep Louis Lagrange merupakan tokoh ahli

Lebih terperinci

MODUL 2 OPTIMISASI OPTIMISASI EKONOMI EKONOMI. SRI SULASMIYATI, S.Sos, M.AP. Ari Darmawan, Dr., S.AB, M.AB

MODUL 2 OPTIMISASI OPTIMISASI EKONOMI EKONOMI. SRI SULASMIYATI, S.Sos, M.AP. Ari Darmawan, Dr., S.AB, M.AB MODUL 2 OPTIMISASI OPTIMISASI EKONOMI EKONOMI SRI SULASMIYATI, S.Sos, M.AP Ari Darmawan, Dr., S.AB, M.AB aridarmawan_fia@ub.ac.id Pendahuluan Adanya kebutuhan manusia yang tidak terbatas dan terbatasnya

Lebih terperinci

BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia

BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia BAB IV. PENGGUNAAN TURUNAN Departemen Teknik Kimia Universitas Indonesia BAB IV. PENGGUNAAN TURUNAN Maksimum dan Minimum Kemonotonan dan Kecekungan Maksimum dan Minimum Lokal Masalah Maksimum dan Minimum

Lebih terperinci

INTEGRAL APLIKASI EKONOMI

INTEGRAL APLIKASI EKONOMI INTEGRAL APLIKASI EKONOMI Pengertian Integral Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. adalah lambang untuk notasi integral, dx adalah

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya.

BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya. BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

TURUNAN DALAM RUANG DIMENSI-n

TURUNAN DALAM RUANG DIMENSI-n TURUNAN DALAM RUANG DIMENSI-n A. Fungsi Dua Variabel atau Lebih Dalam subbab ini, fungsi dua variabel atau lebih dikaji dari tiga sudut pandang: secara verbal (melalui uraian dalam kata-kata) secara aljabar

Lebih terperinci

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a LEMBAR AKTIVITAS SISWA DIFFERENSIAL (TURUNAN) Nama Siswa : y f(a h) f(a) x (a h) a Kelas : Kompetensi Dasar (KURIKULUM 2013): 3.21 Memahami konsep turunan dengan menggunakan konteks matematik atau konteks

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Fungsi Dua Peubah Bila untuk setiap pasangan (x,y) dari harga harga dua peubah bebas

Lebih terperinci

Lampiran 1 Pembuktian Teorema 2.3

Lampiran 1 Pembuktian Teorema 2.3 LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)

Lebih terperinci

METODE PENGALI LAGRANGE DAN APLIKASINYA DALAM BIDANG EKONOMI SKRIPSI RAHMAD HIDAYAT

METODE PENGALI LAGRANGE DAN APLIKASINYA DALAM BIDANG EKONOMI SKRIPSI RAHMAD HIDAYAT METODE PENGALI LAGRANGE DAN APLIKASINYA DALAM BIDANG EKONOMI SKRIPSI RAHMAD HIDAYAT 110803018 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2015 METODE

Lebih terperinci

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel.

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. Definisi. (i) Suatu fungsi f(x, y) memiliki minimum lokal pada titik

Lebih terperinci

Oleh: Osa Omar Sharif Institut Manajemen Telkom

Oleh: Osa Omar Sharif Institut Manajemen Telkom Matematika Ekonomi Oleh: Osa Omar Sharif Institut Manajemen Telkom Diferensiasi f (x) = Lim x 0 [(f(x+ x)-f(x))/ x] ELASTISITAS Elastisitas adalah pengukuran tingkat respon/kepekaan satu variabel terhadap

Lebih terperinci

fungsi rasional adalah rasio dari dua polinomial. Secara umum,

fungsi rasional adalah rasio dari dua polinomial. Secara umum, fungsi rasional adalah rasio dari dua polinomial. Secara umum, Fungsi Rasional Fungsi rasional adalah fungsi yang memiliki bentuk Dengan p dan d merupakan polinomial dan d(x) 0. Domain dari V(x) adalah

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

HUBUNGAN FUNGSI NON-LINEAR DALAM PENERAPAN EKONOMI. Disusun Guna Memenuhi Tugas Matematika Ekonomi. Dosen Pengampu : Rombel 1 Oleh:

HUBUNGAN FUNGSI NON-LINEAR DALAM PENERAPAN EKONOMI. Disusun Guna Memenuhi Tugas Matematika Ekonomi. Dosen Pengampu : Rombel 1 Oleh: HUBUNGAN FUNGSI NON-LINEAR DALAM PENERAPAN EKONOMI Disusun Guna Memenuhi Tugas Matematika Ekonomi Dosen Pengampu : Wardono Rombel 1 Oleh: 1. Farah Anisah Zahra 4101413064. Rizky Rahman 4101413066 3. Hana

Lebih terperinci

Bab 2: Optimasi Ekonomi. Ekonomi Manajerial Manajemen

Bab 2: Optimasi Ekonomi. Ekonomi Manajerial Manajemen Bab 2: Optimasi Ekonomi 1 Ekonomi Manajerial Manajemen 2 Pokok Bahasan Bentuk-Bentuk Hubungan Ekonomi Hubungan Total, Rata-rata dan Marjinal Analisis Optimalisasi Turunan dan Aturan Turunan Optimalisasi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Zaman yang semakin berkembang membuat persoalan semakin kompleks, tidak terkecuali persoalan yang melibatkan persoalan matematika. Dalam pemecahannya, matematika memegang

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON Susi Ranangga [M008067], Aeroni Dwijayanti [M008078] Hamdani Citra P. [M0003], Nafi Nur Khasana [M00058]. Pendahuluan Dalam kehidupan sehari-hari

Lebih terperinci

RANCANGAN PEMBELAJARAN SEMESTER MATA KULIAH MATEMATIKA EKONOMI. Matematika Ekonomi Semester : 1 Kode : SM Manajemen Dosen : Farah Alfanur

RANCANGAN PEMBELAJARAN SEMESTER MATA KULIAH MATEMATIKA EKONOMI. Matematika Ekonomi Semester : 1 Kode : SM Manajemen Dosen : Farah Alfanur RANCANGAN PEMBELAJARAN SEMESTER MATA KULIAH MATEMATIKA EKONOMI Mata Kuliah : Prodi : Capaian Pembelajaran : Matematika Ekonomi Semester : 1 Kode : SM112014 Manajemen Dosen : Farah Alfanur Setelah mengikuti

Lebih terperinci

BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut:

BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: BAB 2 KAJIAN PUSTAKA 2.1 Masalah Optimisasi dan Program Non Linier Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: 1. Masalah optimisasi tanpa kendala.

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah

Lebih terperinci

Bahan Diskusi/Tugas Kelompok Topik: Turunan Fungsi

Bahan Diskusi/Tugas Kelompok Topik: Turunan Fungsi Jurusan Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia Bahan Diskusi/Tugas Kelompok Topik: Turunan Fungsi Definisi 1: Misalkan I R suatu interval, c I dan f : I R. Fungsi f disebut diferensiabel

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 6, 2007 Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS MINGGU XII

MATEMATIKA EKONOMI DAN BISNIS MINGGU XII MATEMATIKA EKONOMI DAN BISNIS MINGGU XII OPTIMASI FUNGSI MULTIVARIAT TANPA DAN DENGAN KENDALA Prepared by : W. Roianto ROFI KONDISI MAKSIMUM DAN MINIMUM RELATIF DEFINISI Fungsi y = (,,, n ) maksimum relati

Lebih terperinci

D. OPTIMISASI EKONOMI DENGAN KENDALA - Optimisasi dengan metode substitusi - Optimisasi dengan metode pengali lagrange

D. OPTIMISASI EKONOMI DENGAN KENDALA - Optimisasi dengan metode substitusi - Optimisasi dengan metode pengali lagrange OPTIMISASI EKONOMI Ari Darmawan, Dr. S.AB, M.AB Email: aridarmawan_fia@ub.ac.id A. PENDAHULUAN B. TEKNIK OPTIMISASI EKONOMI C. OPTIMISASI EKONOMI TANPA KENDALA - Hubungan Antara Nilai Total, Rata-rata

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE. Dwi Suraningsih (M ), Marifatun (M ), Nisa Karunia (M )

OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE. Dwi Suraningsih (M ), Marifatun (M ), Nisa Karunia (M ) OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE Dwi Suraningsih (M2, Marifatun (M53, Nisa Karunia (M6 I. Pendahuluan Latar Belakang. Dalam kehidupan sehari-hari disa maupun tidak, sebenarnya manusia

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

A. MENYELESAIKAN PERSAMAAN KUADRAT

A. MENYELESAIKAN PERSAMAAN KUADRAT A. MENYELESAIKAN PERSAMAAN KUADRAT STANDAR KOMPETENSI Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat KOMPETENSI DASAR Menggunakan sifat dan aturan

Lebih terperinci

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI METODE TITIK-INTERIOR PADA PEMROGRAMAN KUADRATIK KONVEKS Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh: Fenny Basuki NIM: 831143 PROGRAM

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

log2 PEMBAHASAN SOAL TRY OUT = = 2 1 = 27 8 = 19 Jawaban : C = = = 2( 15 10) Jawaban : B . 4. log3 1 2 (1) .

log2 PEMBAHASAN SOAL TRY OUT = = 2 1 = 27 8 = 19 Jawaban : C = = = 2( 15 10) Jawaban : B . 4. log3 1 2 (1) . TRY OUT AKBAR UN SMA 08 PEMBAHASAN SOAL TRY OUT. 9 6 4 8 7 Jawaban : C 4 4 = = = 7 8 4 = 9. 5 + = 0 5 = 0 5 = 5 0 = ( 5 0). log5 5 log8 log6 4 log log4 = log5 5 4 log log log6 log4 =. log5 5. 4. log log

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

BAB 5 PENGGUNAAN TURUNAN

BAB 5 PENGGUNAAN TURUNAN Diktat Kuliah TK Matematika BAB 5 PENGGUNAAN TURUNAN 5. Nilai Ekstrim Fungsi Nilai ekstrim fungsi adalah nilai yang berkaitan dengan maksimum atau minimum fungsi tersebut. Ada dua jenis nilai ekstrim,

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah [MA114] Sistem Koordinat Kuadran II Kuadran I P(,) z P(,,z) Kuadran III Kuadran IV R (Bidang) Oktan 1 R 3 (Ruang) 7/6/007

Lebih terperinci

MATEMATIKA EKONOMI Pertemuan 7 Elastisitas, Biaya Produksi dan Penerimaan, Maksimum dan Minimum Suatu Fungsi I Komang Adi Aswantara UT Korea Fall 2013

MATEMATIKA EKONOMI Pertemuan 7 Elastisitas, Biaya Produksi dan Penerimaan, Maksimum dan Minimum Suatu Fungsi I Komang Adi Aswantara UT Korea Fall 2013 MATEMATIKA EKONOMI Pertemuan 7 Elastisitas, Biaya Produksi dan Penerimaan, Maksimum dan Minimum Suatu Fungsi I Komang Adi Aswantara UT Korea Fall 2013 Elastisitas Elastisitas merupakan ukuran kepekaan

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

SATUAN ACARA PERKULIAHAN PROGRAM STUDI ILMU KOMUNIKASI

SATUAN ACARA PERKULIAHAN PROGRAM STUDI ILMU KOMUNIKASI Kode Mata : IT 081308 Media : Kertas Kerja, Infocus, Mata : Matematika 2 Perangkat Siaran Jumlah SKS : 3 Evaluasi : Kehadiran, Penilaian terhadap tugas/praktek Proses Belajar Mengajar : Dosen : Menjelaskan,

Lebih terperinci

Nilai Ekstrim. (Extreme Values)

Nilai Ekstrim. (Extreme Values) TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika terdapat suatu hasil pengukuran seperti pada Gambar 1, dimana pengukuran

Lebih terperinci

BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang

BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA Analisis komponen utama adalah metode statistika multivariat yang bertujuan untuk mereduksi dimensi data dengan membentuk kombinasi linear

Lebih terperinci

Metode Simpleks Minimum

Metode Simpleks Minimum Metode Simpleks Minimum Perhatian Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya BERBEDA. Perhatian Model matematika dari

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Konvek Definisi 2.1.1. Suatu himpunan C di R n dikatakan konvek jika untuk setiap x, y C dan setiap bilangan real α, 0 < α < 1, titik αx + (1 - α)y C atau garis penghubung

Lebih terperinci

Matematika Dasar NILAI EKSTRIM

Matematika Dasar NILAI EKSTRIM NILAI EKSTRIM Misal diberikan kurva f( ) dan titik ( a,b ) merupakan titik puncak ( titik maksimum atau minimum ). Maka garis singgung kurva di titik ( a,b ) akan sejajar sumbu X atau [ ] mempunyai gradien

Lebih terperinci

Prosiding Matematika ISSN:

Prosiding Matematika ISSN: Prosiding Matematika ISSN: 2460-6464 Optimisasi Fungsi Nonlinier Dua Variabel Bebas dengan Satu Kendala Pertidaksamaan Menggunakan Syarat Kuhn-Tucker Optimization of Nonlinear Function of Two Independent

Lebih terperinci

MATEMATIKA II. Turunan dan Aplikasinya. Rudi Prihandoko. March 9, 2017 ver 0.6

MATEMATIKA II. Turunan dan Aplikasinya. Rudi Prihandoko. March 9, 2017 ver 0.6 MATEMATIKA II Turunan dan Aplikasinya Rudi Prihandoko March 9, 2017 ver 0.6 KUIS I KUIS Misalkan ABCDE adalah NIM Anda. Misalkan pula f(x) = (Ax2 + Bx + C) 2 Ax 2 + Dx + E adalah suatu fungsi rasional.

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

PENERAPAN EKONOMI FUNGSI NON LINIER

PENERAPAN EKONOMI FUNGSI NON LINIER PENERAPAN EKONOMI FUNGSI NON LINIER Pertemuan 3 LOGO Farah Alfanur Fungsi Penerimaan Fungsi Biaya Fungsi Penawaran Fungsi Permintaan 2 PERMINTAAN, PENAWARAN DAN KESEIMBANGAN PASAR Permintaan dan penawaran

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

CATATAN KULIAH #8 Optimasi Dengan Kendala Persamaan dan Aplikasinya. Sumber: Alpha C. Chiang, Fundamental Methods of Mathematical Economics, Ch.

CATATAN KULIAH #8 Optimasi Dengan Kendala Persamaan dan Aplikasinya. Sumber: Alpha C. Chiang, Fundamental Methods of Mathematical Economics, Ch. CATATAN KUIAH #8 Optimasi Denan Kendala Persamaan dan Aplikasinya Sumber: Alpha C. Chian, Fundamental Methods of Mathematical Economics, Ch.1 6.1 Pendahuluan Sejauh ini, proses optimasi dilakukan tanpa

Lebih terperinci

Model Optimisasi dan Pemrograman Linear

Model Optimisasi dan Pemrograman Linear Modul Model Optimisasi dan Pemrograman Linear Prof. Dr. Djati Kerami Dra. Denny Riama Silaban, M.Kom. S PENDAHULUAN ebelum membuat rancangan penyelesaian masalah dalam bentuk riset operasional, kita harus

Lebih terperinci

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B Soal nomor 1, dengan soal sebagai berikut: Jawab : D Pernyataan majemuk pada soal ini adalah suatu disjungsi. Misalkan p: Petani panen beras. q: Harga beras murah., pernyataan di atas dapat dinotasikan

Lebih terperinci