BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya.

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya."

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan hasil utama berikutnya. 2.1 Pemrograman Nonlinier Menurut Bradley et al (1977), persoalan umum optimisasi adalah memilih n variabel keputusan x 1,x 2,..., x n dari daerah layak yang diberikan untuk mengoptimasi (maksimum atau minimum) fungsi tujuan yang diberikan f(x 1,x 2,..., x n ) dari variabel keputusan.persoalan ini disebut persoalan nonlinier jika fungsi tujuannya nonlinier dan atau daerah layaknya ditentukan oleh kendala nonlinier. Fokus utama dari pemrograman nonlinier adalah terkait dengan eksistensi dari solusi optimal, karakterisasi dari solusi optimal dan algoritma untuk menghitung solusi optimal.persoalan nonlinier mempunyai 2 jenis persoalan yaitu persoalan nonlinier berkendala dan nonlinier tidak berkendala.pada persoalan nonlinier programming berkendala yang memiliki fungsi mulus dengan kata lain dapat diturunkan secara kontinu, yaitu minf(x),x R n (2.1) c i (x) =0,i=1,..., m e (2.2) c i (x) 0,i= m e +1,..., m (2.3) x l x x u (2.4) 5

2 6 Disini, x adalah parameter vektor berdimensi n, disebut juga vektor variabel rancangan, f adalah fungsi objektif atau fungsi harga untuk meminimisasi persamaan nonlinier. Diasumsikan bahwa fungsi nya dapat diturunkan secara kontinu dalam R n. Supaya lebih lengkap lagi maka diasumsikan bahwa batas atas dan batas bawah x u dan x l tidak bisa diberlakukan secara terpisah dengan kata lain bahwa batas-batas tersebut dikategorikan sebagai bentuk umum pertidaksamaan kendala-kendala. Sehingga diperoleh bentuk persoalan umum nonlinier programming. Walaupun software untuk optimisasi dapat digunakan dalam black box, sangat diperlukan untuk memahami sedikitnya ide dasar dari analisa persoalan ini. Salah satu alasannya adalah bahwa ada banyak kondisi dimana kita dapat menghindari algoritma dari sebuah solusi pendekatan melalui langkah yang benar. Menurut Zillober dan Schittkowski (2002) untuk alasan inilah, maka dasardasar dari teori optimisasi perlu dipahami sebelum menampilkan algoritma-algoritma pada langkah awal. Pertama, kita perlu memahami beberapa notasi untuk turunan pertama dan kedua dari fungsi yang terdiferensiasi. Gradien fungsi f(x)adalah f(x) = ( ) T f(x),..., f(x) (2.5) x 1 x n Selanjutnya dari turunan parsial diatas dibentuk sebuah matriks Hessian dari fungsi f(x) yaitu 2 f(x) = ( 2 f(x) ) (2.6) x i x i,j=1,...,n j

3 7 Matriks Jacobian dari fungsi vektor value F (x) =(f 1 (x),..., f l (x)) T adalah f(x) = ( ) f j (x) x i i=1,...,n j=1,...,l Dapat juga ditulis dalam bentuk F (x) = ( (f 1 (x),..., f l (x) ) (2.7) Hal yang paling mendasar untuk memperoleh kondisi optimal dan algoritma optimasi dinamakan fungsi Lagrange, yaitu L(x, µ) :=f(x) m λ i c i (x) (2.8) i=1 Didefinisikan untuk semua x R n dan u =(u 1,..., u m ) T R m. Tujuan dari L(x, u) adalah menghubungkan fungsi objektif f(x) dengan kendala c i (x),i = 1,..., m. Variabel λ i disebut pengali Lagrangian dari persoalan nonlinier. Selanjutnya, P sebagai daerah layak,yaitu himpunan semua daerah layak. P := {x R n : c i (x) =0,i=1,..., m e,c i (x) 0,i= m e +1,..., m} (2.9) Pertidaksamaan kendala aktif yang mengacu pada nilai x P ditunjukkan dalam bentuk I(x) :={i : c i (x) =0,m e <i m 2.2 Optimisasi Nonlinier dengan kendala pertidaksamaan Menurut Forsgren et al (2002) Bentuk umum persoalan nonlinier dengan pertidaksamaan berkendala adalah min x R nf(x) kendala c i (x) 0 (2.10) dengan c(x) adalah m-buah vektor dari fungsi {c i (x)},i =1,..., m dan diasumsikan f dan {c i } kontinu dan dapat diturunkan dua kali. Gradien fungsi f dinotasikan f(x) atau g(x) dan 2 f(x) dinotasikan sebagai matriks Hessian dari

4 8 turunan kedua f. Gradien dan Hessian yaitu c i (x) dan 2 c i (x). Matriks Jacobian m x n yaitu c (x) dari c(x) memiliki barisan { c i (x) T } Syarat kondisi optimal untuk optimisasi nonlinier berkendala adalah sebagai berikut : Kondisi Karush Kuhn Tucker (KKT) Kondisi KKT adalah kondisi yang diperlukan bagi penyelesaian permasalahan optimasi nonlinier. Jaminan akan diperoleh solusi optimal jika kondisi KKT terpenuhi. Menurut Forsgren et al(2002) ada beberapa definisi untuk menyatakan suatu kondisi KKT, antara lain Definisi 1 (Operator sebagai komponen pengali) Diberikan dua buah vektor x dan y dari r - dimensi, x y adalah sebuah r - vektor dimana komponen ke - i adalah x i y i. Definisi 2 (Daerah layak) Diberikan kendala c(x) 0,maka daerah layaknya adalah F {x R n : c(x) 0} Definisi 3 (first order titik KKT) First-Order dari kondisi KKT untuk persoalan pertidaksamaan berkendala diperoleh dari (2.11) dipenuhi pada titik x atau setara dengan, x adalah kondisi first order KKT, jika terdapat sebuah m-vektor λ maka disebut vektor pengali Lagrange,sedemikian sehingga c(x ) 0(kelayakan) (2.11) g(x )=J(x ) T λ (stasioner) (2.12)

5 9 λ 0(P engaliyangnonnegatif) (2.13) c(x ) λ =0(kelengkapan) (2.14) Definisi 4 (kendala aktif, tidak aktif dan terlarang) Himpunan kendala-kendala c(x) 0,kendala ke - i dikatakan kendala aktif pada titik x jika c i ( x) =0dan tidak aktif jika c i ( x) > 0. Himpunan kendala aktifa( x)adalah himpunan yang mengindikasi kendala-kendala aktif pada x, yakni A( x) ={i : c i ( x) =0}; argumen A akan dihilangkan jika sudah terlihat jelas. Kendala c i (x) 0 dikatakan terlarang pada x jika c i (x) < 0. Untuk memenuhi kondisi kelengkapan c(x ) λ = 0 (2.15),komponen λ digabungkan dengan kendala tidak aktif akan sama dengan nol yang berarti gradien dari f pada titik KKT x harus merupakan kombinasi linier dari gradien kendala aktif yaitu g(x )=J A (x ) T λ A, (2.15) dimana J A menyatakan kendala aktif dari Jacobian dan λ A vektkor pengali untuk kendala yang aktif. Definisi 5 (Pengali Lagrange yang diterima) Diberikan titik KKT x dari (2.11), maka himpunan pengali yang diterima didefinisikan sebagai M λ (x ) {λ R m : g(x )=J(x ) T λ, λ 0, dan c(x ) λ =0} (2.16) Dalam hal ini syarat kelengkapan c(x ) λ = 0 membuat nilai λ i menjadi nol jika kendala ke i merupakan kendala tidak aktif tetapi sangat mungkin bahwa λ i = 0 pada saat kendala ke i aktif. Syarat-syarat strict complementary terjadi saat semua pengali kendala aktif bernilai positif.

6 10 Definisi 6 (strict complementary) strict complementary dipenuhi pada titik KKT x jika terdapat λ M λ sedemikian sehingga λ i > 0 untuk semua i A(x ) Konveksitas dan Kualifikasi kendala Menurut Forsgren et al (2002) untuk persoalan dengan kendala linier, kondisi first order KKT adalah penting untuk kondisi optimal, tetapi ciri ini tidak dapat di aplikasikan pada persoalan dengan kendala nonlinier. Untuk spesifikasi kondisi penting first order pada kendala yang nonlinier dibutuhkan bahwa kendalakendala tersebut harus memenuhi kualifikasi pada titik (x ), jika hal ini tidak dipenuhi maka kemungkinan x tidak memenuhi titik KKT. Definisi 7 (Kualifikasi kendala bebas linier) Misalkan sebuah persoalan pertidaksamaan kendala dengan kendala c(x) 0. Kualifikasi kendala bebas linier dipenuhi pada titik layak x jika x strictly feasible(berarti tidak ada kendala aktif) atau jika Jacobian dari kendala aktif pada x memiliki full row rank, yaitu jika gradien dari kendala aktif adalah bebas linier. Definisi 8 (Kualifikasi kendala Mangasarian-Fromovitz) Misalkan sebuah persoalan dengna pertidaksamaan kendala c(x) 0. Kualifikasi kendala Mangasarian Fromovitz dipenuhi pada titik x jika x srtictly feasible atau jika terdapat sebuah vektor p sedemikian sehingga c i ( x) T p > 0 untuk semua i A( x) yaitu jika J A ( x) p > 0 Kondisi kualifikasi kendala Mangasarian-Fromovitz ternyata lebih lemah dibandingkan dengan kualifikasi kendala bebas linier. Kualifikasi kendala Mangasarian- Fromovitz dipenuhi pada titik x jika x strictly feasible atau jika terdapat sebuah

7 11 vektor p sedemikian sehingga c i ( x) T p>0 untuk semua i A( x) dengan kata lain jika J A ( x)p > Metode Titik Interior Zillober dan Schittkowski (2002) mengatakan pengembangan dari program linier salah satunya adalah variasi dari bentuk metode barrier modern yang diturunkan sehingga disebut dengan metode titik interior. Berdasarkan kondisi tersebut, himpunan fungsi minima barrier tak berkendala membentuk kurva mulus x(µ) untuk µ (0; )pada persoalan optimisasi konveks, yang disebut central path. Sebuah arah pencarian d k pada iterasi x k dihitung dengan eksplorasi linier sepanjang garis singgung central path. Untuk mendukung hal ini, abaikan persamaan kendala untuk masalah yang sederhana, dan memperkenalkan variabel slack untuk pertidaksamaan tanpa batas dengan kata lain, diproses dari sebuah perluasan persoalan min f(x), x R n,y R m g(x) y =0 y 0 dimana g(x) =(g 1 (x),..., g m (x)) T menunjukkan hubungan kondisi Karush Kuhn Tucker terhadap fungsi Lagrange. L(x, y, u, v)=f(x) (g(x) y) T u v T y (2.17) dengan f(x) g(x)u =0, g(x) y =0, y 0, v 0,

8 12 v j y j =0,j =1,..., m dimana u =(u 1,..., u m ) T adalah vektor-vektor pengali.tetapi, aplikasi metode Newton dalam penyelesaiannya pada persoalan nonlinier secara langsung sangat dihalangi oleh kondisi pada saat v j y j =0, yang menyatakan bahwa slack variabel haruslah bernilai 0. Oleh karena itu, dengan mengganti kondisi tersebut menjadi bentuk v j y j = µ, dengan parameter µ sebagai parameter positif yang sesuai dan kemudian mengalikan ketiga persamaan dengan (-1). Dengan mengasumsikan strict feasibility dari v dan y, yakni v>0 dan y>0, maka diperoleh persamaan f(x) g(x)u =0, (2.18) y g(x) =0, v j y j = µ, j =1,..., m Pada kondisi yang lain,dapat diperoleh persamaan yang sama mewakili sebuah solusi optimal, jika dimasukkan titik stasioner pada fungsi logaritma barrier yaitu L(x,y,v,r)=f(x) (g(x) y) T v 1 r m logy j (2.19) j=1 Andaikan x k dan y k merupakan iterasi saat ini, y k =(y k 1,..., y k m) > 0 sebagai variabel slack iterasi saat ini juga, v k =(v1 k,..., vk m ) > 0 sebagai estimasi pengali dan {µk} himpunan barisan parameter positif yang mendekati nilai 0.Oleh karena itu digunakan Metode Newton kedalam persamaan (2.19), ketiga persamaan diatas ditulis dalam bentuk µ k v1y k m k = 0 menghasilkan 2 xl(x k,v k ) g(x k ) = d = a k (2.20) g(x k ) T V k 1Y k p b k Dalam hal ini L(x k,v k ) mengacu pada fungsi Lagrangian dari persoalan asli NLP. V k dan Y k adalah matriks diagonal yang mengandung koefisien v k dan y k dan

9 13 persamaan sebelah kanan didefinisikan sebagai a k := ( f(x k ) g(x k )v k ) (2.21) dan b k := (µ k V 1 c g(x k )),c R m (2.22) adalah sebuah vektor yang mengandung nilai satu pada masing-masing komponen. Jika d k dan p k menotasikan solusi dari sistem linier, iterasi baru diperoleh yakni x k+1 = x k + d k,v k+1 = v k + p k (2.23) Hubungan variabel slack dihitung dari y k+1 = V 1 k (Y k p k µ k c) dengan mengasumsikan bahwa 2 x L 1 ada, maka dapat direduksi menjadi ( g(x k ) T 2 xl 1 (x k,v k ) g(x k )+V 1 k Y k )p = g(x k ) T 2 xl 1 (x k,v k )a k b k (2.24) Asumsi variabel slack y k dan variabel dual v k harus tetap positif selama iterasi,hal ini dijalankan melalui strategi line search. Manfaat utama adalah, bahwa kelayakan variabel awal x k tidak dibutuhkan. Beberapa koefisien konvergen ke nol, jika hubungan masing-masing kendala menjadi aktif. Parameter Barrier µ k di update setelah melakukan masing-masing langkah, tidak hanya setelah siklus minimisasi tak berkendala lengkap sebagai metode penalty.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Zaman yang semakin berkembang membuat persoalan semakin kompleks, tidak terkecuali persoalan yang melibatkan persoalan matematika. Dalam pemecahannya, matematika memegang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier

Lebih terperinci

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika BAB 2 PROGRAM LINIER DAN TAK LINIER 2.1 Program Linier Program linier (Linear programming) adalah suatu masalah matematika yang mempunyai fungsi objektif dan kendala berbentuk linier untuk meminimalkan

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn

Lebih terperinci

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemrograman Non Linier Pemrograman Non linier merupakan pemrograman dengan fungsi tujuannya saja atau bersama dengan fungsi kendala berbentuk non linier yaitu pangkat dari variabelnya

Lebih terperinci

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John... (Caturiyati) SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com

Lebih terperinci

METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) PADA OPTIMASI NONLINIER BERKENDALA SKRIPSI

METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) PADA OPTIMASI NONLINIER BERKENDALA SKRIPSI METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) PADA OPTIMASI NONLINIER BERKENDALA SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Program Strata Satu (S1) pada Program Studi Matematika

Lebih terperinci

BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut:

BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: BAB 2 KAJIAN PUSTAKA 2.1 Masalah Optimisasi dan Program Non Linier Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: 1. Masalah optimisasi tanpa kendala.

Lebih terperinci

BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear

BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear BAB III PEMBAHASAN Pada bab ini akan dijelaskan tentang konsep dasar metode kuadrat terkecil yang digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear dan langkah-langkah penyelesaiannya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI

KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI Jurnal LOG!K@ Jilid 7 No 1 2017 Hal 52-60 ISSN 1978 8568 KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI Khoerunisa dan Muhaza

Lebih terperinci

Teori Dualitas dan Penerapannya (Duality Theory and Its Application)

Teori Dualitas dan Penerapannya (Duality Theory and Its Application) Teori Dualitas dan Penerapannya (Duality Theory and Its Application) Kuliah 6 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Teori dualitas 2 Metode simpleks dual TI2231 Penelitian Operasional I 2

Lebih terperinci

III RELAKSASI LAGRANGE

III RELAKSASI LAGRANGE III RELAKSASI LAGRANGE Relaksasi Lagrange merupakan salah satu metode yang terus dikembangkan dalam aplikasi pemrograman matematik. Sebagian besar konsep teoretis dari banyak aplikasi menggunakan metode

Lebih terperinci

BAB 2 KAJIAN PUSTAKA

BAB 2 KAJIAN PUSTAKA BAB 2 KAJIAN PUSTAKA 2.1 Program Linier Penyelesaian program linear dengan algoritma interior point dapat merupakan sebuah penyelesaian persoalan yang kompleks. Permasalahan dalam program linier mungkin

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemrograman Non linier Pemrograman non linier adalah suatu bentuk pemrograman yang berhubungan dengan suatu perencanaan aktivitas tertentu yang dapat diformulasikan dalam model

Lebih terperinci

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI METODE TITIK-INTERIOR PADA PEMROGRAMAN KUADRATIK KONVEKS Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh: Fenny Basuki NIM: 831143 PROGRAM

Lebih terperinci

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com 2 himmawatipl@yahoo.com Abstrak

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa pengertian dari optimasi bersyarat dengan kendala persamaan menggunakan multiplier lagrange serta penerapannya yang akan digunakan sebagai landasan

Lebih terperinci

BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic

BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic BAB II KAJIAN TEORI Kajian teori pada bab ini membahas tentang pengertian dan penjelasan yang berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic programming dan algoritma genetika.

Lebih terperinci

BAB IV PEMBAHASAN. optimasi biaya produksi pada home industry susu kedelai Pak Ahmadi

BAB IV PEMBAHASAN. optimasi biaya produksi pada home industry susu kedelai Pak Ahmadi BAB IV PEMBAHASAN Pada bab ini akan dipaparkan tentang penerapan model nonlinear untuk optimasi biaya produksi pada home industry susu kedelai Pak Ahmadi menggunakan pendekatan pengali lagrange dan pemrograman

Lebih terperinci

Prosiding Matematika ISSN:

Prosiding Matematika ISSN: Prosiding Matematika ISSN: 2460-6464 Optimisasi Fungsi Nonlinier Dua Variabel Bebas dengan Satu Kendala Pertidaksamaan Menggunakan Syarat Kuhn-Tucker Optimization of Nonlinear Function of Two Independent

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci

OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI

OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua

Lebih terperinci

DUALITAS. Obyektif 1. Memahami penyelesaian permasalahan dual 2. Mengerti Interpretasi Ekonomi permasalahan dual

DUALITAS. Obyektif 1. Memahami penyelesaian permasalahan dual 2. Mengerti Interpretasi Ekonomi permasalahan dual DUALITAS 3 Obyektif 1. Memahami penyelesaian permasalahan dual 2. Mengerti Interpretasi Ekonomi permasalahan dual Istilah dualitas menunjuk pada kenyataan bahwa setiap Program Linier terdiri atas dua bentuk

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Pengoptimalan merupakan ilmu Matematika terapan dan bertujuan untuk mencapai suatu titik optimum. Dalam kehidupan sehari-hari, baik disadari maupun tidak, sebenarnya

Lebih terperinci

Metode Simpleks (Simplex Method) Materi Bahasan

Metode Simpleks (Simplex Method) Materi Bahasan Metode Simpleks (Simplex Method) Kuliah 03 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Rumusan Pemrograman linier dalam bentuk baku 2 Pemecahan sistem persamaan linier 3 Prinsip-prinsip metode simpleks

Lebih terperinci

OPTIMASI PEMROGRAMAN KUADRATIK KONVEKS DENGAN MENGGUNAKAN METODE PRIMAL-DUAL PATH-FOLLOWING

OPTIMASI PEMROGRAMAN KUADRATIK KONVEKS DENGAN MENGGUNAKAN METODE PRIMAL-DUAL PATH-FOLLOWING OPIMASI PEMROGRAMAN KUADRAIK KONVEKS DENGAN MENGGUNAKAN MEODE PRIMAL-DUAL PAH-FOLLOWING Raras yasnurita ), Wiwik Anggraeni ), Rully Soelaiman 3) ) Jurusan Sistem Informasi 3) Jurusan eknik Informatika

Lebih terperinci

OPTIMASI (Pemrograman Non Linear)

OPTIMASI (Pemrograman Non Linear) OPTIMASI (Pemrograman Non Linear) 3 SKS PILIHAN Arrival Rince Putri, 013 1 Silabus I. Pendahuluan 1. Perkuliahan: Silabus, Referensi, Penilaian. Pengantar Optimasi 3. Riview Differential Calculus II. Dasar-Dasar

Lebih terperinci

BAB II KAJIAN PUSTAKA. Berikut diberikan landasan teori mengenai Teori Portofolio, Turunan

BAB II KAJIAN PUSTAKA. Berikut diberikan landasan teori mengenai Teori Portofolio, Turunan BAB II KAJIAN PUSTAKA Berikut diberikan landasan teori mengenai Teori Portofolio, Turunan Parsial, Supremum dan Infimum, Himpunan Konveks, Program Nonlinear, Matriks Definit Positif dan Definit Negatif,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Program Stokastik Keputusan adalah suatu kesimpulan dari suatu proses untuk memilih tindakan yang terbaik dari sejumlah alternatif yang ada, sedangkan pengambilan keputusan adalah

Lebih terperinci

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA

Lebih terperinci

OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR

OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR 40 Jurnal Matematika Vol 6 No 2 Tahun 2017 OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR OPTIMIZATION OF FOOD CROPS IN MAGELANG WITH QUADRATIC

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Tidak semua permasalahan matematis atau perhitungan dapat diselesaikan dengan mudah. Bahkan dalam prinsip matematik, dalam memandang permasalahan, terlebih dahulu

Lebih terperinci

Bab 1 PENDAHULUAN. 1.1 Latar Belakang

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Bab 1 PENDAHULUAN 1.1 Latar Belakang Teori himpunan fuzzy banyak diterapkan dalam berbagai disiplin ilmu seperti teori kontrol dan manajemen sains, pemodelan matematika dan berbagai aplikasi dalam bidang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Derivatif memegang peranan penting dalam syarat optimalitas fungsi, yaitu untuk mencapai ekstrim, derivatif order satu fungsi tersebut harus bernilai nol.

Lebih terperinci

OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE. Dwi Suraningsih (M ), Marifatun (M ), Nisa Karunia (M )

OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE. Dwi Suraningsih (M ), Marifatun (M ), Nisa Karunia (M ) OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE Dwi Suraningsih (M2, Marifatun (M53, Nisa Karunia (M6 I. Pendahuluan Latar Belakang. Dalam kehidupan sehari-hari disa maupun tidak, sebenarnya manusia

Lebih terperinci

a. untuk (n+1) genap: terjadi ekstrem, dan jika (ii) f (x ) > 0, maka f(x) mencapai minimum di titik x.

a. untuk (n+1) genap: terjadi ekstrem, dan jika (ii) f (x ) > 0, maka f(x) mencapai minimum di titik x. Lecture I: Introduction A. Masalah Optimisasi Dalam kehidupan sehari-hari, manusia cenderung untuk berprinsip ekonomi, yaitu dengan sumber daya terbatas dapat memperoleh hasil sebanyak-banyaknya. Banyak

Lebih terperinci

SVM untuk Regresi Ordinal

SVM untuk Regresi Ordinal MMA10991 Topik Khusus - Machine Learning Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439, Fax. +62-21-7863439,

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Optimasi (Optimization) adalah aktivitas untuk mendapatkan hasil terbaik di dalam suatu keadaan yang diberikan. Tujuan akhir dari semua aktivitas tersebut adalah meminimumkan

Lebih terperinci

BAB III TURUNAN DALAM RUANG DIMENSI-n

BAB III TURUNAN DALAM RUANG DIMENSI-n BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi

Lebih terperinci

PERANAN FUNGSI OBJEKTIF LINIER DALAM METODE BARRIER

PERANAN FUNGSI OBJEKTIF LINIER DALAM METODE BARRIER PERANAN FUNGSI OBJEKTIF LINIER DALAM METODE BARRIER TESIS Oleh DAME IFA SIHOMBING 117021023/MT FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MAGISTER MATEMATIKA UNIVERSITAS SUMATERA UTARA

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN Pada bab ini, akan dijelaskan metode-metode yang penulis gunakan dalam penelitian ini. Adapun metode yang akan digunakan dalam penelitian ini adalah Metode Simpleks dan Metode Branch

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI

OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Dr. Ir. Bib Paruhum Silalahi, M.Kom

Dr. Ir. Bib Paruhum Silalahi, M.Kom Metode Descent Oleh : Andaikan fungsi tujuan kita adalah minf(x);x R n. Secara umum f(x) dapat berupa fungsi nonlinear. Metode-metode descent adalah metode iteratif untuk memperoleh solusi pendekatan dari

Lebih terperinci

METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) UNTUK MENYELESAIKAN PERSOALAN NONLINEAR BERKENDALA SKRIPSI YANI

METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) UNTUK MENYELESAIKAN PERSOALAN NONLINEAR BERKENDALA SKRIPSI YANI METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) UNTUK MENYELESAIKAN PERSOALAN NONLINEAR BERKENDALA SKRIPSI YANI 070803040 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA

Lebih terperinci

BAB II KAJIAN TEORI. Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program

BAB II KAJIAN TEORI. Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program BAB II KAJIAN TEORI Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program linear, metode simpleks, dan program linear fuzzy untuk membahas penyelesaian masalah menggunakan metode fuzzy

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Salah satu observasi yang berguna dalam bidang komputasi di tahun 1970 adalah observasi terhadap permasalahan relaksasi Lagrange. Josep Louis Lagrange merupakan tokoh ahli

Lebih terperinci

METODE BIG M. Metode Simpleks, oleh Hotniar Siringoringo, 1

METODE BIG M. Metode Simpleks, oleh Hotniar Siringoringo, 1 METODE BIG M Sering kita menemukan bahwa fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tapi juga oleh pertidakasamaan dan/atau persamaan (=). Fungsi kendala dengan pertidaksamaan mempunyai surplus

Lebih terperinci

CONTOH SOLUSI UTS ANUM

CONTOH SOLUSI UTS ANUM CONTOH SOLUSI UTS ANUM 0 Propagasi eror adalah kejadian di mana eror dari operan suatu komputasi sederhana memberikan eror yang lebih besar pada hasil komputasi tersebut. Misalnya, eror awal suatu representasi

Lebih terperinci

PENCARIAN SOLUSI PEMROGRAMAN NON LINIER MENGGUNAKAN ALGORITMA BRANCH-AND-BOUND

PENCARIAN SOLUSI PEMROGRAMAN NON LINIER MENGGUNAKAN ALGORITMA BRANCH-AND-BOUND Seminar Nasional Aplikasi Teknologi Informasi 009 (SNATI 009) Yogyakarta, 0 Juni 009 ISSN:1907-50 PENCARIAN SOLUSI PEMROGRAMAN NON LINIER MENGGUNAKAN ALGORITMA BRANCH-AND-BOUND Victor Hariadi Jurusan Teknik

Lebih terperinci

Bab 2 TINJAUAN PUSTAKA

Bab 2 TINJAUAN PUSTAKA Bab 2 TINJAUAN PUSTAKA 2.1 Masalah Transportasi Masalah transportasi pertama kali digunakan pada awal perang dunia kedua untuk menentukan bagaimana mengirimkan pasukan yang terletak disuatu tempat latihan

Lebih terperinci

OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR SKRIPSI

OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR SKRIPSI OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

Algoritma Simpleks Dan Analisis Kepekaan

Algoritma Simpleks Dan Analisis Kepekaan Modul 1 Algoritma Simpleks Dan Analisis Kepekaan Prof. Bambang Soedijono P PENDAHULUAN ada Modul 1 ini dibahas metode penyelesaian suatu masalah program linear. Pada umumnya masalah program linear mengkaitkan

Lebih terperinci

PEMROGRAMAN LINIER. Metode Simpleks

PEMROGRAMAN LINIER. Metode Simpleks PEMROGRAMAN LINIER Metode Simpleks Metode Simpleks Metode simpleks digunakan untuk memecahkan permasalahan PL dengan dua atau lebih variabel keputusan. Prosedur Metode Simpleks: Kasus Maksimisasi a. Formulasi

Lebih terperinci

BAB III EXTENDED KALMAN FILTER DISKRIT. Extended Kalman Filter adalah perluasan dari Kalman Filter. Extended

BAB III EXTENDED KALMAN FILTER DISKRIT. Extended Kalman Filter adalah perluasan dari Kalman Filter. Extended 26 BAB III EXTENDED KALMAN FILTER DISKRIT 3.1 Pendahuluan Extended Kalman Filter adalah perluasan dari Kalman Filter. Extended Kalman Filter merupakan algoritma yang digunakan untuk mengestimasi variabel

Lebih terperinci

Metode Simpleks M U H L I S T A H I R

Metode Simpleks M U H L I S T A H I R Metode Simpleks M U H L I S T A H I R PENDAHULUAN Metode Simpleks adalah metode penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan

Lebih terperinci

SVM untuk Regresi. Machine Learning

SVM untuk Regresi. Machine Learning MMA10991 Topik Khusus - Machine Learning Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439, Fax. +62-21-7863439,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, sebenarnya orang selalu melakukan optimasi untuk memenuhi kebutuhannya. Tetapi optimasi yang dilakukan masyarakat

Lebih terperinci

OPTIMALISASI PENJUALAN KAIN ENDEK DENGAN METODE KARUSH-KUHN-TUCKER (KKT)

OPTIMALISASI PENJUALAN KAIN ENDEK DENGAN METODE KARUSH-KUHN-TUCKER (KKT) OPTIMALISASI PENJUALAN KAIN ENDEK DENGAN METODE KARUSH-KUHN-TUCKER (KKT) I Gede Aris Janova Putra 1, Ni Made Asih 2, I Nyoman Widana 3 1 Jurusan Matematika, FMIPA Universitas Udayana [Email: igajputra@gmail.com]

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

METODE STEEPEST DESCENT

METODE STEEPEST DESCENT METODE STEEPEST DESCENT DENGAN UKURAN LANGKAH BARU UNTUK PENGOPTIMUMAN NIRKENDALA D. WUNGGULI 1, B. P. SILALAHI 2, S. GURITMAN 3 Abstrak Metode steepest descent adalah metode gradien sederhana untuk pengoptimuman.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini akan diuraikan mengenai metode-metode ilmiah dari teori-teori yang digunakan dalam penyelesaian persoalan untuk menentukan model program linier dalam produksi.. 2.1 Teori

Lebih terperinci

Pemrograman Linier (3)

Pemrograman Linier (3) Pemrograman Linier () Metode Big-M Ahmad Sabri Universitas Gunadarma, Indonesia Pada model PL di mana semua kendala memiliki relasi, variabel basis pada solusi awal (tabel simpleks awal) adalah Z dan semua

Lebih terperinci

BUKU RANCANGAN PEMBELAJARAN

BUKU RANCANGAN PEMBELAJARAN BUKU RANCANGAN PEMBELAJARAN MATEMATIKA EKONOMI DAN BISNIS Oleh ARIS YUNANTO Program Studi Ilmu Ekonomi Departemen Ilmu Ekonomi UNIVERSITAS INDONESIA 2010 1 DAFTAR ISI PENGANTAR... 3 BAB I INFORMASI UMUM...

Lebih terperinci

BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS

BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS A. Metode Simpleks Metode simpleks yang sudah kita pelajari, menunjukkan bahwa setiap perpindahan tabel baru selalu membawa semua elemen yang terdapat dalam

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, optimasi selalu dilakukan untuk memenuhi kebutuhan. Tetapi optimasi yang dilakukan masyarakat awam lebih banyak

Lebih terperinci

Metode Numerik Newton

Metode Numerik Newton 1. March 1, 2016 1. 1. 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut. 1. Berbeda dengan Metode

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah dalam menentukan rantaian terpendek diantara pasangan node (titik) tertentu dalam suatu graph telah banyak menarik perhatian. Persoalan dirumuskan sebagai kasus

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Konvek Definisi 2.1.1. Suatu himpunan C di R n dikatakan konvek jika untuk setiap x, y C dan setiap bilangan real α, 0 < α < 1, titik αx + (1 - α)y C atau garis penghubung

Lebih terperinci

BAB II KAJIAN TEORI. Pada bab ini akan dibahas mengenai beberapa definisi dan teori yang akan

BAB II KAJIAN TEORI. Pada bab ini akan dibahas mengenai beberapa definisi dan teori yang akan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai beberapa definisi dan teori yang akan digunakan pada pembahasan berdasarkan literatur yang relevan. A. Program Linear Model Program Linear (MPL) merupakan

Lebih terperinci

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah

Lebih terperinci

Jurnal Matematika Murni dan Terapan Epsilon Juni 2014 Vol. 8 No. 1 METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR

Jurnal Matematika Murni dan Terapan Epsilon Juni 2014 Vol. 8 No. 1 METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR Jurnal Matematika Murni dan Terapan Epsilon Juni 204 Vol. 8 No. METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR Bayu Prihandono, Meilyna Habibullah, Evi Noviani Program Studi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,.

II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,. II LANDASAN TEORI Pada pembuatan model penjadwalan pertandingan sepak bola babak kualifikasi Piala Dunia FIFA 2014 Zona Amerika Selatan, diperlukan pemahaman beberapa teori yang digunakan di dalam penyelesaiannya,

Lebih terperinci

Teknik Riset Operasi. Oleh : A. AfrinaRamadhani H. Teknik Riset Operasi

Teknik Riset Operasi. Oleh : A. AfrinaRamadhani H. Teknik Riset Operasi Oleh : A. AfrinaRamadhani H. 1 PERTEMUAN 7 2 METODE BIG M Sering kita menemukan bahwa fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tapi juga oleh pertidakasamaan dan/atau persamaan (=). Fungsi

Lebih terperinci

BAB 2 LANDASAN TEORI. Menurut Kamus Besar Bahasa Indonesia Kontemporer, pembelian didefinisikan

BAB 2 LANDASAN TEORI. Menurut Kamus Besar Bahasa Indonesia Kontemporer, pembelian didefinisikan BAB 2 LANDASAN TEORI 2.1 Definisi 2.1.1 Pembelian Menurut Kamus Besar Bahasa Indonesia Kontemporer, pembelian didefinisikan sebagai proses, pembuatan, atau cara membeli. Sedangkan Philip Kotler (2000,

Lebih terperinci

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON Susi Ranangga [M008067], Aeroni Dwijayanti [M008078] Hamdani Citra P. [M0003], Nafi Nur Khasana [M00058]. Pendahuluan Dalam kehidupan sehari-hari

Lebih terperinci

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange Pertemuan Minggu ke-11 1. Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange 1. BIDANG SINGGUNG, HAMPIRAN Tujuan mempelajari: memperoleh persamaan bidang singgung terhadap permukaan z

Lebih terperinci

BAB 2 OPTIMISASI KOMBINATORIAL. Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang

BAB 2 OPTIMISASI KOMBINATORIAL. Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang BAB 2 OPTIMISASI KOMBINATORIAL 2.1 Masalah Model Optimisasi Kombinatorial Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang memenuhi kondisi atau batasan yang disebut kendala dari

Lebih terperinci

METODE NUMERIK ARAH KONJUGASI

METODE NUMERIK ARAH KONJUGASI METODE NUMERIK ARAH KONJUGASI 14 Mei 2016 Diajukan untuk Memenuh Tugas Ujian Akhir Semester Mata kuliah Metode Numerik Dosen Pengampu Bapak Rukmono Budi Utomo,M.Sc Nur Aliyah 1384202043 6A1 Fakultas Keguruan

Lebih terperinci

Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 3 PEMROGRAMAN LINIER METODE SIMPLEKS

Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 3 PEMROGRAMAN LINIER METODE SIMPLEKS Modul 3 PEMROGRAMAN LINIER METODE SIMPLEKS Dalam menggunakan metode simpleks, hal yang perlu diperhatikan adalah mengonversi constraint yang masih dalam bentuk pertidaksamaan menjadi persamaan menggunakan

Lebih terperinci

Masalah maksimisasi dapat ditinjau dari metode minimisasi, karena

Masalah maksimisasi dapat ditinjau dari metode minimisasi, karena Lecture 2: Optimization of Function of One Variable A. Pendahuluan Ide dasar dari masalah optimisasi adalah mengoptimumkan (memaksimumkan/ meminimumkan) suatu besaran skalar yang merupakan harga suatu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Teori Himpunan Fuzzy Pada himpunan tegas (crisp), nilai keanggotaan suatu item x dalam himpunan A, yang sering ditulis dengan memiliki dua kemungkinan, yaitu: 1 Nol (0), yang berarti

Lebih terperinci

Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat

Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat Muhlis Tahir Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat kelayakan tidak pernah dapat terpenuhi. Adakalanya

Lebih terperinci

Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan

Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan mempunyai variabel surplus, tidak ada variabel slack.

Lebih terperinci

BAB IV. METODE SIMPLEKS

BAB IV. METODE SIMPLEKS BAB IV. METODE SIMPLEKS Penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan dengan memeriksa titik ekstrim (ingat kembali solusi

Lebih terperinci

Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi

Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi 42 ISSN 2302-7290 Vol. 2 No. 2, April 2014 Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi Global Convergence of the New Spectral Conjugate

Lebih terperinci

II. LANDASAN TEORI. beberapa konsep dan teori yang berkaitan dengan penduga parameter distribusi GB2

II. LANDASAN TEORI. beberapa konsep dan teori yang berkaitan dengan penduga parameter distribusi GB2 5 II. LANDASAN TEORI Dalam proses penelitian penduga parameter dari suatu distribusi diperlukan beberapa konsep dan teori yang mendukung dari ilmu statistika. Berikut ini akan dijelaskan beberapa konsep

Lebih terperinci

BAB VI. DUALITAS DAN ANALISIS POSTOPTIMAL

BAB VI. DUALITAS DAN ANALISIS POSTOPTIMAL BAB VI. DUALITAS DAN ANALISIS POSTOPTIMAL HUBUNGAN PRIMAL-DUAL Dual adalah permasalahan PL yang diturunkan secara matematik dari primal PL tertentu. Setiap permasalahan primal selalu mempunyai pasangan

Lebih terperinci

OPTIMISASI KONVEKS: Konsep-konsep

OPTIMISASI KONVEKS: Konsep-konsep OPTIMISASI KONVEKS: Konsep-konsep Caturiyati, M.Si 1 dan Himmawati Puji Lestari, M.Si 2 1,2 Jurdik Matematika FMIPA UNY 1 wcaturiyati@yahoo.com 2 himmawatipl@yahoo.com Abstrak Pada masalah optimisasi konveks

Lebih terperinci

Model umum metode simpleks

Model umum metode simpleks Model umum metode simpleks Fungsi Tujuan: Z C X C 2 X 2 C n X n S S 2 S n = NK FungsiPembatas: a X + a 2 X 2 + + a n X n + S + S 2 + + S n = b a 2 X + a 22 X 2 + + a 2n X n + S + S 2 + + S n = b 2 a m

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini akan diberikan pendahuluan sebelum memasuki pembahasan pokok. Pendahuluan ini meliputi latar belakang masalah, rumusan masalah, maksud dan tujuan, tinjauan pustaka, batasan

Lebih terperinci

BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS

BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS BAB VI PROGRAMA LINIER : DUALITAS DAN ANALISIS SENSITIVITAS 6.1 Teori Dualitas Teori dualitas merupakan salah satu konsep programa linier yang penting dan menarik ditinjau dari segi teori dan praktisnya.

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini semakin banyak permasalahan pada kehidupan sehari-hari yang memerlukan pendekatan optimisasi dalam penyelesaiannya. Sebagai contoh, misalkan sebuah perusahaan

Lebih terperinci