MASALAH PROGRAMA LINIER FUZZY DENGAN FUNGSI KEANGGOTAAN LINIER

Ukuran: px
Mulai penontonan dengan halaman:

Download "MASALAH PROGRAMA LINIER FUZZY DENGAN FUNGSI KEANGGOTAAN LINIER"

Transkripsi

1 JRNA TEKNIK INDSTRI VO. 2 NO. JNI 2000: MASAAH PROGRAMA INIER FZZY DENGAN FNGSI KEANGGOTAAN INIER Nyom Sutp Dose Fkults Tekk Jurus Tekk Idustr versts Krste Petr ABSTRAK Asums kepst l-l prmeter dlm pegmbl keputus yg dmodelk deg progrm ler dlm prktek serg sult dpeuh. Ketdkpst yg mucul kdg dkbtk oleh sutu kebk yg tutf d subektf. tuk memechk d megkomods ketdkpst sepert tersebut k ddekt deg teor hmpu fuzzy. Dlm mklh pemodel progrm ler deg teor hmpu fuzzy tersebut k ddskusk deg du ksus msg-msg deg megguk fugs keggot ler ytu trpezod d trgulr. Kt kuc: progrm ler hmpu fuzzy. ABSTRACT I prctce the certess ssumpto for prmeters ler progrmmg re dffcult to pullfled. The ucerttes re sometmes comg from subectve d tutve polces. To solve d ccommodte these problems wll be ppromted by fuzzy set theory. I ths rtcle modelg of ler progrmmg wth fuzzy set wll be dscussed followed by two cses wth membershp fucto re trpezodl d trgulr. Keywords: ler progrmmg fuzzy set.. PENDAHAN Dlm pemodel progrm ler (P) slh stu sums dsr dlh sums kepst ytu setp prmeter dt-dt dlm pemodel P yg terdr dr koefse-koefse fugs tuu kostt-kostt sebelh k d koefsekoefse tekologs dkethu secr pst eberm [3]. Tetp dlm prktek sums rg dpeuh. Sebb kebyk model P drumusk utuk memlh sutu tdk tu keputus d wktu yg k dtg. Jd prmeter-prmeter yg k dpk ddsrk ts sutu predks mege kods ms dtg. Kre ketdkpst tersebut bsy dlkuk ls kepek setelh ddpt peyeles optml. Tuuy dlh utuk megethu prmeter-prmeter yg sestf utuk mecob megestmsy deg lebh bk d kemud memlh sutu pemech yg tetp tu lebh bk utuk l-l yg mugk dmlk oleh prmeterprmeter sestf tersebut. tuk pegmbl keputus dr permslh yg semk kompleks kdg-kdg tgkt ketdkpst yg tmbul terllu kompleks utuk dpt dlkuk ls kepek. Msly dlh ketdkpst yg dsebbk oleh kekurg-els dlm peetu l-l prmeter hl terutm dpegruh oleh fktor subektf d tutf yg dom. Teor hmpu fuzzy yg dkembgk oleh. Zdeh pd pertegh thu 60- telh byk berhsl dlm meg mslh pegmbl keputus dlm 28 Jurus Tekk Idustr Fkults Tekolog Idustr versts Krste Petr

2 MASAAH PROGRAMA INIER FZZY DENGAN FNGSI KEANGGOTAAN INIER (Nyom Sutp) lgkug kbur tu tdk pst kre fktor subektf tupu kre tutf Bellm d Zdeh []. Dlm pegmbl keputus deg model P ketdkpst kre fktor subektf dpt dkomods d dpechk deg teor hmpu fuzzy Klr d Yu [2]. Berkut k dpprk du ksus msg-msg dsert sebuh cotoh dlm pemodel progrm ler deg memsukk kosep teor hmpu fuzzy seluty dsebut model progrm ler fuzzy (PF). Msg-msg ksus megguk fugs keggot ler ytu trpezod d trgulr. 2. TEORI DASAR Berkut ur sgkt tetg kosep fuzzy d opers-opers rtmtk blg fuzzy Klr [2]. Hmpu Fuzzy. Fugs keggot dr hmpu fuzzy u ddefsk sebg u : [0 ]. Blg fuzzy dlh hmpu fuzzy yg orml d koveks yg ddefsk pd [ v w] φ dpt dytk sebg p() () = q() utuk ( v) utuk utuk [v w] (w ) dm p() dlh fugs kotu yg mek mootos dr 0 ke q() fugs kotu yg meuru mootos dr ke 0. Opers Artmtk Blg Fuzzy. Mslk R d =< u v w > b =< m r > dlh blg-blg fuzzy deg v u w d m r dm u v w m d r R. Mk opers peumlh fuzzy ddefsk sebg: ± b =< u v w > ± < m r >=< u ± m v ± w ± r >. Opers perkl deg sklr ddefsk: =< u v w > =< u v w >. rut prsl ddefsk deg: mksmum { b} u m d u v m d u + w m + r 3. PROGRAMA INIER FZZY (PF) Betuk umum PF dpt drumusk sebg Mksmumk z = kedl = = c ( =... m ) ( =... ) ( 2) () Jurus Tekk Idustr Fkults Tekolog Idustr versts Krste Petr 29

3 JRNA TEKNIK INDSTRI VO. 2 NO. JNI 2000: Dm c d semuy dlh blg fuzzy. Opers pembh d perkl dlh opers-opers rtmtk fuzzy deg td d meytk urut blg fuzzy. Secr umum pemech mslh PF dwl deg megkoversk ke P. Hsl khry dlh dlm betuk blg yt yg meggmbrk komprom dr blg blg fuzzy yg dproses d dlmy. Berkut dbhs 2 ksus PF msg-msg deg fugs keggot ler ytu trpezodl d trgulr. Ksus : Mslh PF () deg kedl (2) dm hy kostt sebelh k b blg fuzzy. Dlm ksus utuk sutu vrbel yt t mslk dtetpk secr subektf bhw blg fuzzy b berbetuk trpezodl mk dpt drumusk sebg berkut: b b (t) = b p 0 t b t < t < b t b Seluty utuk setp vrbel keputus [ ] T =... mk dert keggot dr vrbel utuk memeuh kedl ke- dpt drumusk deg = () b = D (4) deg I m D () merupk derh lyk fuzzy. = Hmpu fuzzy dr l-l optml pertm-tm dpt dcr dr bts bwh d bts ts l optml P. Dm bts bwh dr l optml dotsk deg Z ddpt dr pemech P stdr Mksmumk z = c = c = kedl = =... m =... D bts ts dr l optml dotsk deg Z ddpt dr pemech P stdr berkut : Mksmumk z = c = c = (3) (5) 30 Jurus Tekk Idustr Fkults Tekolog Idustr versts Krste Petr

4 MASAAH PROGRAMA INIER FZZY DENGAN FNGSI KEANGGOTAAN INIER (Nyom Sutp) kedl = =... m =... (6) Seluty fuzzy set dr l pecp optml dotsk deg G() merupk fuzzy subset dr R ddefsk sebg : c z G() = z z 0 z c z c z c z Sehgg utuk setp solus lyk tgkt pecp dr fugs obektf ddpt deg memksmumk tgkt pecp G ytu deg megguk vrbel dummy λ mk dr persm (6) d (7) dpt drumusk c z λ tu λ(z z ) c z z z d b p = λ tu λp + = Atu permslh dts dpt dytk sebg mslh P bs ytu: Mksmumk λ (8) Deg kedl : λ(z z ) c z λp + = λ =... m =... Mslh dts sesugguhy sebuh mslh meetuk vrbel keputus R m sedemk hgg I D IG () mecp l mksmum ytu memeuh semu = kedl d tgkt pecp tu tuu deg l mksmum. Cotoh lustrs. Sebuh perush membut 2 produk P d P2. b perut P dlh Rp 4000 d P2 dlh Rp Setp ut P memerluk wktu ker 2 kl lebh byk dr pd P2. Totl wktu ker yg d sekurg-kurgy 500 m perhr d dpt dperpg smp 600 m per hr. Persed mterl sekurgkurgy 400 ut cukup utuk P d P 2 per hr tp berdsrk peglm ms llu bh bku msh bs dtmbh smp deg 500 ut per hr. Mslhy dlh berp ut P d P 2 dpt dproduks per hr utuk memksmumk lb totl? (7) (9) Jurus Tekk Idustr Fkults Tekolog Idustr versts Krste Petr 3

5 JRNA TEKNIK INDSTRI VO. 2 NO. JNI 2000: Solus: Mslk vrbel-vrbel keputusy dlh d 2 msg-msg meytk umlh produk P d P2 yg dproduks perhr. Mk model P y dpt drumusk med: Mksmumk z = kedl deg blg fuzzy b ddefsk secr subektf sebg fugs keggot trpezodl t t b (t) = 400 < t 500 d 00 0 t > 500 b t (t) = 00 0 t < t 600 t > 600 Pertm dlkuk perhtug bts bwh d ts dr fugs tuu Mksmumk z = kedl Solus optml : Z *= Rp.3 ut deg * = 00 d 2 * = 300 Sedgk l bts ts dr fugs tuu dhtug dr memksmumk z = kedl: Solus optml Z = Rp.6 ut deg * = 00 d 2 * = 400. Akhry mslh PF med: Mksmumk λ deg kedl : λ - ( ) λ λ λ 2 Solus optml λ =0.5 *= 00 2 *= 350 sehgg lb totl mksmum Z* = 4000 * * = Rp 450 ut. Ksus 2 : Mslh PF () deg kedl (2) dm kostt-kostt sebelh k b d eleme-eleme dr mtrk koefse dlh blg fuzzy. Asumsk semu blg fuzzy tersebut dlh trgulr yg dpt dytk dlm 3 prmeter berup blg yt ytu l s d r. Sutu blg fuzzy trgulr dlm blg yt l s r dpt dtulsk sebg =< l s r >. Seluty mslh PF () deg kedl (2) deg subektf dtetpk =< sl r > d b =< t u v > sebg blg fuzzy trgulr mk seluty dpt dtulsk med: 32 Jurus Tekk Idustr Fkults Tekolog Idustr versts Krste Petr

6 MASAAH PROGRAMA INIER FZZY DENGAN FNGSI KEANGGOTAAN INIER (Nyom Sutp) Mksmumk z = c (0) kedl = < sl r = > < t u v > =...m =... () Deg megguk opers-opers blg fuzzy mk PF (0) deg kedl () dpt dtulsk kembl med: Mksmumk z = c (2) kedl = = = s (s (s l + r = t ) ) t t u + v =...m =...m =...m =... (3) 4. KESIMPAN DAN DISKSI Sepert yg terlht dr 2 ksus model PF dts model PF deg prmeterprmeter berup blg fuzzy ler dpt dtrsforms ke model P. Perlku terhdp fugs tuu yg dtrsporms ke dlm tgkt pecp dlh smetrs deg perlku terhdp kedl-kedl. Jk dgk kekku yg d pd kedl-kedl dpt drelkss deg megguk blg-blg fuzzy yg sesu. Kelemh dr model PF dtry dlh betuk-betuk dr blg fuzzymsh perlu dpertyk forms yg tept d ber tetg bts bwh d ts dr setp prmeter dlh vtl terhdp kredblts solus yg ddpt. DAFTAR PSTAKA Bellm R.E. d.a. Zdeh970 Decso Mkg Fuzzy Evromet Jourl of Mgemet Scece vol. 7(4) Klr G.J. d B. Yu 995 Fuzzy Sets d Fuzzy ogc Theory d Applctos Pretce-Hll. eberm G.J. d F.S Hller 990 Itroducto to Opertos Reserch. Ffth Ed McGrw-Hll. Jurus Tekk Idustr Fkults Tekolog Idustr versts Krste Petr 33

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI b LNDSN TEORI. Hmpu Fuzzy Tdk semu hmpu yg dump dlm kehdup sehr-hr terdefs secr els, msly hmpu org msk, hmpu org pd, hmpu org tgg, d sebgy. Msly, pd hmpu org tgg, tdk dpt dtetuk secr tegs pkh seseorg dlh

Lebih terperinci

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1) CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :

Lebih terperinci

Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg

Lebih terperinci

BAB VI ANALISIS REGRESI

BAB VI ANALISIS REGRESI BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk

Lebih terperinci

6. Selanjutnya langkah penyelesaian

6. Selanjutnya langkah penyelesaian MENYELESAIKAN SISTEM PERSAMAAN LINEAR FUZZY DALAM BENTUK A y DENGAN MENGURAIKAN y D Mstk, Mshd, Sr Gemwt Mhssw Progrm Std S Mtemtk Dose Jrs Mtemtk Fklts Mtemtk d Ilm Pegeth Alm Uversts R Kmps Bwdy Pekbr

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Ltr Belg Istlh Pemrogrm Geometr (PG) dperel oleh Duff, Peterso, d Zeer pd thu 967 Istlh dmbl dr mslh-mslh geometr g dpt dformuls sebg PG Pemrogrm Geometr dlh sutu tpe mslh optmlss mtemt g

Lebih terperinci

SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT

SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT OLUI DERET PANGKAT TETAP DENGAN FUNGI PEMBANGKIT Aleder A Guw Jurus Mtemt d ttst Fults s d Teolog, Uversts B Nustr Jl. K. H. yhd No. 9, Kemggs/Plmerh, Jrt Brt 8 gug@bus.edu ABTRACT Ths rtcle dscusses bout

Lebih terperinci

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode

Lebih terperinci

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275 DIGRAF ESENTRIS PADA DIGRAF SIEL DIGRAF OMPLIT DAN DIGRAF OMPLIT MULTIPARTIT Reto tur umlsr d Luc Rtsr Jurus Mtemtk FMIPA UNDIP Jl Prof H Soedrto SH Semrg 5075 Abstrct The eccetrc dgrph of dgrph ED ( D)

Lebih terperinci

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.

Lebih terperinci

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut

Lebih terperinci

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut

Lebih terperinci

Bab 4 Penyelesaian Persamaan Linier Simultan

Bab 4 Penyelesaian Persamaan Linier Simultan Bb Peyeles Persm Ler Smult.. Persm Ler Smult Persm ler smult dlh sutu betuk persm-persm yg ser bersm-sm meyjk byk vrbel bebs. Betuk persm ler smult deg m persm d vrbel bebs dpt dtulsk sebg berkut: b b

Lebih terperinci

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker

Lebih terperinci

BAB 1 PENDAHULUAN. perkebunan karet. Karet merupakan Polimer hidrokarbon yang terkandung pada

BAB 1 PENDAHULUAN. perkebunan karet. Karet merupakan Polimer hidrokarbon yang terkandung pada BAB PENDAHULUAN. Ltr Belkg Sektor perkebu merupk sub sektor pert yg mejd slh stu fktor yg dpt medukug kegt perekoom d Idoes. Slh stu sub sektor perkebu yg cukup besr potesy dlm perekoom Idoes dlh perkebu

Lebih terperinci

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA) BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs

Lebih terperinci

HUBUNGAN DERET BERTINGKAT BERDASAR BILANGAN EULERIAN DENGAN OPERATOR BEDA

HUBUNGAN DERET BERTINGKAT BERDASAR BILANGAN EULERIAN DENGAN OPERATOR BEDA HUBUNAN DERET BERTINKAT BERDAAR BILANAN EULERIAN DENAN OPERATOR BEDA Aleder A uw Jurus Mtetk, Fkults s d Tekolog, Uversts B Nustr Jl. K.H. yhd No. 9, Plerh, Jkrt Brt 48 gug@bus.edu ABTRACT Cscde seres

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk

Lebih terperinci

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 30-37

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 30-37 Jurl Mtemtk Mur d Terp Vol. 4 No. Desember : - 7 PENGGUNN BENTUK SMITH UNTUK MENENTUKN BENTUK KNONIK MTRIKS NORML DENGN ENTRI-ENTRI BILNGN KOMPLEKS Thresye Progrm Stud Mtemtk Uversts Lmbug Mgkurt Jl. Jed..

Lebih terperinci

HUBUNGAN DERET BERTINGKAT BERDASARKAN BILANGAN EULERIAN DENGAN OPERATOR BEDA

HUBUNGAN DERET BERTINGKAT BERDASARKAN BILANGAN EULERIAN DENGAN OPERATOR BEDA HUBUNGAN DERET BERTINGKAT BERDAARKAN BILANGAN EULERIAN DENGAN OPERATOR BEDA Aleder A.. Guw Jurus Mtetk d ttstk, Fkults s d Tekolog, Bus Uversty Jl. KH. yhd No. 9, Plerh, Jkrt Brt 48. gug@bus.edu ABTRACT

Lebih terperinci

1 yang akan menghasilkan

1 yang akan menghasilkan Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr

Lebih terperinci

Bab 4 ANALISIS REGRESI dan INTERPOLASI

Bab 4 ANALISIS REGRESI dan INTERPOLASI Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp

Lebih terperinci

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupk pegembg dr ANAVA 1 Jl Jk pd ANAVA 1 l 1 Fktor Jk pd ANAVA l Fktor Model Ler Asums: Model efek Tetp! 1,..., 1,..., Stu fktor g dtelt Av 1 l k k 1,,..., 1,,..., b k 1,,..., Du fktor

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6 home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk

Lebih terperinci

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif Vol. 3 No. 80-85 Ju 007 Bts Nl Ege Mksl D Mtks Tk Negtf A. Kes Jy Abstk Ide ut skps dlh utuk edptk etode dl eetuk bts d l ege ksl d tks tk egtf deg bedsk bts Fobeus. Ytu R d dlh ulh bs tu kolo u d R dlh

Lebih terperinci

PROGRAM LINEAR BILANGAN BULAT DUAL SKRIPSI

PROGRAM LINEAR BILANGAN BULAT DUAL SKRIPSI PROGRA LINEAR BILANGAN BULAT DUAL SKRIPSI Duk Utuk emeuh Slh Stu Syrt emperoleh Gelr Sr Ss (S.S) Progrm Stud temtk Oleh: Berdet Wdsh NI : 7 PROGRA STUDI ATEATIKA JURUSAN ATEATIKA FAKULTAS ATEATIKA DAN

Lebih terperinci

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT Prosdg Semr Nsol Mtemtk d Terpy 06 p-issn : 550-084; e-issn : 550-09 KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT St Muhwh Uversts Jederl Soedrm st_muhwh@yhoo.co.d

Lebih terperinci

Bab 2 Landasan Teori

Bab 2 Landasan Teori Bb 2 Lds Teor 2.1. Ler Progrmmg Model pemrogrm ler tdk mmpu meyelesk ksus-ksus mjeme yg meghedk ssr-ssr tertetu dcp secr smult. Kelemh dlht oleh A. Chres d W.M. Cooper. Merek berdu kemud megembgk model

Lebih terperinci

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY Oleh : Yusup Fkults Ilmu Komputer, Uversts AKI Semrg Astrt The frto of No Homoge Lerty Ajustmet System towr Cholesky Doule

Lebih terperinci

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Desg d coduct expermets volvg sgle. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc wth resdul plots 4. Use multple comprso

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metoe Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metoe Elms Guss Tuju : smult Mempeljr metoe Elms Guss utuk peyeles persm ler Dsr Teor : Metoe Elms Guss merupk metoe

Lebih terperinci

BAB I PENDAHULUAN. Populasi merupakan kumpulan dari individu organisme yang memiliki

BAB I PENDAHULUAN. Populasi merupakan kumpulan dari individu organisme yang memiliki BAB I PENDAHULUAN. Ltr Belkg Populs merupk kumpul dr dvdu orgsme yg memlk sft tumbuh growth, reks respos terhdp lgkugy, d reproduks. Pd dsry, pertumbuh mkhluk hdup pd sutu populs merupk proses yg berlgsug

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TORI. egtr roses Mrkov dt dklsfksk sesu deg sft wktu egmt roses sert stte scey. Wktu egmt roses dt bersft dskrt muu kotu d stte scey bersft dskrt muu kotu bk terbts muu tk terbts.. Dt Defs..

Lebih terperinci

VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA

VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA De Prm Sr Jurus Mtemtk Uersts Neger Pg, Ioes eml: eprmsr@yhoo.com Abstrk. Auts lh rgk pembyr tu peerm lm jumlh tertetu yg lkuk secr berkl p jgk wktu

Lebih terperinci

Model Tak Penuh. Definisi dapat di-uji (testable): nxp

Model Tak Penuh. Definisi dapat di-uji (testable): nxp Model T Peuh Defs dpt d-u (testle): Sutu c c 'c 'c H 'c 'c dpt du l d stu set fugs g dpt - ddug m m ' sehgg H er c ' ' slg es ler tu C c ' c m ' Perht : Kre r X p r p m m r c' (X' X) c X' X c' C(X' X)

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser

Lebih terperinci

x 1 M = x 1 m 1 + x 2 m x n m n = x i

x 1 M = x 1 m 1 + x 2 m x n m n = x i Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl

Lebih terperinci

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

MODUL KULIAH SUDRADJAT

MODUL KULIAH SUDRADJAT MODUL KULIAH SUDRADJAT JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN BANDUNG 8 KATAPENGANTAR Modul kulh dsusu sebg pelegkp buku text kulh tetg Logk Fuzzy, yg

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11) III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg

Lebih terperinci

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga Rset Opers Probblstk Teor Permnn (Gme Theor) Deprtement of Mthemtcs FMIPA UNS Lecture 4: Med Strteg A. Metode Cmpurn (Med Strteg) D dlm permnn d mn permnn tersebut tdk mempun ttk peln, mk pr pemn kn bersndr

Lebih terperinci

( X ) 2 ANALISIS REGRESI

( X ) 2 ANALISIS REGRESI ANALII REGREI A. PENGERTIAN REGREI ecr umum d du mcm huug tr du vrel tu leh, tu etuk huug d keert huug. Utuk megethu etuk huug dguk lss regres. Utuk keert huug dpt dkethu deg lss korels. Alss regres dperguk

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik

Lebih terperinci

Bab 4 ANAKOVA (ANALISIS KOVARIANSI)

Bab 4 ANAKOVA (ANALISIS KOVARIANSI) Bb 4 ANAKOVA (ANALISIS KOVARIANSI) ANAVA vs ANREG ANAVA ANREG megu perbdg vrbel tergtug () dtu dr vrbel bebs () mempredks vrbel tergtug () mellu vrbel bebs () Ksus: Peelt deg vrbel : 1 Prests Mhssw Kemmpu

Lebih terperinci

Bentuk Umum Perluasan Teorema Pythagoras

Bentuk Umum Perluasan Teorema Pythagoras Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem

Lebih terperinci

MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT

MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT Rz Phlev, Arsm Ad, Sgt Sugrto Mhssw Progrm Stud S Mtemtk Dose Jurus Mtemtk Fkults

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BB LNDSN TEORI. lytcl Herrchy Process (HP) lytc Herrchy Process (HP) dlh slh stu metode khusus dr Mult Crter Decso Mkg (MCDM) yg dperkelk oleh Thoms Lore Sty. HP dpt dguk utuk memechk mslh pd stus yg kompleks.

Lebih terperinci

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN Yo Hedri 1* Asmr Krm Musrii 1 Mhsisw Progrm S1 Mtemtik Dose JurusMtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uiversits Riu

Lebih terperinci

RENCANA PELAKSANAAN PERKULIAHAN

RENCANA PELAKSANAAN PERKULIAHAN Lesso Study FMIPA UNY RENCANA PELAKSANAAN PERKULIAHAN MATA KULIAH : ALJABAR LINEAR II SEMESTER : III TOPIK : NILAI EIGEN DAN VEKTOR EIGEN SUB TOPIK : NILAI EIGEN DAN VEKTOR EIGEN WAKTU : X 5 A. Stdr Kompetesi:

Lebih terperinci

ANALISIS KINERJA METODE ZERO SUFFIX DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER

ANALISIS KINERJA METODE ZERO SUFFIX DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER ANALISIS KINERJA METODE ZERO SUFFIX DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER Tof Adtyw, Spt Whyugsh 2 Uversts Neger Mlg E l : tofdtyw@yhoo.co.d ABSTRAK: Slh stu slh dl kehdup sehr hr yg

Lebih terperinci

Penyelesaian Persamaan Linier Simultan

Penyelesaian Persamaan Linier Simultan Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d

Lebih terperinci

Metode Iterasi Gauss Seidell

Metode Iterasi Gauss Seidell Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier

Lebih terperinci

BAB 12 METODE SIMPLEX

BAB 12 METODE SIMPLEX METODE ANAISIS PERENCANAAN Mteri 9 : TP 3 SKS Oleh : Ke Mrti Ksikoe BAB METODE SIMPE Metode Simplex dlh metode pemrogrm liier yg mempuyi peubh (vrible) byk, sehigg dimesiy lebih dri 3. Metode simplex dpt

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Alss Regres Alss regres dlh tekk sttstk yg ergu utuk memerks d memodelk huug dtr vrel-vrel. Peerpy dpt djump secr lus d yk dg sepert tekk, ekoom, mjeme, lmu-lmu olog, lmu-lmu sosl,

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG GEOMETRI EUCLID EG(, p ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG Bmg Irwto d Yu Hdyt Jurus Mtemtk FMIPA UNDIP Jl. Prof. H. Soedrto, S.H, Semrg 5075 Astrt. A Bled Iomplete Blok (BIB) desg

Lebih terperinci

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor Bb 1 Av stu Alss Vrs (Alss Of Vrce / ANOVA) stu fktor Lerg Objectves 1. Desg d coduct expermets volvg sgle d two fctors. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc

Lebih terperinci

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1 FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

PENAKSIRAN PARAMETER MODEL REGRESI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI WIDYA WAHYUNI

PENAKSIRAN PARAMETER MODEL REGRESI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI WIDYA WAHYUNI UNIVERSITAS INDONESIA PENAKSIRAN PARAMETER MODEL REGRESI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI WIDYA WAHYUNI 07066003 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MATEMATIKA DEPOK

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK Pegtr Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. Msly dlm termodmk, model Deye utuk megtug kpsts ps dr ed pdt.

Lebih terperinci

HUKUM SYLVESTER INERSIA

HUKUM SYLVESTER INERSIA Vol 6 No 3 44-56 Desember 3 ISSN : 4-858 HUKUM SYLVESTER INERSIA R Heru Tjhj Jurus Mtemt FMIPA UNDIP Abstr Mtrs represets sutu betu udrt dpt dsj sebg mtrs dgol Eleme pd dgol utm mtrs represets tersebut

Lebih terperinci

PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA

PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR ABSTRAK ANA FARIDA.

Lebih terperinci

Anuitas. Anuitas Akhir

Anuitas. Anuitas Akhir Auts Auts bersl r kt bhs Iggrs uty yg pt efsk sebg rgk pembyr tu peerm tetp lm jumlh tertetu yg lkuk secr berkl p jgk wktu tertetu. Kt uty sly berrt pembyr ul (thu), k tetp serg eg berjly wktu kt uts jug

Lebih terperinci

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A

Lebih terperinci

Optimalisasi Harga Penjualan Perumahan dengan Metode Goal Programming (Studi Kasus: Golden Gindi Residence Kota Bima Nusa Tenggara Barat)

Optimalisasi Harga Penjualan Perumahan dengan Metode Goal Programming (Studi Kasus: Golden Gindi Residence Kota Bima Nusa Tenggara Barat) Jurl Mtemtk Vol. No., Desember 0. ISSN: 69-94 Optmlss Hrg Peul Perumh deg Metode Gol Progrmmg (Stud Ksus: Golde Gd Resdece Kot Bm Nus Teggr Brt) Llk Ik Rhmwt Jurus Mtemtk FMIPA Uversts Udy, Bukt Jmbr-Bl

Lebih terperinci

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1 METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D

Lebih terperinci

PENERAPAN PROGRAM LINEAR BERKENDALA FUZZY UNTUK OPTIMISASI PRODUKSI GERABAH

PENERAPAN PROGRAM LINEAR BERKENDALA FUZZY UNTUK OPTIMISASI PRODUKSI GERABAH Semr Nsol Iormtk 2 semsif 2 ISSN: 979-2328 UPN Veter Yoykrt 22 Me 2 PENERPN PROGRM LINER BERKENDL FUZZY UNTUK OPTIMISSI PRODUKSI GERBH Eko Hr Prmd Prorm Stud Tekk Iormtk Fkults Ss & Tekolo Uv. St Drm Kmpus

Lebih terperinci

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan ) Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of

Lebih terperinci

BAB I KOMBINATORIKA. A. Kaidah Pencacahan Terdapat dua kaidah pencacahan, yaitu kaidah penjumlahan dan kaidah perkaliah.

BAB I KOMBINATORIKA. A. Kaidah Pencacahan Terdapat dua kaidah pencacahan, yaitu kaidah penjumlahan dan kaidah perkaliah. BAB I KOMBINATORIKA Dr. Al Mhmud (Jurus Peddk Mtemtk FMIPA UNY) Combtorcs hs emerged s ew subject stdg t the crossrods betwee pure d plled mthemtcs, the ceter of bustlg ctvty, smmerg pot of ew problems

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN TAK LINIER DENGAN METODE NEWTON-RAPHSON

PENYELESAIAN SISTEM PERSAMAAN TAK LINIER DENGAN METODE NEWTON-RAPHSON PENYELESAIAN SISTEM PERSAMAAN TAK LINIER DENGAN METODE NEWTON-RAPHSON SKRIPSI oleh: KHUTWATUN NASIHA NIM: 4 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI (UIN) MALANG MALANG

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 7 BAB TINJAUAN PUSTAKA. Sstem Perml Cerds Perlku Kosume Sstem Perml Cerds Perlku Kosume dlh sebuh sstem g berfugs utuk merml sub produk p g seber dbutuhk oleh kosume ketk g membel sutu produk berdsrk kods

Lebih terperinci

Bab IV Faktorisasi QR

Bab IV Faktorisasi QR Bb IV Ftorss QR. Pedhulu Ftorss QR dr mtr A beruur m dlh pegur mtr A mejd A Q R dm Q R m m dlh orthogol d R R m segtg ts. Ftorss serg jug dsebut ftorss orthogol (orthogol ftorzto). Ad beberp r yg dgu utu

Lebih terperinci

3SKS-TEKNIK INFORMATIKA-S1

3SKS-TEKNIK INFORMATIKA-S1 SKS-TEKNIK INFORMATIKA-S Momd Sdq PERTEMUAN : 9- INTEGRASI NUMERIK METODE NUMERIK TEKNIK INFORMATIKA S SKS Momd Sdq MATERI PERKUIAHAN SEBEUM-UTS Pegtr Metode Numerk Sstem Blg d Kesl Peyj Blg Bult & Pe

Lebih terperinci

DIKTAT. Mata Kuliah METODE NUMERIK. Oleh: I Ketut Adi Atmika

DIKTAT. Mata Kuliah METODE NUMERIK. Oleh: I Ketut Adi Atmika DIKTAT Mt Kulh METODE NUMERIK Oleh: I Ketut Ad Atmk JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS UDAYANA 6 KATA PENGANTAR Dktt dsusu utuk memudhk mhssw dlm memhm beberp metode umerk utuk meyelesk persm-persm

Lebih terperinci

Metode Fuzzy ASM pada Masalah Transportasi Fuzzy Seimbang

Metode Fuzzy ASM pada Masalah Transportasi Fuzzy Seimbang EMINAR MATEMATIKA AN PENIIKAN MATEMATIKA UNY 7 T - 6 Metode Fuzzy AM pd Mslh Trsports Fuzzy eg olkh eprtee Mtetk Fkults s d Mtetk Uversts poegoro ol_erf@yhooo Astrk Mslh trsports fuzzy erupk geerlss dr

Lebih terperinci

PENGHITUNGAN NILAI RESISTOR PENGGANTI MENGGUNAKAN NILAI EIGEN DAN VEKTOR EIGEN ORTONORMAL DARI MATRIKS LAPLACE AMIN LUKMANUL HAKIM G

PENGHITUNGAN NILAI RESISTOR PENGGANTI MENGGUNAKAN NILAI EIGEN DAN VEKTOR EIGEN ORTONORMAL DARI MATRIKS LAPLACE AMIN LUKMANUL HAKIM G PEGHIUGA ILAI RESISOR PEGGAI MEGGUAKA ILAI EIGE DA VEKOR EIGE OROORMAL DARI MARIKS LAPLACE AMI LUKMAUL HAKIM G544 DEPAREME MAEMAIKA FAKULAS MAEMAIKA DA ILMU PEGEAHUA ALAM ISIU PERAIA OGOR 7 PEGHIUGA ILAI

Lebih terperinci

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal.

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal. BASIS ORTOGONA Bts Bl V rg Ecldes S V dsebt Hmp Ortogol bl tp d sr S ortogol DAI J S hmp ortogol yg terdr dr K bh etor t ol dlm rg Ecldes V m S bebs ler V hssy bl dmes V S bss t V dsebt Bss ortogol DAI

Lebih terperinci

BAB 1 PENDAHULUAN. Gambar 1.1. Kurva y=sinc(x)

BAB 1 PENDAHULUAN. Gambar 1.1. Kurva y=sinc(x) BAB PENDAHULUAN.. Megp Megguk Metode Numerk Tdk semu permslh mtemts tu perhtug dpt dselesk deg mudh. Bhk dlm prsp mtemtk, dlm memdg permslh g terlebh dhulu dperhtk pkh permslh tersebut mempu peeles tu

Lebih terperinci

BAB I SISTEM PERSAMAAN LINEAR

BAB I SISTEM PERSAMAAN LINEAR BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik

Lebih terperinci

PENDAHULUAN. 3). Pembatas linear (linear constraints) Fitriani Agustina Jurusan Pendidikan Matematika UPI

PENDAHULUAN. 3). Pembatas linear (linear constraints) Fitriani Agustina Jurusan Pendidikan Matematika UPI PENDAHULUAN A. Pegerti Umum Pegerti progrm lier yg diteremhk dri Lier Progrmmig (LP) dlh sutu cr utuk meyelesik persol pegloksi sumber-sumber yg terbts di tr beberp ktivits yg bersig, deg cr yg terbik

Lebih terperinci

BAB IV METODA ANALISIS RANGKAIAN

BAB IV METODA ANALISIS RANGKAIAN 6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn

Lebih terperinci

ESTIMASI DAN RELIABILITAS PADA DISTRIBUSI WEIBULL DENGAN METODE BAYES

ESTIMASI DAN RELIABILITAS PADA DISTRIBUSI WEIBULL DENGAN METODE BAYES LEMMA VOL I NO., NOV 24 ESTIMASI DAN RELIABILITAS PADA DISTRIBUSI WEIBULL DENGAN METODE BAYES Adev Mur Adel Progrm Stud Peddk Mtemtk, Uversts Mhutr Muhmmd Ym, Solok devmur@gml.com Abstrk. Peelt bertuju

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm

Lebih terperinci

HUKUM SYLVESTER INERSIA

HUKUM SYLVESTER INERSIA Vol 6 No 3 44-56 Desember 3 ISSN : 4-858 HUKUM SYLVESTER INERSIA R Heru Tjhj Jurus Mtemt FMIPA UNDIP Abstr Mtrs represets sutu betu udrt dpt dsj sebg mtrs dgol Eleme pd dgol utm mtrs represets tersebut

Lebih terperinci

Unit 1 KONSEP DASAR ARITMETIKA. Josef Tjahjo Baskoro Clara Ika Sari Budhayanti. Pendahuluan

Unit 1 KONSEP DASAR ARITMETIKA. Josef Tjahjo Baskoro Clara Ika Sari Budhayanti. Pendahuluan Ut KONSEP DASAR ARITMETIKA Josef Tjhjo Bskoro Clr Ik Sr Bdhyt Pedhl M ter yg k Ad peljr pertm kl pd mt klh pemech mslh mtemtk dlh kosep dsr rtmetk. Kompetes dsr yg hrs dks setelh mempeljr t dlh Ad mmp

Lebih terperinci

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug

Lebih terperinci

Tekun dan Teliti adalah Kunci Keberhasilan Anda PEMROGRAMAN LINEAR

Tekun dan Teliti adalah Kunci Keberhasilan Anda PEMROGRAMAN LINEAR Teku d Telt dlh Kuc Keberhsl Ad PEMROGRAMAN LINEAR Pdg bg Rset Opers berkut: TSP MP Trss Trsp Network PD PL PNL P Progr Ler (PL) erupk bg dr rset opers (RO) g erupk kupul etode peeles slh-slh t secr tets.

Lebih terperinci

PENENTUAN MODEL REGRESI TERPOTONG ATAS DENGAN METODE MAKSIMUM LIKEHOOD. Dydaestury Jalarno 1,Dwi Ispriyanti 2. Alumni Jurusan Matematika FMIPA UNDIP

PENENTUAN MODEL REGRESI TERPOTONG ATAS DENGAN METODE MAKSIMUM LIKEHOOD. Dydaestury Jalarno 1,Dwi Ispriyanti 2. Alumni Jurusan Matematika FMIPA UNDIP PENENTUAN MODEL REGRESI TERPOTONG ATAS DENGAN METODE MAKSIMUM LIKEHOOD Dydesury Jlro,Dw Ispry Alum Jurus Memk FMIPA UNDIP S Progrm Sud Ssk FMIPA UNDIP Absrk Model regres erpoog s merupk suu model regres

Lebih terperinci

DEFINISI INTEGRAL. ' untuk

DEFINISI INTEGRAL. ' untuk DEINISI INTEGRAL Dlm mtemtk d eerp stl sepert des, teorem, lemm Istl petg kre meujuk keeksstes Des dl peryt yg erl er kre dsepkt, d tdk perlu duktk Teorem dl peryt yg dpt duktk keery Lemm dl teorem kecl,

Lebih terperinci

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f

Lebih terperinci

Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg

Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg Estimsi Koefisie Fugsi Regulr- Dri kels Fugsi Alitik Bieberbch-Eilemberg Oleh Edg Chy M.A Jurus Mtemtik FPMIPA UPI Abstrk Tulis ii mejelsk tetg estimsi koefisie fugsi regulr- yg dideretk, sebgi fugsi yg

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci