ESTIMASI DAN RELIABILITAS PADA DISTRIBUSI WEIBULL DENGAN METODE BAYES

Ukuran: px
Mulai penontonan dengan halaman:

Download "ESTIMASI DAN RELIABILITAS PADA DISTRIBUSI WEIBULL DENGAN METODE BAYES"

Transkripsi

1 LEMMA VOL I NO., NOV 24 ESTIMASI DAN RELIABILITAS PADA DISTRIBUSI WEIBULL DENGAN METODE BAYES Adev Mur Adel Progrm Stud Peddk Mtemtk, Uversts Mhutr Muhmmd Ym, Solok devmur@gml.com Abstrk. Peelt bertuju utuk meetuk estms d relblts deg metode Byes. Metode yg dguk dlh deg meglss teor yg relev deg mslh berdsrk stud ltertur. Hsl dr eelt dlh betuk dr rmeter estms utuk, d estms relblts d dstrbus Webull deg metode Byes utuk sstem deg wktu keggl X, X2,,X deg dstrbus osteror f(,)=/ dlh = ( x ) ( x ), = + ( x ) ( x ), R(t) = ( + t ) ( x ) Kt kuc: rmeter estms, relblts, dstrbus Webull, metode Byes. A. PENDAHULUAN Persg dlm bdg dustr semkest st, membut r roduse berush meujukk kults roduk hsl dustry. Sehgg sewktu rosuse memsrk roduky, hk kosume meggk bhw hk roduse dber forms mege dy throduk tersebut. Utuk megukur dy th d kedl dr sutu roduk hsl dustry, erluk sutu uj ytu uj hdu. Au tuju uj hdu meurut Soejoet (995:) dlh ) megdetfks model sttsk yg sesu bg dstrbus th hdu tu roses keggl, ytu sutu roses yg megkbtk tdk berfugsy ut deg wjr, 2) megestms rmeter-rmeter yg tdk dkethu dr model dtrbus dt d t jug dlkuk sutu uj hotess, 3) meghtug bts kofdes relblts dr komoe th hdu. Utuk megestms l dr sutu rmeter meurut Romeu (23:) membedky ts du, ytu metode klsk d metode Byes. Pd metode klsk rmeter meruk besr yg tet, sedgkd metode Byes rmeter dg sebg eubh ck d memuy sutu dstrbus yg dsebut dstrbus ror yg t mejelsk sutu dstrbus bersyrt eubh ck kotu yg dsebut dstrbus osteror. PRODI PEND. MATEMATIKA STKIP PGRI SUMBAR

2 LEMMA VOL I NO., NOV 24 Sel utuk megestms sutu rmtr, tuju uj hdu dlh utuk megethu relblts sutu sstem. Relblts sutu system ddefsk sebg elug bhw sstem k bekerj lg sedkt utuk sutu erode wktu tertetu t kerusk. Jk ssumsk sstem memlk dstrbus th hdu mk estms relblts t dlkuk mellu fugs dstrbusy. Utuk megestms Relblts meurut Romeu (23:5) metode Byes lebh efse dguk kre t meghslk forms yg lebh byk tetg estms rmeter d relbltsy. Oleh kre tu, utuk mecr relblts t dguk slh stu dr model dstrbus, ytu dstrbus Webull, dstrbus Eksoesl, dstrbus Ekstrm d l sebgy. Meurut Dudewcz (998:7) dstrbus Webull serg dguk dlm model dstrbus uj hdu, kre t memodelk lju keggl dlm berbg ked d t meghslk sebuh edekt yg bk utuk hukum elug dr beber eubh ck sert serg sesu dlm berbg bdg, seert bdg dustr, bdg keseht d l sebgy. B. METODE PENELITIAN Metode yg dguk dlm eelt dlh lss teor-teor yg relev deg ermslh yg dbhs berldskd kj keustk, seert teor dstrbus elug, rt d vrs, metode Byes, estms ttk d Relblts. Au lgkh-lgkh kerj yg dlkuk dlh: ) Meetuk betuk dstrbus ror d dstrbus Webull, 2) Meetuk betuk dr dstrbus osteror deg mesubstusk dstrbus ror yg telh dtetukd dstrbus Webull, 3) meetuk betuk estms dr rmeter d d dstrbus Webull deg metode Byes, 4) Meetuk betuk estms Relblts d dstrbus Webull deg metode Byes. C. HASIL DAN PEMBAHASAN Metode Byes Metode Byes t dguk utuk meetuk dstrbus bersyrt eubh ck kotu. Deg metode Byes, dstrbus bersyrt eubh ck kotu yg dsebut dstrbus osteror t dbetuk deg fugs kemugk deg forms yg l yg telh tersed sebelumy (forms wl) yg dytk deg dstrbus ror. PRODI PEND. MATEMATIKA STKIP PGRI SUMBAR 2

3 LEMMA VOL I NO., NOV 24 Asumsk wktu keggl deg X dlh dstrbus Webull degrmeter (,) deg rmeter betuk yg mecrk sutu vrs d dlh rmeter skl yg mecrk rt dr dstrbus Webull deg fugs dt elugy ( Sh. 98:3) Dstrbus ror f(x;, ) = x e x x>, >, > () Jk x, x2,, x dlh l dr eubh ck dr fugs dt elug (f) dstrbus Webull deg g() d h() dsebut deg dstrbus ror. Kre l d bersft o formtf mk dlm meetuk dstrbus betuk dr dstrbus ror g() dguk tur Jeffreys d h() lh dstrbus uform. Jk rmeter tdk dkethu mk dstrbus ror g() I/2() (Robbert, 994:4). Pedekt l dr tur Jeffrey medekt kr kudrt dr forms Fsher. Seljuty utuk meetuk l dr forms Fsher I() d dstrbus Welbull, substusk teorem:i() = E ( (Robert, 994: 3) I() = E (l x ) x 2 = E + x 22 l f(x, ) 2 I() = 4 {Ex2 2E + 2 } Deg Ex 2 = 2 Γ(3) = 2 2, berdsrk teorem Γ() = ( )! (Wlole, 995: 27), mk eroleh: E = Γ() =, sehgg I() = 4 { } = 2 mk dstrbus ror bg deg megguk tur Jeffrey ytu: g() = 2 = (2) Seljuty dtetuk dstrbus ror bg ytu h()) yg lh dr dstrbus Uform, deg fugs dt elugy f(x) = b eroleh: h() = ( Freud, 999:28), sehgg, < < deg hrg kosts, oleh kre tu dmbl =, mk eroleh dstrbus rory h()= (3) Seljuty dstrbus ror g() d h() dsubstusk utuk memeroleh dstrbus osteror bg rmeter d. PRODI PEND. MATEMATIKA STKIP PGRI SUMBAR 3

4 LEMMA VOL I NO., NOV 24 Dstrbus Posteror Jk x,x2,,x dlh l dr eubh ck deg f dstrbus Webull, deg rmeter, mk fugs kemugky berdsrk defs: L(, X) = f(x, x 2,, x, ) 998: 42) L(, X) = ( ) ex ( x ) (Dudewcz, (4) Deg mesubstusk (2), (3), (4) ke ersm: π(, x,, x ) = f(x,,x,) g().h() f(x,,x,) g().h()d Ω (Soejoet, 988:44) π(. X) = mslk π(, X) = ( ) x x ex( ) ( ) x x ex( ) d x = λ, mk Deg K = mslk + λ ex( ) + λ ex( ) d x = m Mk K = λ K = λ Γ() m + λ ex ( (m ) = Γ(), K = + λ ex ( )(5) ) d, ex ( m ) d(m ) m λ ( x,k = ) K (6) Substuskersm (6) ke Persm (5), sehgg eroleh dstrbus osteror bg (,), ytu: π(, X) = λ ( ) Γ() + λ ( x ) (7) Dstrbus Posteror Mrgl Dstrbus Posteror Mrgl bg Berdsrk defs dstrbus Posteror mrgl bg, (Box&To,992:67) PRODI PEND. MATEMATIKA STKIP PGRI SUMBAR 4

5 LEMMA VOL I NO., NOV 24 π( X) = π(, X) π( X) = π(, X) = q λ ( Γ() + ) λ ( x ) π( X) = Γ() + λ ( x ) Jd dstrbus osteror mrgl bg dlh: λ ex ( x ) π( X) = + λ ex ( ) Γ() λ ( x ) (8) Dstrbus Posteror Mrgl bg Berdsrk defs dstrbus Posteror mrgl bg, (Box&To,992:67) π( X) = π(, X) d = λ ex ( Γ() + ) λ ( x ) d π( X) = K λ + ex ( x π( X) = K λ ( ) + ex ( m ) d ) d, mslk = m = K λ (m ) m ex (m )d(m ) Fktor yg d dlm kurug sku d ersm d ts meruk fugs gmm deg (m ) = y, = α, sehgg eroleh: π( X) = K λ Γ() ( x ) deg K = Jd dstrbus osteror mrgl bg dlh: Γ() λ ( x ) π( X) = λ ( x ) λ ( x ) (9) PRODI PEND. MATEMATIKA STKIP PGRI SUMBAR 5

6 LEMMA VOL I NO., NOV 24 Estms bg Prmeter d deg Metode Byes Jk rmeter d dr dstrbus Webull tdk dkethu, mk estms d t dlkuk mellu estms ttk deg metode Byes. Utuk memeroleh betuk estms rmeter d substuskersm (8) d (9) ke defs: = E( X) = π( X) d Ω = E( X) = Ω π( X) d (Sh, 98: 23) Estms bg deg Metode Byes = E( X) = π( X)d = + λ ex ( Γ() λ ( x ) ) d = Γ() λ ( x ) ( λ ex ( x ) d) = K ( λ ex ( x ) d), mslk = m = K λ ( ( ) ex ( m ) d ) = K λ ( (m ) ( ) m ex( m ) d(m )) Fktor yg d dlm kurug sku d ersm d ts meruk fugs gmm deg (m ) = y d bl ( ) = α, mk: eroleh: = K λ ( Γ( ) = Γ( ) Γ() λ ( x ) m ) = K Γ( ) λ ( x λ ( x ), sehgg ). Jd estms bg deg metode Byes: = ( x ) ( x ) () PRODI PEND. MATEMATIKA STKIP PGRI SUMBAR 6

7 LEMMA VOL I NO., NOV 24 Estms bg deg Metode Byes = E( X) = π( X) = ( x ) ( x ) Jd estms bg deg metode Byes dlh: = + ( x ) ( x ) () Relblts Relblts sutu sstem dlh elug bhw sstem k bekerj sesu deg fugsy t kerusk, lg sedkt utuk sutu erode tertetu. Meurut Sh, 98:),Mslk X dlh wktu hdu dr sutu sstem. Relblts sstem d wktu t ddefsk R(t) = P(X t) = F(t), dm F(t) dlh fugs dstrbus dr wktu keggl X. Asumsk dstrbus wktu keggl dlh dstrbus Webull degrmeter d,mk fugs dstrbusy: t F(t) = x ex ( x ) dx = ex ( t ), Relblts d wktu t dlh: R(t) = ( ex ( t )) = ex ( t ) (2) Mslk wktu keggl X=X, X2,, X berdstrbus Webull degrmeter d yg memlk dstrbus ror g(), h(), mk estms Relblts d dstrbus Webull deg metode Byes megguk defs R(t) = E(R(t) X) (Sh, 98: 28) R(t) λ ( = R(t)π(, X)d = ex ( t ) x ) Γ() + λ ( x ) d R(t) = Mslk ( K λ ex ( ( + t ) ) + d x + t ) = w, mk, R(t) = K λ ( ) + ex ( w ) d PRODI PEND. MATEMATIKA STKIP PGRI SUMBAR 7

8 LEMMA VOL I NO., NOV 24 R(t) = K λ (w ) ex( w ) d (w ) w Fktor yg d dlm kurug sku d ersm d ts meruk fugs gmm deg (w ) = Z d bl = α, mk berdsrk teorem jk blg sl mk Γ() = ( )! (Wlole, 995: 27), eroleh: R(t) = K λ Γ() w, Deg K = Γ() λ ( x ), sehgg eroleh: R(t) = Γ() Γ() λ ( x ) λ o ( x +t ) Jd estms Byes utuk relblts dlh: R(t) = λ ( x +t ) o λ ( x ) (3) Dm R(t) dlh setms Byes utk relblts sutu sstem d wktu t, yg dsebut jug tksrelug deg meggukedekt metode Byes d sutu sstem yg jug bekerj sesu deg fugsy t meglm kerusk, lg sedkt d wktu t. D. KESIMPULAN DAN SARAN Berdsrk temueelt dembhs yg telh dlkuk, dlm eelt t dsmulk bhw: Dstrbus ror gbug dr rmeter d d dstrbus Webull t drumusk: f(,)=g() h() = = Betuk estms d d dstrbus Webull, yg erolh mellu eggu dstrbus ror deg metode Byes t dtetuk deg rumus: = ( x ) ( x ) = + ( x ) ( x ) Betuk estms Relblts d dstrbus Webull yg terdr dr system deg wktu keggl X, X2,,X yg dtetuk mellu metode Byes dlh: PRODI PEND. MATEMATIKA STKIP PGRI SUMBAR 8

9 LEMMA VOL I NO., NOV 24 R(t) = ( + t ) ( x ) Au sr yg dberk sehubug degeelt dlh gr eelt berkuty t megembgkeelt utuk model dstrbus ly d megguk metode l utuk meetuk estms ttk d relbltsy tu meglksy d ermslh yt dlm kehdu sehr-hr, seert dustry bol lmu. Relblts (kedl) t dtgktk deg ketet dlm memlh dstrbus rory, kre semk besr dstrbus ror k semk besr ul relbltsy(kedl dr sutu roduk k berth lm). DAFTAR PUSTAKA. Box&To Byes Iferece Sttstcl Alyss. Jho Wley & Sos, Ic, Cd. 2. Dudewcz, E.J. d Mshr, S.N Sttstk Mtemtk Moder. ITB, Bdug. 3. Freud, J.E d Wlole, R.E Mthemtcl Sttstcs. Pretce Hll, New Jersey. 4. Robert, Crst P The Byes Choce. Srger-Verlg New York, Ic, New York. 5. Romeu, J.L.23. Use of Byes Techque or Relblty. Jourl of RAC START, volume, Number 8, htt://rc.loscece.com 6. Sh, S.K d Kle, B.K. 98. Lfe Testg d Relblty Estmto. Wle Ester lmted, New Delh. 7. Wlole, R.E d Myer, Rymod H Ilmu Pelug d Sttstk utuk Isyur d Ilmu. Eds ke-4. ITB, Bdug. 8. Soejoet, Zzw Als Dt Uj Hdu. UGM. Yogykrt. 9. Soejoet, Zzw d Soebr Iferes Byes. Uversts Terbuk, Derteme Peddk d Kebudy. PRODI PEND. MATEMATIKA STKIP PGRI SUMBAR 9

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model

Lebih terperinci

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1) CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :

Lebih terperinci

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut

Lebih terperinci

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut

Lebih terperinci

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA) BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TORI. egtr roses Mrkov dt dklsfksk sesu deg sft wktu egmt roses sert stte scey. Wktu egmt roses dt bersft dskrt muu kotu d stte scey bersft dskrt muu kotu bk terbts muu tk terbts.. Dt Defs..

Lebih terperinci

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker

Lebih terperinci

Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg

Lebih terperinci

Bab 4 ANALISIS REGRESI dan INTERPOLASI

Bab 4 ANALISIS REGRESI dan INTERPOLASI Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk

Lebih terperinci

( X ) 2 ANALISIS REGRESI

( X ) 2 ANALISIS REGRESI ANALII REGREI A. PENGERTIAN REGREI ecr umum d du mcm huug tr du vrel tu leh, tu etuk huug d keert huug. Utuk megethu etuk huug dguk lss regres. Utuk keert huug dpt dkethu deg lss korels. Alss regres dperguk

Lebih terperinci

BAB VI ANALISIS REGRESI

BAB VI ANALISIS REGRESI BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet

Lebih terperinci

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275 DIGRAF ESENTRIS PADA DIGRAF SIEL DIGRAF OMPLIT DAN DIGRAF OMPLIT MULTIPARTIT Reto tur umlsr d Luc Rtsr Jurus Mtemtk FMIPA UNDIP Jl Prof H Soedrto SH Semrg 5075 Abstrct The eccetrc dgrph of dgrph ED ( D)

Lebih terperinci

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte

Lebih terperinci

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Desg d coduct expermets volvg sgle. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc wth resdul plots 4. Use multple comprso

Lebih terperinci

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT Prosdg Semr Nsol Mtemtk d Terpy 06 p-issn : 550-084; e-issn : 550-09 KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT St Muhwh Uversts Jederl Soedrm st_muhwh@yhoo.co.d

Lebih terperinci

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.

Lebih terperinci

TEOREMA ABEL-DINI DAN DUAL KÖTHE-TOEPLITZ PADA DERET GANDA

TEOREMA ABEL-DINI DAN DUAL KÖTHE-TOEPLITZ PADA DERET GANDA Prosdg Semr Nsol Ss d Peddk Ss VIII, Fkults Ss d Mtemtk, UKSW Sltg, 5 Ju 203, Vol 4, No, ISSN:2087 0922 TEOREM BEL-DINI DN DUL KÖTHE-TOEPLITZ PD DERET GND Sumrdoo, Soer DW 2 & Sum 3 PPPPTK Mtemtk, Mhssw

Lebih terperinci

OVERDISPERSI KARENA KESALAHAN SPESIFIKASI MODEL DAN CARA MENGATASINYA

OVERDISPERSI KARENA KESALAHAN SPESIFIKASI MODEL DAN CARA MENGATASINYA Prosdg Semr Nsol Ss d Peddk Ss IX Fkults Ss d Mtemtk UKSW Sltg Ju 04 Vol 5 No. ISSN :087-09 OVERDISPERSI KARENA KESALAHAN SPESIFIKASI MODEL DAN CARA MENGAASINYA mbg Srt Derteme Sttstk FMIPA-IPB Eml: tmbg_srt@yhoo.com

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 30-37

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 30-37 Jurl Mtemtk Mur d Terp Vol. 4 No. Desember : - 7 PENGGUNN BENTUK SMITH UNTUK MENENTUKN BENTUK KNONIK MTRIKS NORML DENGN ENTRI-ENTRI BILNGN KOMPLEKS Thresye Progrm Stud Mtemtk Uversts Lmbug Mgkurt Jl. Jed..

Lebih terperinci

Bab 4 ANAKOVA (ANALISIS KOVARIANSI)

Bab 4 ANAKOVA (ANALISIS KOVARIANSI) Bb 4 ANAKOVA (ANALISIS KOVARIANSI) ANAVA vs ANREG ANAVA ANREG megu perbdg vrbel tergtug () dtu dr vrbel bebs () mempredks vrbel tergtug () mellu vrbel bebs () Ksus: Peelt deg vrbel : 1 Prests Mhssw Kemmpu

Lebih terperinci

BAB 1 PENDAHULUAN. perkebunan karet. Karet merupakan Polimer hidrokarbon yang terkandung pada

BAB 1 PENDAHULUAN. perkebunan karet. Karet merupakan Polimer hidrokarbon yang terkandung pada BAB PENDAHULUAN. Ltr Belkg Sektor perkebu merupk sub sektor pert yg mejd slh stu fktor yg dpt medukug kegt perekoom d Idoes. Slh stu sub sektor perkebu yg cukup besr potesy dlm perekoom Idoes dlh perkebu

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6 home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk

Lebih terperinci

1 yang akan menghasilkan

1 yang akan menghasilkan Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr

Lebih terperinci

VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA

VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA VARIASI PEMBAYARAN ANUITAS DENGAN POLA DERET ARITMATIKA De Prm Sr Jurus Mtemtk Uersts Neger Pg, Ioes eml: eprmsr@yhoo.com Abstrk. Auts lh rgk pembyr tu peerm lm jumlh tertetu yg lkuk secr berkl p jgk wktu

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI b LNDSN TEORI. Hmpu Fuzzy Tdk semu hmpu yg dump dlm kehdup sehr-hr terdefs secr els, msly hmpu org msk, hmpu org pd, hmpu org tgg, d sebgy. Msly, pd hmpu org tgg, tdk dpt dtetuk secr tegs pkh seseorg dlh

Lebih terperinci

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif Vol. 3 No. 80-85 Ju 007 Bts Nl Ege Mksl D Mtks Tk Negtf A. Kes Jy Abstk Ide ut skps dlh utuk edptk etode dl eetuk bts d l ege ksl d tks tk egtf deg bedsk bts Fobeus. Ytu R d dlh ulh bs tu kolo u d R dlh

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupk pegembg dr ANAVA 1 Jl Jk pd ANAVA 1 l 1 Fktor Jk pd ANAVA l Fktor Model Ler Asums: Model efek Tetp! 1,..., 1,..., Stu fktor g dtelt Av 1 l k k 1,,..., 1,,..., b k 1,,..., Du fktor

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser

Lebih terperinci

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor Bb 1 Av stu Alss Vrs (Alss Of Vrce / ANOVA) stu fktor Lerg Objectves 1. Desg d coduct expermets volvg sgle d two fctors. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc

Lebih terperinci

BAB I PENDAHULUAN. Populasi merupakan kumpulan dari individu organisme yang memiliki

BAB I PENDAHULUAN. Populasi merupakan kumpulan dari individu organisme yang memiliki BAB I PENDAHULUAN. Ltr Belkg Populs merupk kumpul dr dvdu orgsme yg memlk sft tumbuh growth, reks respos terhdp lgkugy, d reproduks. Pd dsry, pertumbuh mkhluk hdup pd sutu populs merupk proses yg berlgsug

Lebih terperinci

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl

Lebih terperinci

PENAKSIRAN PARAMETER DISTRIBUSI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI SHAFIRA

PENAKSIRAN PARAMETER DISTRIBUSI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI SHAFIRA UNIVERSITAS INDONESIA PENAKSIRAN PARAMETER DISTRIBUSI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI SHAFIRA 0706695 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MATEMATIKA DEPOK JULI

Lebih terperinci

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

ESTIMASI KOEFISIEN KORELASI POLIKORIK MENGGUNAKAN METODE BAYESIAN DENGAN GIBBS SAMPLER

ESTIMASI KOEFISIEN KORELASI POLIKORIK MENGGUNAKAN METODE BAYESIAN DENGAN GIBBS SAMPLER STIMSI KOFISIN KORLSI OLIKORIK MNGGUNKN MTOD BYSIN DNGN GIBBS SMLR d Setw d_set_03@hoo.com rogrm Stud Mtemtk Fkults Ss d Mtemtk Uversts Krste St Wc Jl Doegoro -60 Sltg 07 Idoes strct I ths er t s descred

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Ltr Belg Istlh Pemrogrm Geometr (PG) dperel oleh Duff, Peterso, d Zeer pd thu 967 Istlh dmbl dr mslh-mslh geometr g dpt dformuls sebg PG Pemrogrm Geometr dlh sutu tpe mslh optmlss mtemt g

Lebih terperinci

PENAKSIRAN PARAMETER MODEL REGRESI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI WIDYA WAHYUNI

PENAKSIRAN PARAMETER MODEL REGRESI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI WIDYA WAHYUNI UNIVERSITAS INDONESIA PENAKSIRAN PARAMETER MODEL REGRESI BINOMIAL NEGATIF PADA KASUS OVERDISPERSI SKRIPSI WIDYA WAHYUNI 07066003 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MATEMATIKA DEPOK

Lebih terperinci

BAB V ANALISIS REGRESI

BAB V ANALISIS REGRESI BAB V ANALISIS REGRESI Setelh mempeljr mhssw dhrpk dpt : Meghtug prmeter regres Melkuk estms d uj prmeter regres 3 Meemuk model regres g tept Dlm kehdup serg dtemuk d sekelompok peuh g dtr terdpt huug,

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0.

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0. KKKF BAHAGAN A 6 MARKAH Arh : Jw SEMUA sol. Kepekt kter pecemr pt, d dlm secw teh trk yg drk selm eerp jm derk oleh: pt = 5e -.5t + 5e -.75t Crk ms, t, dlm ut jm yg dperluk utuk kter jk kepekt yg dkehedk

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bmbg Irwto Jurus Mtemtik FMIPA UNDIP Abstct I this er, it ws lered of the ecessry d sufficiet coditio for

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik

Lebih terperinci

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1 FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri

Lebih terperinci

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan ) Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of

Lebih terperinci

RENCANA PELAKSANAAN PERKULIAHAN

RENCANA PELAKSANAAN PERKULIAHAN Lesso Study FMIPA UNY RENCANA PELAKSANAAN PERKULIAHAN MATA KULIAH : ALJABAR LINEAR II SEMESTER : III TOPIK : NILAI EIGEN DAN VEKTOR EIGEN SUB TOPIK : NILAI EIGEN DAN VEKTOR EIGEN WAKTU : X 5 A. Stdr Kompetesi:

Lebih terperinci

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31 INTEGRAL TERTENTU Defs: Prs P pd ervl [,] dlh suu suse erhgg P = {,,,, } dr [,] deg = < < < < = Jk P = {,,,, } prs pd [,] mk Norm P, duls P, ddefsk seg P = m{ - =,,,, } Cooh: = = Pd ervl [, ], suu prs

Lebih terperinci

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY Oleh : Yusup Fkults Ilmu Komputer, Uversts AKI Semrg Astrt The frto of No Homoge Lerty Ajustmet System towr Cholesky Doule

Lebih terperinci

HUBUNGAN DERET BERTINGKAT BERDASAR BILANGAN EULERIAN DENGAN OPERATOR BEDA

HUBUNGAN DERET BERTINGKAT BERDASAR BILANGAN EULERIAN DENGAN OPERATOR BEDA HUBUNAN DERET BERTINKAT BERDAAR BILANAN EULERIAN DENAN OPERATOR BEDA Aleder A uw Jurus Mtetk, Fkults s d Tekolog, Uversts B Nustr Jl. K.H. yhd No. 9, Plerh, Jkrt Brt 48 gug@bus.edu ABTRACT Cscde seres

Lebih terperinci

Bentuk Umum Perluasan Teorema Pythagoras

Bentuk Umum Perluasan Teorema Pythagoras Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem

Lebih terperinci

MODUL MATA KULIAH ANALISIS NUMERIK OLEH : Rizqi Tresnaningsih, S.Pd, M.Pd PROGRAM STUDI PENDIDIKAN MATEMATIKA

MODUL MATA KULIAH ANALISIS NUMERIK OLEH : Rizqi Tresnaningsih, S.Pd, M.Pd PROGRAM STUDI PENDIDIKAN MATEMATIKA MODUL MATA KULIAH ANALISIS NUMERIK OLEH : Rzq Tresgsh S.Pd M.Pd PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM IKIP PGRI MADIUN Modul Mt Kulh Alss Numerk DAFTAR

Lebih terperinci

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11) III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg

Lebih terperinci

INTEGRAL DELTA DAN SIFAT-SIFATNYA. Delta Integral and Properties of Delta Integral

INTEGRAL DELTA DAN SIFAT-SIFATNYA. Delta Integral and Properties of Delta Integral Jurl Brekeg Vol. 7 No. Hl. 3 8 (03) INTEGRAL DELTA DAN SIFAT-SIFATNYA Delt Itegrl d Propertes of Delt Itegrl MOZART WINSTON TALAKUA, MARLON STIVO NOYA VAN DELSEN Stf Jurus Mtemtk, FMIPA, Uptt Alum Jurus

Lebih terperinci

INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q

INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q INTERPOLASI 3 S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : - SEBELUM-UTS Pegtr Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult & Pech Nili Sigiik Akursi d Presisi

Lebih terperinci

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN TAK LINIER DENGAN METODE NEWTON-RAPHSON

PENYELESAIAN SISTEM PERSAMAAN TAK LINIER DENGAN METODE NEWTON-RAPHSON PENYELESAIAN SISTEM PERSAMAAN TAK LINIER DENGAN METODE NEWTON-RAPHSON SKRIPSI oleh: KHUTWATUN NASIHA NIM: 4 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI (UIN) MALANG MALANG

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 0 BAB III METODOLOGI PENELITIAN 3. 1. Loks d Wktu Peelt 1.1.1 Loks Peelt Peelt dlksk d MA Neger 3 Kot Gorotlo pd ssw kels. ekolh merupk slh stu sekolh meegh ts yg terletk d Jl KH. Dewtoro Kelurh Lmb U1

Lebih terperinci

6. Selanjutnya langkah penyelesaian

6. Selanjutnya langkah penyelesaian MENYELESAIKAN SISTEM PERSAMAAN LINEAR FUZZY DALAM BENTUK A y DENGAN MENGURAIKAN y D Mstk, Mshd, Sr Gemwt Mhssw Progrm Std S Mtemtk Dose Jrs Mtemtk Fklts Mtemtk d Ilm Pegeth Alm Uversts R Kmps Bwdy Pekbr

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

Perbedaan Interpolasi dan Ekstrapolasi

Perbedaan Interpolasi dan Ekstrapolasi Iterolsi Iterolsi Perbed Iterolsi d Ekstrolsi Iterolsi Liier L Iterolsi Kudrt L h h Iterolsi Qubic L h h h Iterolsi dg Poliomil 5 Tble : Si equidisttly sced oits i [- ] y 5 -..846 -.6. -..5..5.6...846

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

HUBUNGAN DERET BERTINGKAT BERDASARKAN BILANGAN EULERIAN DENGAN OPERATOR BEDA

HUBUNGAN DERET BERTINGKAT BERDASARKAN BILANGAN EULERIAN DENGAN OPERATOR BEDA HUBUNGAN DERET BERTINGKAT BERDAARKAN BILANGAN EULERIAN DENGAN OPERATOR BEDA Aleder A.. Guw Jurus Mtetk d ttstk, Fkults s d Tekolog, Bus Uversty Jl. KH. yhd No. 9, Plerh, Jkrt Brt 48. gug@bus.edu ABTRACT

Lebih terperinci

MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT

MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT Rz Phlev, Arsm Ad, Sgt Sugrto Mhssw Progrm Stud S Mtemtk Dose Jurus Mtemtk Fkults

Lebih terperinci

Bab 4 Penyelesaian Persamaan Linier Simultan

Bab 4 Penyelesaian Persamaan Linier Simultan Bb Peyeles Persm Ler Smult.. Persm Ler Smult Persm ler smult dlh sutu betuk persm-persm yg ser bersm-sm meyjk byk vrbel bebs. Betuk persm ler smult deg m persm d vrbel bebs dpt dtulsk sebg berkut: b b

Lebih terperinci

Jl. HR. Soebrantas No. 155 Simpang Baru, Panam, Pekanbaru,

Jl. HR. Soebrantas No. 155 Simpang Baru, Panam, Pekanbaru, Jurl Ss Mtetk d Sttstk, Vol. No. Jul 6 ISSN 6-5 Metode Guss-Sedel d Geerlss Guss-Sedel utuk Meyelesk Sste Pers Ler Kopleks Cotoh Ksus: SPL Kopleks deg pers d vrel tr ry, Le Tr Lestr, Jurus Mtetk, kults

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK Pegtr Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. Msly dlm termodmk, model Deye utuk megtug kpsts ps dr ed pdt.

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA.

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA. PENAKI AIO ANG EFIIEN UNTUK ATA-ATA POPULAI MENGGUNAKAN KOEFIIEN EGEI OUT PADA AMPING ACAK EDEHANA M Okto Mork Arsm Ad Hpos rt moktomoo@hoo.co.d Mhssw Progrm Mtemtk Dose Jurus Mtemtk Fkults Mtemtk d Ilmu

Lebih terperinci

BAB I KOMBINATORIKA. A. Kaidah Pencacahan Terdapat dua kaidah pencacahan, yaitu kaidah penjumlahan dan kaidah perkaliah.

BAB I KOMBINATORIKA. A. Kaidah Pencacahan Terdapat dua kaidah pencacahan, yaitu kaidah penjumlahan dan kaidah perkaliah. BAB I KOMBINATORIKA Dr. Al Mhmud (Jurus Peddk Mtemtk FMIPA UNY) Combtorcs hs emerged s ew subject stdg t the crossrods betwee pure d plled mthemtcs, the ceter of bustlg ctvty, smmerg pot of ew problems

Lebih terperinci

1. Aturan Pangkat 3. Logartima

1. Aturan Pangkat 3. Logartima KL UN Mtetk MA IPA 9/ No. KL Ruus. Meetuk egs pert g dperoleh dr perk kespul.. p q. p q. p q ~ (p q) = ~p ~q ~ (eu/etp p) = Ad/Beerp ~p p. ~q q r ~ (p q) = ~p ~q ~ (Ad/Beerp p) = eu/etp ~p q ~p p r p q

Lebih terperinci

Kajian Metode Estimasi Parameter dalam Regresi Semiparametrik Spline

Kajian Metode Estimasi Parameter dalam Regresi Semiparametrik Spline W. Wowo, S. Hrytm, I N. Budtr, Kj Metode Estms Prmeter... Kj Metode Estms Prmeter dlm egres Semrmetrk Sle Whyu Wowo, Sr Hrytm, I Nyom Budtr whyu.stk@gml.com Jurus Mtemtk, Uversts Gdjh Md Yogykrt Jurus

Lebih terperinci

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(

Lebih terperinci

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN Yo Hedri 1* Asmr Krm Musrii 1 Mhsisw Progrm S1 Mtemtik Dose JurusMtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uiversits Riu

Lebih terperinci

BAB 12 METODE SIMPLEX

BAB 12 METODE SIMPLEX METODE ANAISIS PERENCANAAN Mteri 9 : TP 3 SKS Oleh : Ke Mrti Ksikoe BAB METODE SIMPE Metode Simplex dlh metode pemrogrm liier yg mempuyi peubh (vrible) byk, sehigg dimesiy lebih dri 3. Metode simplex dpt

Lebih terperinci

Model Tak Penuh. Definisi dapat di-uji (testable): nxp

Model Tak Penuh. Definisi dapat di-uji (testable): nxp Model T Peuh Defs dpt d-u (testle): Sutu c c 'c 'c H 'c 'c dpt du l d stu set fugs g dpt - ddug m m ' sehgg H er c ' ' slg es ler tu C c ' c m ' Perht : Kre r X p r p m m r c' (X' X) c X' X c' C(X' X)

Lebih terperinci

Hendra Gunawan. 21 Februari 2014

Hendra Gunawan. 21 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge

Lebih terperinci

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x

Lebih terperinci

Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg

Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg Estimsi Koefisie Fugsi Regulr- Dri kels Fugsi Alitik Bieberbch-Eilemberg Oleh Edg Chy M.A Jurus Mtemtik FPMIPA UPI Abstrk Tulis ii mejelsk tetg estimsi koefisie fugsi regulr- yg dideretk, sebgi fugsi yg

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metoe Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metoe Elms Guss Tuju : smult Mempeljr metoe Elms Guss utuk peyeles persm ler Dsr Teor : Metoe Elms Guss merupk metoe

Lebih terperinci

SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT

SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT OLUI DERET PANGKAT TETAP DENGAN FUNGI PEMBANGKIT Aleder A Guw Jurus Mtemt d ttst Fults s d Teolog, Uversts B Nustr Jl. K. H. yhd No. 9, Kemggs/Plmerh, Jrt Brt 8 gug@bus.edu ABTRACT Ths rtcle dscusses bout

Lebih terperinci

( ) ( p) ( ) ( ) ( ) ( ) ( ) Lemma 2.15 Jika a memiliki order h( mod ) memiliki order ( mod m) m, maka. [Niven, 1991] III.

( ) ( p) ( ) ( ) ( ) ( ) ( ) Lemma 2.15 Jika a memiliki order h( mod ) memiliki order ( mod m) m, maka. [Niven, 1991] III. Le 15 J el order h, h h, el order ( od [Nve, 1991] III PEMBAHASAN Pd bg edhulu telh dsebut bhw tuu dr euls dlh eelr teore-teore yg tert solus resdu udrt d egostrus lgort utu ecr solusy, ereostrus Algort

Lebih terperinci

METODE UNWEIGHTED MEANS UNTUK FAKTORIAL TAK SEIMBANG DISPROPORSIONAL

METODE UNWEIGHTED MEANS UNTUK FAKTORIAL TAK SEIMBANG DISPROPORSIONAL METODE UNWEIGHTED MEANS UNTUK AKTORIAL TAK SEIMBANG DISPROPORSIONAL Trstut Wurydr Jurus Mtemtk MIPA UNDIP Jl Prof H Soedrto, SH, Semrg 5075 Astrct A fctorl desg should e used whe there re severl fctors

Lebih terperinci

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG GEOMETRI EUCLID EG(, p ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG Bmg Irwto d Yu Hdyt Jurus Mtemtk FMIPA UNDIP Jl. Prof. H. Soedrto, S.H, Semrg 5075 Astrt. A Bled Iomplete Blok (BIB) desg

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. mempengaruhi sering disebut variabel bebas, variabel independen atau variabel

BAB 2 TINJAUAN TEORITIS. mempengaruhi sering disebut variabel bebas, variabel independen atau variabel BAB TINJAUAN TEORITIS.. Regres Ler Sederh Regres ler dlh lt sttst yg dpergu utu megethu pegruh tr stu tu beberp vrbel terhdp stu buh vrbel. Vrbel yg mempegruh serg dsebut vrbel bebs, vrbel depede tu vrbel

Lebih terperinci

UNIVERSITAS INDONESIA METODE STAIRCASE UNTUK MENDAPATKAN BENTUK KANONIK JORDAN DENGAN KARAKTERISTIK WEYR SKRIPSI NURRY WIDYA HESTY

UNIVERSITAS INDONESIA METODE STAIRCASE UNTUK MENDAPATKAN BENTUK KANONIK JORDAN DENGAN KARAKTERISTIK WEYR SKRIPSI NURRY WIDYA HESTY UNIVERSITS INDONESI METODE STIRCSE UNTUK MENDPTKN BENTUK KNONIK JORDN DENGN KRKTERISTIK WEYR SKRIPSI NURRY WIDY HESTY 976 Fkults Mtemtk d Ilmu Pegethu lm Progrm Stud Mtemtk Depok Februr Metode strcse...,

Lebih terperinci

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal.

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal. BASIS ORTOGONA Bts Bl V rg Ecldes S V dsebt Hmp Ortogol bl tp d sr S ortogol DAI J S hmp ortogol yg terdr dr K bh etor t ol dlm rg Ecldes V m S bebs ler V hssy bl dmes V S bss t V dsebt Bss ortogol DAI

Lebih terperinci

PENERAPAN PERSAMAAN SCHRODINGER PADA PERMASALAHAN PARTIKEL DALAM KEADAAN TERIKAT (BOUND STATES) UNTUK TIGA DIMENSI

PENERAPAN PERSAMAAN SCHRODINGER PADA PERMASALAHAN PARTIKEL DALAM KEADAAN TERIKAT (BOUND STATES) UNTUK TIGA DIMENSI ENEAAN ESAMAAN SHODINGE ADA EMASAAHAN ATIKE DAAM KEADAAN TEIKAT (BOUND STATES) UNTUK TIGA DIMENSI A. At Hg (Mslh Gy Stl). Hlt Nl Eg ^ H ^ p ^ z. (7.) s Schg yg bt g sst bup hg t tu lh: ^ p ^ z E (7.) tu

Lebih terperinci

Anuitas. Anuitas Akhir

Anuitas. Anuitas Akhir Auts Auts bersl r kt bhs Iggrs uty yg pt efsk sebg rgk pembyr tu peerm tetp lm jumlh tertetu yg lkuk secr berkl p jgk wktu tertetu. Kt uty sly berrt pembyr ul (thu), k tetp serg eg berjly wktu kt uts jug

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BB LNDSN TEORI. lytcl Herrchy Process (HP) lytc Herrchy Process (HP) dlh slh stu metode khusus dr Mult Crter Decso Mkg (MCDM) yg dperkelk oleh Thoms Lore Sty. HP dpt dguk utuk memechk mslh pd stus yg kompleks.

Lebih terperinci

MAKALAH STATISTIK DAN STOKASTIK

MAKALAH STATISTIK DAN STOKASTIK MAKALAH STATISTIK DAN STOKASTIK DISUSUN OLEH : Yop Mrss Shte 6567 ROGRAM STUDI TEKNIK ELEKTRO DEARTEMEN TEKNOLOGI INDUSTRI SEKOLAH VOKASI UNIVERSITAS DIONEGORO SEMARANG 7 KATA ENGANTAR u syukur kehdrt

Lebih terperinci

ESTIMATOR TAK BIAS LINIER TERBAIK PADA MODEL LINIER UNTUK KASUS HOMOSKEDASTIK DAN HETEROSKEDASTIK

ESTIMATOR TAK BIAS LINIER TERBAIK PADA MODEL LINIER UNTUK KASUS HOMOSKEDASTIK DAN HETEROSKEDASTIK ESIAOR AK BIAS INIER ERBAIK PADA ODE INIER UNUK KASUS HOOSKEDASIK DAN HEEROSKEDASIK skrps dsjk sebg slh stu syrt utuk memperoleh gelr Srj Ss Progrm Stud temtk oleh H kwt 45040400 JURUSAN AEAIKA FAKUAS

Lebih terperinci

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ... Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit

Lebih terperinci

x 1 M = x 1 m 1 + x 2 m x n m n = x i

x 1 M = x 1 m 1 + x 2 m x n m n = x i Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOLUSI REDIKSI UJIAN NASIONAL MATEMATIKA IS TAHUN AKET ilih Gd: ilihlh stu jw g plig tept.. Sit: p q p q Jdi, igkr dri pert dlh emerith meghpusk keijk susidi h kr mik tetpi d org g hidup tidk sejhter.

Lebih terperinci

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f

Lebih terperinci

Metode Iterasi Gauss Seidell

Metode Iterasi Gauss Seidell Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier

Lebih terperinci

PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA

PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR ABSTRAK ANA FARIDA.

Lebih terperinci

juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen.

juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen. MATERI: ) Perbed bris d deret b) Defiisi d teorem tetg deret c) Deret suku positif d uji kovergesiy d) Deret hiperhrmois e) Deret ukur f) Deret ltertig d uji kovergesiy g) Deret kus d opersiy h) Deret

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Alss Regres Alss regres dlh tekk sttstk yg ergu utuk memerks d memodelk huug dtr vrel-vrel. Peerpy dpt djump secr lus d yk dg sepert tekk, ekoom, mjeme, lmu-lmu olog, lmu-lmu sosl,

Lebih terperinci