FUNGSI DUA VARIABEL (TURUNAN PARSIAL) Kus Prihantoso Krisnawan. January 2, Yogyakarta. Pertemuan 7. Krisnawan. Fungsi. Diferensial Partial

Ukuran: px
Mulai penontonan dengan halaman:

Download "FUNGSI DUA VARIABEL (TURUNAN PARSIAL) Kus Prihantoso Krisnawan. January 2, Yogyakarta. Pertemuan 7. Krisnawan. Fungsi. Diferensial Partial"

Transkripsi

1 FUNGSI DUA VARIABEL (TURUNAN PARSIAL) Kus Prihantoso January 2, 2012 Yogyakarta

2 2 Variabel fungsi 2 variabel: f (x, y) = x 2 + y 2 f (x, y) = cos x sin y f (x, y) = x 2 y + 3y 3 f (x, y) = x 2 sin(xy 2 )

3 fungsi 2 variabel: 2 Variabel f (x, y) = x 2 + y 2 f (x, y) = cos x sin y f (x, y) = x 2 y + 3y 3 f (x, y) = x 2 sin(xy 2 ) Sebelumnya telah dibicarakan mengenai fungsi satu variabel dan turunannya. Ingat bahwa definisi turunan fungsi f pada titik x = a adalah f (a) = lim x a f (x) f (a) x a (1) jika limitnya ada. Lalu bagaimana dengan fungsi yang mempunyai variabel lebih dari 1?

4 Misalkan f adalah sebuah fungsi dua variabel x dan y. Jika y dianggap konstan (y = y 0 ) maka f (x, y 0 ) adalah fungsi dalam variabel x. Turunan f terhadap x (turunan parsial f terhadap x) didefinisikan f x (x 0, y 0 ) = lim x x0 f (x, y 0 ) f (x 0, y 0 ) x x 0 (2)

5 Misalkan f adalah sebuah fungsi dua variabel x dan y. Jika y dianggap konstan (y = y 0 ) maka f (x, y 0 ) adalah fungsi dalam variabel x. Turunan f terhadap x (turunan parsial f terhadap x) didefinisikan f x (x 0, y 0 ) = lim x x0 f (x, y 0 ) f (x 0, y 0 ) x x 0 (2) Di lain pihak, jika x dianggap konstan maka turunan f terhadap y (turunan parsial f terhadap y) didefinisikan f y (x 0, y 0 ) = lim y y0 f (x 0, y) f (x 0, y 0 ) y y 0 (3)

6 Misalkan f adalah sebuah fungsi dua variabel x dan y. Jika y dianggap konstan (y = y 0 ) maka f (x, y 0 ) adalah fungsi dalam variabel x. Turunan f terhadap x (turunan parsial f terhadap x) didefinisikan f x (x 0, y 0 ) = lim x x0 f (x, y 0 ) f (x 0, y 0 ) x x 0 (2) Di lain pihak, jika x dianggap konstan maka turunan f terhadap y (turunan parsial f terhadap y) didefinisikan f y (x 0, y 0 ) = lim y y0 f (x 0, y) f (x 0, y 0 ) y y 0 (3) Definisi tersebut mirip dengan definisi dari turunan satu variabel, dengan menganggap salah satu variabel sebagai konstanta. Sehingga aturan-aturan dalam turunan satu variabel dapat diterapkan di sini.

7 Berikut ini diberikan notasi alterfnatif untuk turunan parsial, jika z = f (x, y) f x (x, y) = z x = z x f y (x, y) = z y = z y = f (x, y) x = f (x, y) y Lambang (dibaca do) merupakan lambang turunan parsial.

8 Tentukan f x (1, 2) dan f y (1, 2) jika f (x, y) = x 2 y + 3y 3.

9 Tentukan f x (1, 2) dan f y (1, 2) jika f (x, y) = x 2 y + 3y 3. Untuk menentukan f x (x, y), kita harus memandang y sebagai konstanta. Dengan demikian, turunan fungsi f (x, y) terhadap x adalah f x (x, y) = 2xy + 0 sehingga f x (1, 2) = 4.

10 Tentukan f x (1, 2) dan f y (1, 2) jika f (x, y) = x 2 y + 3y 3. Untuk menentukan f x (x, y), kita harus memandang y sebagai konstanta. Dengan demikian, turunan fungsi f (x, y) terhadap x adalah f x (x, y) = 2xy + 0 sehingga f x (1, 2) = 4. Sedangkan turunan fungsi f (x, y) terhadap y adalah f y (x, y) = x 2 + 9y 2 sehingga f y (1, 2) = = 37

11 Jika z = x 2 sin(xy 2 ), tentukan z x dan z y.

12 Jika z = x 2 sin(xy 2 ), tentukan z x dan z y. Turunan fungsi z = x 2 sin(xy 2 ) terhadap x adalah z x = x 2 x sin(xy 2 ) + x 2 sin(xy 2 ) x = 2x sin(xy 2 ) + x 2 y 2 cos(xy 2 )

13 Jika z = x 2 sin(xy 2 ), tentukan z x dan z y. Turunan fungsi z = x 2 sin(xy 2 ) terhadap x adalah z x = x 2 x sin(xy 2 ) + x 2 sin(xy 2 ) x = 2x sin(xy 2 ) + x 2 y 2 cos(xy 2 ) Sedangkan turunan fungsi z = x 2 sin(xy 2 ) terhadap y adalah z y = 2x 3 y cos(xy 2 )

14 Turunan Parsial Turunan parsial kedua dari fungsi f (x, y) adalah f xx = ( ) f (x, y) = 2 f (x, y) x x x 2 f yy = y f xy = (f x ) y = y f yx = (f y ) x = x ( ) f (x, y) = 2 f (x, y) y y 2 ( ) f (x, y) x ( ) f (x, y) y = 2 f (x, y) y x = 2 f (x, y) x y

15 Turunan Parsial Turunan parsial kedua dari fungsi f (x, y) adalah f xx = ( ) f (x, y) = 2 f (x, y) x x x 2 f yy = y f xy = (f x ) y = y f yx = (f y ) x = x ( ) f (x, y) = 2 f (x, y) y y 2 ( ) f (x, y) x ( ) f (x, y) y = 2 f (x, y) y x = 2 f (x, y) x y Sedangkan turunan parsial ketiga dari fungsi f (x, y) adalah f xxx, f xxy, f xyx, f yxx, f xyy, f yxy, f yyx, dan f yyy. Untuk f yxx didefinisikan f yxx = (f y ) xx = ((f y ) x ) x = x ( x ( )) f (x, y) y = 3 f (x, y) x x y

16 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz

17 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz f x (x, y, z) = y + 3z

18 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz f x (x, y, z) = y + 3z f z (x, y, z) = 2y + 3x

19 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz f x (x, y, z) = y + 3z f z (x, y, z) = 2y + 3x f zy (x, y, z) = (f z ) y = (2y + 3x) y = 2

20 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz f x (x, y, z) = y + 3z f z (x, y, z) = 2y + 3x f zy (x, y, z) = (f z ) y = (2y + 3x) y = 2 f xyz (x, y, z) = ((f x ) y ) z = ((y + 3z) y ) z = (1) z = 0

21 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz f x (x, y, z) = y + 3z f z (x, y, z) = 2y + 3x f zy (x, y, z) = (f z ) y = (2y + 3x) y = 2 f xyz (x, y, z) = ((f x ) y ) z = ((y + 3z) y ) z = (1) z = 0 Tentukan T zw, T xw, dan T yyz jika T (w, x, y, z) = ze w 2 +x 2 +y 2

22 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz f x (x, y, z) = y + 3z f z (x, y, z) = 2y + 3x f zy (x, y, z) = (f z ) y = (2y + 3x) y = 2 f xyz (x, y, z) = ((f x ) y ) z = ((y + 3z) y ) z = (1) z = 0 Tentukan T zw, T xw, dan T yyz jika T (w, x, y, z) = ze w 2 +x 2 +y 2 T zw (w, x, y, z) = (T z ) w = (e w 2 +x 2 +y 2 ) w = 2we w 2 +x 2 +y 2

23 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz f x (x, y, z) = y + 3z f z (x, y, z) = 2y + 3x f zy (x, y, z) = (f z ) y = (2y + 3x) y = 2 f xyz (x, y, z) = ((f x ) y ) z = ((y + 3z) y ) z = (1) z = 0 Tentukan T zw, T xw, dan T yyz jika T (w, x, y, z) = ze w 2 +x 2 +y 2 T zw (w, x, y, z) = (T z ) w = (e w 2 +x 2 +y 2 ) w = 2we w 2 +x 2 +y 2 T xw (w, x, y, z) = (2xze w 2 +x 2 +y 2 ) w = 4wxze w 2 +x 2 +y 2

24 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz f x (x, y, z) = y + 3z f z (x, y, z) = 2y + 3x f zy (x, y, z) = (f z ) y = (2y + 3x) y = 2 f xyz (x, y, z) = ((f x ) y ) z = ((y + 3z) y ) z = (1) z = 0 Tentukan T zw, T xw, dan T yyz jika T (w, x, y, z) = ze w 2 +x 2 +y 2 T zw (w, x, y, z) = (T z ) w = (e w 2 +x 2 +y 2 ) w = 2we w 2 +x 2 +y 2 T xw (w, x, y, z) = (2xze w 2 +x 2 +y 2 ) w = 4wxze w 2 +x 2 +y 2 T yyz (w, x, y, z) = ((T y ) y ) z = ((2yze w 2 +x 2 +y 2 ) y ) z

25 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz f x (x, y, z) = y + 3z f z (x, y, z) = 2y + 3x f zy (x, y, z) = (f z ) y = (2y + 3x) y = 2 f xyz (x, y, z) = ((f x ) y ) z = ((y + 3z) y ) z = (1) z = 0 Tentukan T zw, T xw, dan T yyz jika T (w, x, y, z) = ze w 2 +x 2 +y 2 T zw (w, x, y, z) = (T z ) w = (e w 2 +x 2 +y 2 ) w = 2we w 2 +x 2 +y 2 T xw (w, x, y, z) = (2xze w 2 +x 2 +y 2 ) w = 4wxze w 2 +x 2 +y 2 T yyz (w, x, y, z) = ((T y ) y ) z = ((2yze w 2 +x 2 +y 2 ) y ) z = (2ze w 2 +x 2 +y 2 + 4y 2 ze w 2 +x 2 +y 2 ) z

26 Lebih dari 2 Variabel Jika f (x, y, z) = xy + 2yz + 3zx, tentukan f x, f z, f zy dan f xyz f x (x, y, z) = y + 3z f z (x, y, z) = 2y + 3x f zy (x, y, z) = (f z ) y = (2y + 3x) y = 2 f xyz (x, y, z) = ((f x ) y ) z = ((y + 3z) y ) z = (1) z = 0 Tentukan T zw, T xw, dan T yyz jika T (w, x, y, z) = ze w 2 +x 2 +y 2 T zw (w, x, y, z) = (T z ) w = (e w 2 +x 2 +y 2 ) w = 2we w 2 +x 2 +y 2 T xw (w, x, y, z) = (2xze w 2 +x 2 +y 2 ) w = 4wxze w 2 +x 2 +y 2 T yyz (w, x, y, z) = ((T y ) y ) z = ((2yze w 2 +x 2 +y 2 ) y ) z = (2ze w 2 +x 2 +y 2 + 4y 2 ze w 2 +x 2 +y 2 ) z = 2e w 2 +x 2 +y 2 + 4y 2 e w 2 +x 2 +y 2

27 1 Tentukan semua turunan parsial pertama dari fungsi berikut. a f (x, y) = (2x y) 4 b f (x, y) = (4x y 2 ) 3 2 c f (x, y) = e x cos y d f (x, y) = 3 x 2 y 2 e f (s, t) = ln(s 2 t 2 ) f f (w, z) = w sin 1 ( ) w z g f (x, y) = y cos(x 2 + y 2 ) h f (x, y, z) = zy x 2 + y 2 2 Tentukan semua turunan parsial kedua dari soal no 1 diatas.

Turunan dalam Ruang berdimensi n

Turunan dalam Ruang berdimensi n Jurusan Matematika FMIPA Unsyiah October 13, 2011 Andaikan f adalah fungsi dengan peubah x dan y. Jika y dijaga agar tetap konstan, misalkan y = y 0 maka f(x, y 0 ) adalah fungsi dengan peubah tunggal

Lebih terperinci

Aljabar Boolean. Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto. Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom

Aljabar Boolean. Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto. Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom Aljabar Boolean Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom September 2015 Representasi Fungsi Boolean Sistem dan Logika

Lebih terperinci

Logika Matematika. Bab 1: Aljabar Boolean. Andrian Rakhmatsyah Teknik Informatika STT Telkom Lab. Sistem Komputer dan Jaringan

Logika Matematika. Bab 1: Aljabar Boolean. Andrian Rakhmatsyah Teknik Informatika STT Telkom Lab. Sistem Komputer dan Jaringan Logika Matematika Bab 1: Aljabar Boolean Andrian Rakhmatsyah Teknik Informatika STT Telkom Lab. Sistem Komputer dan Jaringan 1 Nilai fungsi Fungsi Boolean dinyatakan nilainya pada setiap variabel yaitu

Lebih terperinci

BAB V SISTEM PERSAMAAN DIFERENSIAL

BAB V SISTEM PERSAMAAN DIFERENSIAL BAB V SISTEM PERSAMAAN DIFERENSIAL Kompetensi Mahasiswa dapat 1. Membangun sistem persamaan diferensial dari beberapa persamaan yang bergantung pada satu variabel bebas yang sama. 2. Menentukan selesaian

Lebih terperinci

6.3 PERMUTATIONS AND COMBINATIONS

6.3 PERMUTATIONS AND COMBINATIONS 6.3 PERMUTATIONS AND COMBINATIONS Pengaturan dengan urutan Sering kali kita perlu menghitung banyaknya cara pengaturan obyek tertentu dengan memperhatikan urutan maupun tanpa memperhatikan urutan. Contoh

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

Pertemuan ke-5 ALJABAR BOOLEAN III

Pertemuan ke-5 ALJABAR BOOLEAN III Pertemuan ke-5 ALJABAR BOOLEAN III Kompetensi Umum Setelah mengikuti perkuliah ini, diharapkan Anda dapat memahami bentuk kanonik dan menuliskan suatu ekspresi aljabar dalam bentuk kanonik. Kompetensi

Lebih terperinci

Kalkulus II. Diferensial dalam ruang berdimensi n

Kalkulus II. Diferensial dalam ruang berdimensi n Kalkulus II Diferensial dalam ruang berdimensi n Minggu ke-9 DIFERENSIAL DALAM RUANG BERDIMENSI-n 1. Fungsi Dua Peubah atau Lebih 2. Diferensial Parsial 3. Limit dan Kekontinuan 1. Fungsi Dua Peubah atau

Lebih terperinci

Sistem dan Logika Digital

Sistem dan Logika Digital Sistem dan Logika Digital Aljabar Boolean Tim SLD KK Telematika FIF Telkom University 1 Aljabar Boolean-Definisi Sistem aljabar dengan dua operasi penjumlahan (+) dan perkalian (.) yang didefinisikan sehingga

Lebih terperinci

BAB I PENGERTIAN DASAR

BAB I PENGERTIAN DASAR BAB I PENGERTIAN DASAR Kompetensi Dasar: Menjelaskan pengertian dan klasifikasi dari persamaan diferensial serta beberapa hal yang terkait. Indikator: a. Menjelaskankan pengertian persamaan diferensial.

Lebih terperinci

0.(0.1)=(0.0).1 0.0=0.1 0=0

0.(0.1)=(0.0).1 0.0=0.1 0=0 Latihan : 1. Diketahui himpunan B dengan tiga buah nilai (0,1,2) dan dua buah operator, + dan. kaidah operasi dengan operator + dan didefinisikan pada tabel di bawah ini : + 0 1 2 0 0 0 0 1 0 1 1 2 0 1

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Gradien dan Gradien Statistika FMIPA Universitas Islam Indonesia dan Gradien Turunan-turunan parsial f x (x, y) dan f y (x, y) mengukur laju perubahan (dan kemiringan garis singgung) pada arah sejajar

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

KUANTOR (Minggu ke-7)

KUANTOR (Minggu ke-7) KUANTOR (Minggu ke-7) 1 4 Pendahuluan 1. Kuantor Universal: Untuk semua x berlaku atau Untuk setiap x berlaku. S P : Himpunan semua bilangan asli. 1. x > 1 merupakan kalimat terbuka 2. Untuk semua x berlakulah

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS.

HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS. 15, 20, 23, 25 HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS. Dst. KESIMPULAN : (hubungkan dengan SIKAP yang harus Anda miliki untuk memilih dan memberikan alasan) PROBLEM

Lebih terperinci

Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya BOLA - definisi Bola adalah lokus sebuah titik yang bergerak sehingga jaraknya

Lebih terperinci

Matematika Teknik Dasar-2 8 Definisi Turunan Parsial dan Pengerjaannya Secara Geometri

Matematika Teknik Dasar-2 8 Definisi Turunan Parsial dan Pengerjaannya Secara Geometri Matematika Teknik Dasar-2 8 Definisi Turunan Parsial dan Pengerjaannya Secara Geometri Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Turunan Parsial Volume V dari sebuah silinder

Lebih terperinci

Dalam setiap sub daerah pilih suatu titik Pk (Xk,Yk ) dan bentuk jumlah

Dalam setiap sub daerah pilih suatu titik Pk (Xk,Yk ) dan bentuk jumlah INTEGRAL LIPAT INTEGRAL LIPAT DUA Pandang suatu fungsi z=f(x,y) yang kontinu pada daerah hingga R dibidang XOY.Misalkan daerah ini dibagi atas n buah sub (bagian) daerah daerah R₁,R₂ Rn masing-masing luasnya

Lebih terperinci

3 BAB III ANALISIS DAN PERANCANGAN SISTEM

3 BAB III ANALISIS DAN PERANCANGAN SISTEM 33 3 BAB III ANALISIS DAN PERANCANGAN SISTEM Pada bab ini akan dijelaskan tentang analisis dan perancangan sistem. Berdasarkan System Development Life Cycle (SDLC) yang digunakan, terdapat empat tahapan,

Lebih terperinci

Logika Matematika Bab 1: Aljabar Boolean. Andrian Rakhmatsyah Teknik Informatika IT Telkom

Logika Matematika Bab 1: Aljabar Boolean. Andrian Rakhmatsyah Teknik Informatika IT Telkom 1 Logika Matematika Bab 1: Aljabar Boolean Andrian Rakhmatsyah Teknik Informatika IT Telkom 2 Referensi Rosen, Kenneth H.,Discrete Mathematic and Its Applications, 4 th edition, McGraw Hill International

Lebih terperinci

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti

Lebih terperinci

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Modul 1 Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Drs. Sardjono, S.U. M PENDAHULUAN odul 1 ini berisi uraian tentang persamaan diferensial, yang mencakup pengertian-pengertian dalam

Lebih terperinci

Kuliah 3: TURUNAN. Indah Yanti

Kuliah 3: TURUNAN. Indah Yanti Kuliah 3: TURUNAN Indah Yanti Turunan Parsial DEFINISI Misalkan fungsi f: A R, dengan A R n adalah himpunan buka. Untuk setiap x = (x 1,..., x n ) A dan setiap j = 1,..., n limit f x j x 1,, x n f x 1,,

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Keterdiferensialan Statistika FMIPA Universitas Islam Indonesia Fungsi y = f (x) terdiferensialkan di titik x 0 jika f (x 0 + h) f (x 0 ) lim = f (x 0 ) h 0 ( h ) f (x0 + h) f (x 0 ) lim f (x 0 ) = 0 h

Lebih terperinci

ALJABAR LINEAR DAN MATRIKS. MODUL 10 Kalkulus Vektor. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2007 年 12 月 30 日 ( 日 )

ALJABAR LINEAR DAN MATRIKS. MODUL 10 Kalkulus Vektor. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2007 年 12 月 30 日 ( 日 ) ALJABAR LINEAR DAN MATRIKS MODUL 10 Kalkulus Vektor Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2007 年 12 月 30 日 ( 日 ) Kalkulus Vektor Kalkulus vektor (vector calculus) atau sering

Lebih terperinci

Faktorisasi Suku Aljabar

Faktorisasi Suku Aljabar Bab 1 Tujuan Pembelajaran Setelah mempelajari bab ini siswa diharapkan mampu: Menjelaskan pengertian koe sien, variabel, konstanta, suku satu, suku dua, dan suku banyak; Menyelesaikan masalah operasi tambah,

Lebih terperinci

SOAL DAN PENYELESAIAN RING

SOAL DAN PENYELESAIAN RING SOAL DAN PENYELESAIAN RING 1. Misalkan P himpunan bilangan bulat kelipatan 3. Tunjukan bahwa dengan operasi penjumlahan dan perkalian pada himpunan bilangan bulat, P membentuk ring komutatif. Jawaban:

Lebih terperinci

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Dalam mekanika bahan, pengertian tegangan tidak sama dengan vektor tegangan. Tegangan merupakan tensor derajat dua, sedangkan vektor, vektor apapun, merupakan tensor

Lebih terperinci

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c

bila limitnya ada. Dengan penggantian x = c+ h, jika x c h 0 dan x c h turunan fungsi f di c dapat dituliskan dalam bentuk: x c Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat c. Turunan pertama dari fungsi f di titik c ditulis f '( c ) didefinisikan sebagai: ( ) ( ) f x f '( c) = lim f c x c x c bila limitnya ada.

Lebih terperinci

9.1. Skalar dan Vektor

9.1. Skalar dan Vektor ANALISIS VEKTOR 9.1. Skalar dan Vektor Skalar Satuan yang ditentukan oleh besaran Contoh: panjang, voltase, temperatur Vektor Satuan yang ditentukan oleh besaran dan arah Contoh: gaya, velocity Vektor

Lebih terperinci

Bab 2 Fungsi Analitik

Bab 2 Fungsi Analitik Bab 2 Fungsi Analitik Bab 2 ini direncanakan akan disampaikan dalam 4 kali pertemuan, dengan perincian sebagai berikut: () Pertemuan I: Fungsi Kompleks dan Pemetaan. (2) Pertemuan II: Limit Fungsi, Kekontiuan,

Lebih terperinci

Turunan. Ayundyah Kesumawati. January 8, Prodi Statistika FMIPA-UII. Ayundyah Kesumawati (UII) Turunan January 8, / 15

Turunan. Ayundyah Kesumawati. January 8, Prodi Statistika FMIPA-UII. Ayundyah Kesumawati (UII) Turunan January 8, / 15 Turunan Ayundyah Kesumawati Prodi Statistika FMIPA-UII January 8, 2015 Ayundyah Kesumawati (UII) Turunan January 8, 2015 1 / 15 Sub Materi Turunan : a. Turunan Fungsi b. Turunan Tingkat Tinggi c. Teorema

Lebih terperinci

1.1.1 BAB I PENDAHULUAN TEORI HIMPUNAN

1.1.1 BAB I PENDAHULUAN TEORI HIMPUNAN 1.1.1 BAB I PENDAHULUAN TEORI HIMPUNAN 1.1 DEFINISI HIMPUNAN Pengertian Himpunan adalah kumpulan objek yang didefinisikan secara jelas dalam sembarang urutan atau keberurutan objek-objek anggotanya tidak

Lebih terperinci

BAB VI INTEGRAL LIPAT

BAB VI INTEGRAL LIPAT BAB VI INTEGRAL LIPAT 6.1 Pendahuluan Pada kalkulus dan fisika dasar, kita melihat sejumlah pemakaian integral misal untuk mencari luasan, volume, massa, momen inersia, dsb.nya. Dalam bab ini kita ingin

Lebih terperinci

Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar

Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Aljabar Boole Meliputi : 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Boole 3. Teorema Dasar Aljabar Boole 4. Orde dalam sebuah Aljabar Boole Definisi Aljabar Boole Misalkan B adalah himpunan

Lebih terperinci

Logika Matematika Aljabar Boolean

Logika Matematika Aljabar Boolean Pertemuan ke-5 Logika Matematika Aljabar Boolean Oleh : Mellia Liyanthy 1 TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2007/2008 Bentuk Kanonik dan Bentuk baku atau standar Fungsi boolean yang

Lebih terperinci

Review Sistem Digital : Aljabar Boole

Review Sistem Digital : Aljabar Boole JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Aljabar Boole S dan D3 Mata Kuliah : Elektronika Industri 2 x 5 Lembar Kerja Dalam Aljabar Boole, Misalkan terdapat

Lebih terperinci

MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan)

MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan) MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan) Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Latihan 1 Simplify the following Boolean functions using Boolean

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat.

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat. .. esaran Vektor Dan Skalar II V E K T O R da beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. da juga besaran fisis yang tidak cukup hanya

Lebih terperinci

Estimasi Sebaran Stress di Sekitar Lubang Bor Bawah Permukaan

Estimasi Sebaran Stress di Sekitar Lubang Bor Bawah Permukaan PROSIDING SKF 6 Estimasi Sebaran Stress di Sekitar Lubang Bor Bawah Permukaan Desnia Ayu Karlyna,a) dan Dr. Eng. Bagus Endar B. Nurhandoko,,b) Laboratorium Wave Inversion and Subsurface Fluid Imaging WISFIR),

Lebih terperinci

Setelah kita mengetahui hasil dari masing-masing persamaan, kemudian kita kembali gabungkan kedua persamaan tersebut :

Setelah kita mengetahui hasil dari masing-masing persamaan, kemudian kita kembali gabungkan kedua persamaan tersebut : Kumpulan Soal-Soal Diferensial 1. Tentukan turunan pertama dari y = (3x-2) 4 +(4x-1) 3 adalah... Jawab: misalnya : f (x) = y = (3x-2) 4 misal U = (3x-2) du/dx = 3 dy/dx = n.u n-1. du/dx = 4. (3x-2) 4-1.3

Lebih terperinci

Derivatif Parsial (Fungsi Multivariat)

Derivatif Parsial (Fungsi Multivariat) Derivatif Parsial (Fungsi Multivariat) week 12 W. Rofianto, ST, MSi FUNGSI MULTIVARIAT Fungsi dapat memiliki lebih dari satu variabel bebas. Fungsi demikian biasanya disebut sebagai fungsi multivariat.

Lebih terperinci

09/01/2018. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean.

09/01/2018. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean. Prio Handoko, S. Kom., M.T.I. Capaian Pembelajaran Mahasiswa dapat menjelaskan konsep diagram Venn, teorema Boolean dan membangun fungsi Boolean. George Boole (ahli matematika asal Inggris) Aljabar yang

Lebih terperinci

Pertemuan 8. Aplikasi dan penyederhanaan Aljabar Boolean

Pertemuan 8. Aplikasi dan penyederhanaan Aljabar Boolean Pertemuan 8 Aplikasi dan penyederhanaan Aljabar Boolean Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 8356633766 Aplikasi Aljabar Boolean Aljabar Boolean mempunyai

Lebih terperinci

BAB III INDUKSI MATEMATIKA

BAB III INDUKSI MATEMATIKA BAB III INDUKSI MATEMATIKA BAB III INDUKSI MATEMATIKA 3.1 Pendahuluan Dalam bidang matematika tidak jarang ditemui pola-pola induktif yang melibatkan himpunan indeks berupa himpunan bilangan asli atau

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d

MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d MA1201 KALKULUS 2A (Kelas 10) Bab 8: dan Do maths and you see the world ? Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk limit dengan nilai seolah-olah : 0 0 ; ; 0

Lebih terperinci

BAB III INDUKSI MATEMATIKA

BAB III INDUKSI MATEMATIKA 3.1 Pendahuluan BAB III INDUKSI MATEMATIKA Dalam bidang matematika tidak jarang ditemui pola-pola induktif yang melibatkan himpunan indeks berupa himpunan bilangan asli atau bulat seperti barisan atau

Lebih terperinci

Aljabar Boolean. IF2120 Matematika Diskrit. Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB. Rinaldi Munir - IF2120 Matematika Diskrit

Aljabar Boolean. IF2120 Matematika Diskrit. Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB. Rinaldi Munir - IF2120 Matematika Diskrit Aljabar Boolean IF22 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF22 Matematika Diskrit Pengantar Aljabar Boolean ditemukan oleh George Boole, pada tahun

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

BAB 4. Aljabar Boolean

BAB 4. Aljabar Boolean BAB 4 Aljabar Boolean 1. PENDAHULUAN Aljabar Boolean merupakan lanjutan dari matakuliah logika matematika. Definisi aljabar boolean adalah suatu jenis manipulasi nilai-nilai logika secara aljabar. Contoh

Lebih terperinci

LOGIKA MATEMATIKA. 3 SKS By : Sri Rezeki Candra Nursari

LOGIKA MATEMATIKA. 3 SKS By : Sri Rezeki Candra Nursari LOGIKA MATEMATIKA 3 SKS By : Sri Rezeki Candra Nursari Komposisi nilai UAS = 36% Open note UTS = 24% Open note ABSEN = 5 % TUGAS = 35% ============================ % Blog : reezeki2.wordpress.com MATERI

Lebih terperinci

Kalkulus Fungsi Dua Peubah atau Lebih

Kalkulus Fungsi Dua Peubah atau Lebih Kalkulus Fungsi Dua Peubah atau Lebih Warsoma Djohan Prodi Matematika, FMIPA - ITB March 11, 2011 Kalkulus 2 / MA-ITB / W.D. / 2011 (ITB) Kalkulus Fungsi Dua Peubah atau Lebih March 11, 2011 1 / 34 Fungsi

Lebih terperinci

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif

Lebih terperinci

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih

1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih ] 1 Pada Bab 1 ini akan dibahas antara lain sebagai berikut. 1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih Tema sentral dari bab ini adalah kalkulus dari fungsi peubah

Lebih terperinci

Gambar 1. Gradien garis singgung grafik f

Gambar 1. Gradien garis singgung grafik f D. URAIAN MATERI 1. Definisi dan Rumus-rumus Turunan Fungsi a. Definisi Turunan Sala satu masala yang mendasari munculnya kajian tentang turunan adala gradien garis singgung. Peratikan Gambar 1. f(c +

Lebih terperinci

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Mekanika bahan merupakan salah satu ilmu yang mempelajari/membahas tentang tahanan dalam dari sebuah benda, yang berupa gaya-gaya yang ada di dalam suatu benda yang

Lebih terperinci

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS 1 BAB II FUNGSI LIMIT DAN KEKONTINUAN Sebelum dibahas mengenai fungsi kompleks, maka perlu dipelajari konsep-konsep topologi yang akan digunakan pada fungsi

Lebih terperinci

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut

Lebih terperinci

Fungsi Analitik (Bagian Ketiga)

Fungsi Analitik (Bagian Ketiga) Fungsi Analitik (Bagian Ketiga) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu VI) Outline 1 Persamaan Cauchy-Riemann 2 Persamaan

Lebih terperinci

2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama.

2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama. A. OPERASI BENTUK ALJABAR 1. Pengertian suku, koefisien, variabel, dan konstanta bentuk aljabar Bentuk 8x + 17 merupakan bentuk aljabar dengan x sebagai variabel, 8 sebagai koefisien, dan 17 adalah konstant

Lebih terperinci

Kurikulum 2013 Antiremed Kelas 11 Matematika

Kurikulum 2013 Antiremed Kelas 11 Matematika Kurikulum 03 Antiremed Kelas Matematika Turunan Fungsi dan Aplikasinya Soal Doc. Name: K3ARMATPMT060 Version: 05-0 halaman 0. Jika f(x) = 8x maka f (x). (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

Ada dua macam bentuk kanonik:

Ada dua macam bentuk kanonik: Ada dua macam bentuk kanonik: ) Penjumlahan dari hasil kali (sum-of-product atau SOP) 2) Perkalian dari hasil jumlah(product-of-sum atau POS) Contoh:. f(x, y, z) = x y z+ xy z + xyz SOP Setiap suku(term)

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Definisi Aljabar Boolean

Definisi Aljabar Boolean Aljabar Boolean Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

Produk Cartesius Relasi Relasi Khusus RELASI

Produk Cartesius Relasi Relasi Khusus RELASI Produk Cartesius Relasi Relasi Khusus RELASI Jika A dan B masing-masing menyatkan himpunan yang tidak kosong, maka produk Cartesius himpunan A dan B adalah himpunan semua pasangan terutut (x,y) dengan

Lebih terperinci

Materi UTS. Matematika Optimisasi. Semester Gasal Pengajar: Hazrul Iswadi

Materi UTS. Matematika Optimisasi. Semester Gasal Pengajar: Hazrul Iswadi Materi UTS Matematika Optimisasi Semester Gasal 6-7 Pengajar: Hazrul Iswadi Daftar Isi Pendahuluan...hal Pertemuan...hal - Pertemuan...hal - 9 Pertemuan...hal - 5 Pertemuan 4...hal 6 - Pertemuan 5...hal

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

PEN YEDERHANAA N DENGAN ALJABAR

PEN YEDERHANAA N DENGAN ALJABAR PEN YEDERHANAA N DENGAN ALJABAR TUJUAN I. Gunakanlah teorema konsensus untuk menghapuskan term pada kalimat switching dan menambahkan term ke kalimat tersebut. 2. Sederhanakanlahkalimat switchingdengan

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Integral Vektor. (Pertemuan VII) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TK 47 Matematika III Integral Vektor (Pertemuan VII) Dr. AZ Jurusan Teknik ipil Fakultas Teknik Universitas Brawijaya Teorema Gauss Definisi : Jika V adalah volume yang dibatasi oleh suatu permukaan tertutup

Lebih terperinci

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi TURUNAN Ide awal turunan: Garis singgung Tali busur c +, f c + Garis singgung c, f c c P h c+h f c + f c Kemiringan garis singgung di titik P: f c + f c lim Definisi Turunan fungsi f adalah fungsi lain

Lebih terperinci

Pertemuan 10. Fungsi Boolean, Bentuk Kanonik dan Bentuk Baku

Pertemuan 10. Fungsi Boolean, Bentuk Kanonik dan Bentuk Baku Pertemuan Fungsi Boolean, Bentuk Kanonik dan Bentuk Baku Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 8356633766 Fungsi Boolean Pada aljabar Boolean dua-nilai

Lebih terperinci

Ruang Metrik dan Ruang Metrik-n

Ruang Metrik dan Ruang Metrik-n 5 BAB II Ruang Metrik dan Ruang Metrik-n Pada Bahagian ini akan dixiraikan beberapa konsep dasar tentang ruang, ruang bemonna-2 beserta hubungannya dengan ruang hasil kali dalam-2 dan ruang bemorma-2 serta

Lebih terperinci

MAKALAH TEOREMA BINOMIAL

MAKALAH TEOREMA BINOMIAL MAKALAH TEOREMA BINOMIAL Disusu utu memeuhi tugas mata uliah Matematia Disrit Dose Pegampu : Dr. Isaii Rosyida, S.Si, M.Si Rombel B Kelompo 2 1. Wihdati Martalya (0401516006) 2. Betha Kuria S. (0401516012)

Lebih terperinci

BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN. MARZAN NURJANAH, S.Pd.

BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN. MARZAN NURJANAH, S.Pd. BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN MARZAN NURJANAH, S.Pd. Agenda Pengertian dan Sifat Eksponen Persamaan Eksponen Pertidaksamaan Eksponen Latihan Soal Agenda Pengertian

Lebih terperinci

GERBANG dan ALJABAR BOOLE

GERBANG dan ALJABAR BOOLE GERBNG dan LJBR BOOLE Konsep dasar aljabar Boole (Boolean lgebra) telah diletakkan oleh seorang matematisi Inggeris George Boole, pada tahun 1854. Konsep dasar itu membutuhkan waktu yang cukup lama untuk

Lebih terperinci

, maka., maka 1 = 1 +1 <3 1 < = 10 3 =1

, maka., maka 1 = 1 +1 <3 1 < = 10 3 =1 LATIHAN 4.1 1. Tentukan sebuah kondisi pada 1 yang akan menjamin bahwa : a. 1 < Penyelesaian: Kita perhatikan 1 = 1 +1

Lebih terperinci

OPERASI HIMPUNAN. (Minggu ke-10 dan 11)

OPERASI HIMPUNAN. (Minggu ke-10 dan 11) OPERASI HIMPUNAN (Minggu ke-10 dan 11) Definisi 1. Irisan dari dua himpunan H dan K dengan notasi HK adalah himpunan yang anggota-anggotanya menjadi anggota H sekaligus menjadi anggota K, Notasi matematisnya

Lebih terperinci

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri

Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Matematika Teknik Dasar-2 9 Aplikasi Turunan Parsial dan Pengerjaannya Secara Geometri Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Contoh - 1 Volume V dari sebuah silinder dengan

Lebih terperinci

Beberapa pola: AKAN MENJELASKAN... Alel Ganda Gen letal Linkage Crossing over Determinasi Sex

Beberapa pola: AKAN MENJELASKAN... Alel Ganda Gen letal Linkage Crossing over Determinasi Sex Beberapa pola: AKAN MENJELASKAN... Alel Ganda Gen letal Linkage Crossing over Determinasi Sex *Alel Ganda *Sebuah gen memiliki alel lebih dari satu *Golongan darah : *gen I A, I B, I O *Warna Kelinci :

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 27 Januari 2017 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial 7.3 Integral Trigonometrik

Lebih terperinci

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti Kuliah 2: FUNGSI MULTIVARIABEL Indah Yanti Definisi Dasar Perhatikan fungsi f: A R n R m : x f x n = m = 1 fungsi bernilai riil satu variabel n = 1, m > 1 fungsi bernilai vektor satu variabel n > 1, m

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Integral - Latihan Ulangan Doc. Name: ARMAT098 Version : 0 0 halaman 0. f (x)=x +x+ maka f(x) =... x +x +x +c x +x +x+c x - x +x+c x +x +x+c x - x +x+c 0. 0. 0. 0 x +c x c x

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

FAKTORISASI SUKU ALJABAR

FAKTORISASI SUKU ALJABAR 1 FAKTORISASI SUKU ALJABAR Pernahkah kalian berbelanja di supermarket? Sebelum berbelanja, kalian pasti memperkirakan barang apa saja yang akan dibeli dan berapa jumlah uang yang harus dibayar. Kalian

Lebih terperinci

Relasi Kongruensi Fuzzy pada Grup dan Grup Hasil Bagi

Relasi Kongruensi Fuzzy pada Grup dan Grup Hasil Bagi Relasi Kongruensi Fuzzy pada rup dan rup asil Bagi Oleh K a r y a t i Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta e-mail: yatiuny@yahoo.com

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

PRAKTIKUM 13 PENYELESAIAN PERSAMAAN ALJABAR

PRAKTIKUM 13 PENYELESAIAN PERSAMAAN ALJABAR PRAKTIKUM 13 PENYELESAIAN PERSAMAAN ALJABAR Dalam bab ini kita akan menggunakan Matlab untuk menyelesaikan persamaan aljabar. Kita akan mulai dengan menyelesaikan persamaan sederhana (persamaan dengan

Lebih terperinci

KOEFISIEN KORELASI KENDAL

KOEFISIEN KORELASI KENDAL KOEFISIEN KORELASI KENDAL Koefisien korelasi rank Kendall () merupakan pengembangan dari koefisien korelasi rank Spearman Koefisien korelasi ini digunakan pada pasangan variabel atau data X dan Y dalam

Lebih terperinci

PENDAHULUAN TEGANGAN (STRESS) r (1)

PENDAHULUAN TEGANGAN (STRESS) r (1) HND OUT FISIK DSR I/LSTISITS LSTISITS M. Ishaq PNDHULUN Dunia keteknikan khususnya Material ngineering, Studi geofisika, Civil ngineering dll adalah beberapa cabang keilmuan yang amat membutuhkan pemahaman

Lebih terperinci

MAKALAH SISTEM DIGITAL

MAKALAH SISTEM DIGITAL MAKALAH SISTEM DIGITAL Konsep Dasar Teorema Boole & De Morgan Disusun Oleh : Anin Rodahad (12131307) Abdurrahman Ar-Rohim (12131299) Bayu Ari Utomo () TEKNIK INFORMATIKA STMIK EL RAHMA YOGYAKARTA Jl. Sisingamangaraja

Lebih terperinci