2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama."

Transkripsi

1 A. OPERASI BENTUK ALJABAR 1. Pengertian suku, koefisien, variabel, dan konstanta bentuk aljabar Bentuk 8x + 17 merupakan bentuk aljabar dengan x sebagai variabel, 8 sebagai koefisien, dan 17 adalah konstant Dari contoh sederhana tersebut, marilah kita definisikan istilah tersebut di atas. Suku adalah bentuk aljabar yang memuat koefisien, variabel, dan konstanta atau memuat koefisien dan variabel saj Variabel adalah suatu besaran matematika yang nilainya dapat berubah. Variabel dituliskan dalam bentuk huruf abjad (huruf kecil). c. Koefisien adalah bilangan yang diikuti oleh variabel Konstanta adalah bilangan yang tidak diikuti variabel. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sam Untuk lebih jelas memahami konsep suku-suku sejenis, perhatikan tabel berikut! Suku Sejenis / tidak sejenis Keterangan 18p dan 10p -9a dan 1a 9a dan 9b mn dan 8mn Suku sejenis Suku sejenis Suku tidak sejenis Suku tidak sejenis Variabel dan pangkat dari variabel sama Variabel dan pangkat dari variabel sama Variabelnya tidak sama Pangkat dari variabelnya tidak sama PENDALAMAN MATERI 1 BANYAK SUKU, KOEFISIEN, VARIABEL, DAN KONSTANTA. 1. Diketahui bentuk aljabar: a + b 7ab + 8. Tentukan: banyak suku, konstanta, c. koefisien untuk variabel. Diketahui bentuk aljabar: 17x - 8x + 69y 9xy 8. Tentukan: banyak suku, konstanta, c. variabel, koefisien untuk variabel y dan xy.. Diketahui bentuk aljabar: mn + n m + mn. Tentukan : banyak suku, konstanta, c. variabel, koefisien untuk variabel mn dan m.. Diketahui bentuk aljabar: pq p + q. Tentukan: banyak suku, konstanta, c. variabel, 1

2 5. Bentuk aljabar -c d + 17e. Tentukan : banyak suku, konstanta, c. variabel, koefisien untuk variabel c dan. Operasi Bentuk Aljabar Penjumlahan Dan Pengurangan Bentuk Aljabar Dua suku atau lebih dapat dilakukan operasi penjumlahan atau pengurangan apabila suku-suku tersebut merupakan suku-suku yang sejenis. Contoh : 1.1 1) p + p = 5p ) 8xy 6xy = xy ) x + 7x + 6x x = x + 6x + 7x x = 9x + x ) (1d + 5e) (8d e) = 1d + 5e -8d + e = 1d 8d + 5e + e = d + 7e 1. Sederhanakan! 6a 6 + a 7b + 1 9b c. 1x + 7x 8y + y -6x + y + 1x 5y e. 8ab + 15a ab 17a f. 8k + 99j 5k + 11j g. 0m + 8n + m 7n 10m + h. 5p + q + r p + 6q r +. Sederhanakan! (1a + 8) + (8a + 1) (b 7) (-a + 11) c. (j + k) + (8j + k) (x y) (8y + x) e. (5a b) (-6a 7b) f. (18h 5i + 8j) (h + i 6j) g. (9m 5n + 10k) (-6n 7m + k) h. (7a + 8 b 11) + (5b 10b ). Jumlahkan! 18h + dan 1h 5 m + n dan 5m + 7n c. 50a + 0b dan 10b 0a + 9 1f 6g + 7h dan 8g 11f 5h e. b + 15c -1 dengan c f. 8ab + b dengan ab b + 7 g. -1a b 8ab dengan 6ab + b h. 9c d + 1 dengan 10cd 1. Kurangkan! 8p + + 5q dari 1p + q 5-7h 18 dari + 17h c. 15v + w dengan 0v w + 8 5c + 78 dengan 5c + 58 e. 5x + y + 7 oleh x y + f. a 6b + oleh 8b 1a 5 g. -7ab + 6a 1 dari ab b + 1 h. a b + c dari -a + b c + 5 PENDALAMAN MATERI OPERASI PENJUMLAHAN DAN PENGURANGAN

3 5. Jika p = d d dan q = d + d, hitunglah (p + q) dan (p q) 6. Gambar pekarangan Pak Yasin membentuk huruf L seperti tampak pada gambar berikut. Tentukan keliling pekarangan Pak Yasin dalam p! Jika keliling pekarangan 56 cm, carilah nilai p! p p p Alas kandang ayam Pak Amin berbentuk persegi panjang. Panjang kandang (a + ) meter dan lebarnya (5a ) meter, sedangkan panjang kayu yang diperlukan untuk membuat alas adalah 90 meter. Tentukan : nilai a, ukuran kandang, c. luas kandang (dalam are). Perkalian bentuk aljabar 1) Perkalian suatu bilangan dengan dua suku Bentuk umum perkalian suatu bilangan dengan dua suku antara lain : k(p + q) = kp + kq k(p - q) = kp kq, dengan p, q variabel dan k konstant Contoh : 1. (x + y) = 6x + y (5x y) = 0x 1y c. -(a 7) = -a + 1 5a(a b) = 5a 5ab ) Perkalian antara dua suku Perkalian antara dua suku bentuk aljabar dapat dilakukan dengan menggunakan sifat distributif. Contoh : 1. (x + 5) ( x + ) = x(x + ) + 5(x + ) = 6x + 8x + 15x + 0 = 6x + x + 0 (y z) (8y 1) = y(8y 1) z(8y 1) = y y yz + z (a + b) (a + b 8) = a(a + b - 8) + b(a + b 8) = a + ab 8a + ab + b 8b = a + ab 8a 8b + b ) Perkalian istimewa Perkalian istimewa adalah perkalian yang hasil kalinya bersifat khusus. Beberapa perkalian istimewa : (a + b) = a + ab + b (a b) = a ab + b c. (a + b) (a b) = a b (a + b) (a ab + b ) = a + b e. (a b) ((a + ab + b ) = a b Contoh : 1. Jabarkan! (y + ) = y +.y. + = y + y + (x ) = x +.x.(-) + (-) = x 6x + 9 c. (p + 8) (p 8) = p - 8 = p 6 (x + 5) (x 5) = (x) - 5 = 9x - 5 e. (k + ) (k k + 9) = k + = k + 7 f. (m ) (m +m + 16) = m - = m 6

4 1. Sederhanakan 5(x + y) -5(q r) c. -(-8h 5i) 6(-c d) e. 5(m n) f. (8a + 5) + (6a + 10) g. 5(7c ) 9(c ) h. 10(m + 5) - 8(5m + 6). Jabarkan! (x + ) (x + ) (x ) (x + 5) c. (a 1) (a + ) (5p + 7q) (p + q) e. (8c 5d) (-c + d) f. (5d e + ) (d + ) g. (1x + 5) (5x y 6) h. (m n 6)(m + n+8). Jabarkan! (x + ) (y 8) c. (a ) (15b + c) e. (p + 5q) f. (5mn pq) g. (6abc + 7def) h. (1x y 5x y ) PENDALAMAN MATERI OPERASI PERKALIAN BENTUK ALJABAR. Jabarkan bentuk aljabar berikut dalam bentuk perkalian istimewa! a 5 b 11 c. 169 c h e. d 81e f. 9m 5n g. 100x 81y h. 1p q 5r s 5. Jabarkan bentuk aljabar berikut dalam bentuk perkalian istimewa! j + 7 k 8 c. 6 m n e. g + 16 f. h 79i g. 8a + 15b h. x y 6. Jabarkan dan sederhanakan bentuk-bentuk aljabar di bawah ini! (a + b) (5a + ab b ) c. (5x 1) (x ) (x + 5y) (x y) e. f. 11x p 1 y 1 p 5x 1 16p 1 y

5 7. Tentukan hasil perpangkatan di bawah ini! (a + 5) (x - 1) c. (x + y) 5 (a + b) 6 8. Jabarkan! (a + b + 5c) (c 6d + 10) c. (5m 7n k) (8x + 5y 1z) e. (6v + 5w + 1) (v w ) c. Pembagian bentuk aljabar Pada pembagian bentuk aljabar, jika pembagi merupakan suku satu maka hasil pembagian dapat ditentukan dengan cara seperti pembagian pada bilangan bulat, tetapi jika pembagi lebih dari satu suku maka dapat ditentukan dengan cara bersusun kebawah. Contoh: 1.5 Tentukan hasil bagi dari bentuk aljabar berikut! 18a : 9a b - b 1) : (b 1) Penyelesaian: 18a : 9a = a b - b 1) : (b 1) = b + 1 b +1 b 1 b b 1 b b b 1 b 1 0 PENDALAMAN MATERI OPERASI PEMBAGIAN BENTUK ALJABAR 1. Tentukan hasil pembagian bentuk aljabar berikut ini! 1a : 6 7b : 9b c. 0a b : ab 8c d : 8c d e. 8a b c : a bc f. m 8 n 7 : (6m n : 9mn) g. 100c 6 d 5 : (5c d : 9cd ) h. (18p 9 q 8 : p q) : (6p 8 q 5 : pq ) Ingat (a b : a c = a b c ) - -. Tentukan hasil pembagian bentuk aljabar berikut ini! (g + g + 1) : (g + 1) (h + 8h + ) : (h + ) c. (i + 11i 6) : (i 1) (5j + 15j + j + 6) : (j + ) e. (6k 8k 15k + 0) : (k ) f. (-a + 11a a 15) : (5 x) g. (b b b + b) : (b + b) h. (x 1) : (x + 1) 5

6 B. Pemfaktoran Bentuk Aljabar 1. Bentuk ap + aq Bentuk ap + aq dapat difaktorkan menjadi: ap + aq = a(p + q) ap aq = a(p q) Contoh : 1.6 Faktorkan bentuk aljabar berikut ini x + y = (x + y) a + 6b 1c = (a + b c) c. 8ab + 1abc 0ac = a(b + bc 5c). Selisih kuadrat Misalkan : (x + y) (x y) = x(x y) + y(x y) = x xy + (yx) y = x y Jadi faktor dari : x y = (x + y) (x y) Contoh : 1.7 Faktorkan bentuk aljabar berikuk ini : x 81 = (x + 9) (x 9) 16a 5 = (a + 5) (a 5) c. x 9y = (x + 7y) (x 7y) a 98 = (16a 9) = (a + 7) (a 7) e. 16c 65d = (c + 5d ) (c - 5d ) = (c + 5d ) (c + 5d) (c 5d) PENDALAMAN MATERI 5 PEMFAKTORAN BENTUK (ap+ aq) = a(p + q) dan a b = (a + b) (a b) 1. Faktorkan! 15x + 0 6y 1 c. 15a + 1b 51 a + 0b 8 e. x xy + 0xz f. 5a b + 10ab g. 15cd 51c d + 6cd h. 1m n 16mn 9n. Faktorkan! x 5 x 5 c. 81y 1 169x 11y e. 9a b 5c d f. 5y z 9a b g. (a + b) c h. (c + d) d. Faktorkan bentuk aljabar berilkut ini : 18p 10p 0 c. 8p 50q 80p 7q e. 0p q 5x y f. a b - c d g. 1a b c 00 h. 0c d 15c d 6

7 . Bentuk Kuadrat Bentuk kuadrat ax + bx + c, a = 1 Karena nilai a = 1, maka bentuk ax + bx + c menjadi x + bx + c. Misalkan faktor dari : x + bx + c = (x + p) (x + q). Kita coba lakukan perkalian pada ruas kanan untuk mencari hubungan antara kedua ruas x + bx + c = (x + p) (x + q) = x(x + q) + p(x + q) = x + qx + px + pq = x + (p + q)x + pq. Maka terdapat hubungan b, c terhadap p dan q. b = p + q c = p x q, Dengan p dan q merupakan sembarang bilangan. Contoh : 1.8 Faktorkan! x + 5x + 6 y + y 5 Penyelesaian : Cara Tidak Langsung Cara Langsung Keterangan X + 5x + 6 = x + (x + x) + 6 x + 5x + 6 = (x + ) (x + ) b= 5 danc = 6 = (x + x + (x + 6) = (x + ) (x + ) = x(x + ) + (x + ) 6 =(x + ) (x + ) Jadi p =, q= y + y 5= y + (7y 5y) 5 = (y + 7y) (5y + 5) = y(y + 7) 5(y + 7) = (y 5y) (y + 7) y + y 5 = (y +7) (y 5) b=, c= Jadi p= 7, q= -5 Bentuk kuadrat ax + bx + c, a 1 Maka : Misalkan bentuk faktor dari : ax + bx + c = a 1 (ax + p) (ax + q). ax + bx + c = a 1 (ax + p) (ax + q). a x + abx + ac = (ax + p) (ax + q) kedua ruas dikalikan a = ax(ax + q) + p(ax + q) ruas kanan dilakukan perkalian = a x + qax + pax + pq = a x + (p + q) ax + pq Dari informasi diatas, hubungana,b, pd an q adalah : b = p + q ac = p x q, Dengan p dan q sembarang bilangan Contoh : 1. 9 Faktorkan : 8y + 10y + penyelesaian : Cara tidak lansung Cara langsung Keterangan 8y + 10y + = = 8y + (y + 6y) + = (8y + y) + (6y + ) = y(y + 1) + (y + 1) = (y + ) (y + 1) 8y + 10y + = = 8 1 (8y + ) (8y + 6) = 8 1.(y + 1). (y + ) = (y + 1) (y + ) B = 10 = p + q c = 8x = = pq p= dan 6 q= 6 7

8 PENDALAMAN MATERI 6 MATERI PEMFAKTORAN BENTUK x + bx + c dan ax + bx + c, dengan a 0 1. Faktorkan bentuk-bentuk berikut ini. x + x + x + 8x + 1 c. y + y 8 y + 1y 51 e. p p 0 f. p 11p 60 g. k 9k + 60 h. k 68k Faktorkan bentuk-bentuk berikut ini. h 8hj + 1j h 11hj + j c. a + 10ab + 5b a 1ab + 6b e. c - 1cd - 51d f. c + 0cd + 5d g. d 0de + 00e h. m + 16mn +6n. Faktorkan bentuk-bentuk berikut ini. 10t + 17t + k + 7k c. 9a a b 11b 5 e. 10c + 17c + f. 10d d + 1 g. g + 1g 6 h. g + 11g. Sederhanakan dalam bentuk faktorisasi. (x + x + 1) (9x 1x + ) (x 5xy y ) + (x xy y ) 5. Sederhanakan, kemudian faktorkan bentuk-bentuk berikut ini. (5x y) + 80x 16y + 6 9( x+ y ) 0x 10y Sebuah bola dilempar vertikal ke atas. Tinggi bola (h meter) setelah t detik dinyatakan dengan rumus h = 8 + t t. Bila bola dilempar setelah 1,5 detik, tentukan tinggi bola! Jika h = 0, carilah nilai t! C. Pecahan Bentuk Aljabar 1. Operasi pecahan bentuk aljabar Penjumlahan dan pengurangan Dua pecahan bentuk aljabar dapat dilakukan penjumlahan atau pengurangan apabila penyebutnya sam Jika penyebut-penyebut dari pecahan tersebut tidak sama, samakan penyebut dengan menggunakan faktor persekutuan terkeci (KPK). Contoh : 1.10 Sederhanakanlah! x 5x a b 8

9 Penyelesaian : x 5x 1x 15x 9x b 15a b15a a b 6ab 6ab 6ab Perkalian Perkalian pecahan bentuk aljabar mengikuti ketentuan : a x b Contoh : 1.11 c ac, dengan a dan b 0. d bd a b 6ab x y 1 x 6y y 1 (ingat KPK (5 dan 7 adalah 5) y 1y 1 y 1 6y. x y 1 c. Pembagian Pembagian pecahan bentuk aljabar mengikuti ketentuan : a a 1 a :c x b b c bc b c ac a: ax c b b a c a d ad : x b d b c bc y Contoh : 1. 1 p: q p px q q 5a 10a6 5a 1a8 5a 7a : x x 1 7a 1a8 7a 10a6 7a 5a PENDALAMAN MATERI 7 OPERASI PECAHAN BENTUK ALJABAR (Evaluasi kemampuan pemahaman) 1. Sederhanakan operasi penjumlahan dan pengurangan di bawah ini! 8 a a d 1 d - 1 y y - 1 c. a 10 a 5 e. a a 1 a 1 9 x 5x x 5 x 8 9

10 . Sederhanakan perkalian pecahan dibawah ini. cd 16c c 8d a 6b b a 1 c. m mn m n m mn m n 1j j k k j k 6jk 8h h h 1 e. 9h h 1. Sederhanakan pembagian pecahan di bawah ini. c. e. ab b : 9a 18a 8a 7a b 16b : 9a a 9a 9a : 16a 5a 1c c d 8 c d : c c 18 c - q q q q q : q q 5. Menyederhanakan pecahan Suatu pecahan a b a (pembilang) dan b (penyebut) adalah 1. Contoh : 1. 1 Sederhanakan pecahan berikut ini. x 6 x x 5x 6 Penyelesaian : x 6 x x. x x x 5x 6 x x x dapat dikatakan sederhana, apabila faktor persekutuan x. 10

11 PENDALAMAN MATERI 8 MENYEDERHANAKAN PECAHAN 1. Sederhanakanlah. c. e. 51x y 17xy 6x y 8xy xy 5x 10xy 10x 0y 18x 9xy x y 1x 18y 15xy 8x 1xy 10x y. Sederhanakan bentuk pecahan di bawah ini. c. e. x x x x 6x 5 x 1x 5 x 7x 6 6x 1x 1 x 7x x x 1 x 6x 6 x 6. Ubahlah pecahan bersusun dibawah ini ke dalam bentuk yang paling sederhan c. 1 1 a b a b b a a b b a 1 1 b a a b c b c a 1 1 b c a a 5 b 5b a 11

FAKTORISASI SUKU ALJABAR

FAKTORISASI SUKU ALJABAR 1 FAKTORISASI SUKU ALJABAR Pernahkah kalian berbelanja di supermarket? Sebelum berbelanja, kalian pasti memperkirakan barang apa saja yang akan dibeli dan berapa jumlah uang yang harus dibayar. Kalian

Lebih terperinci

A. UNSUR - UNSUR ALJABAR

A. UNSUR - UNSUR ALJABAR PENGERTIAN ALJABAR Bentuk ALJABAR adalah suatu bentuk matematika yang dalam penyajiannya memuat hurufhuruf untuk mewakili bilangan yang belum diketahui. Bentuk aljabar dapat dimanfaatkan untuk menyelesaikan

Lebih terperinci

Jakarta,. Guru Mata Pelajaran Memeriksa / Mengetahui Kepala SMP NIP... NIP...

Jakarta,. Guru Mata Pelajaran Memeriksa / Mengetahui Kepala SMP NIP... NIP... Kompetensi Dasar : 2.1 Mengenali bentuk aljabar dan unsur-unsurnya. 2.2 Melakukan operasi pada bentuk aljabar. Indikator : 1. Menentukan variabel, koefisien, konstanta, dan suku sejenis. 2. Menentukan

Lebih terperinci

Faktorisasi Suku Aljabar

Faktorisasi Suku Aljabar Bab 1 Tujuan Pembelajaran Setelah mempelajari bab ini siswa diharapkan mampu: Menjelaskan pengertian koe sien, variabel, konstanta, suku satu, suku dua, dan suku banyak; Menyelesaikan masalah operasi tambah,

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

3 OPERASI HITUNG BENTUK ALJABAR

3 OPERASI HITUNG BENTUK ALJABAR OPERASI HITUNG BENTUK ALJABAR Pada arena balap mobil, sebuah mobil balap mampu melaju dengan kecepatan (x + 10) km/jam selama 0,5 jam. Berapakah kecepatannya jika jarak yang ditempuh mobil tersebut 00

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN No : 1 Mata Pelajaran : Matematika Kelas / Semester : VIII /1

RENCANA PELAKSANAAN PEMBELAJARAN No : 1 Mata Pelajaran : Matematika Kelas / Semester : VIII /1 RENCANA PELASANAAN PEMBELAJARAN No : 1 Mata Pelajaran : Matematika elas / Semester : V /1 Alokasi : 4 jam pelajaran A. Standar ompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis

Lebih terperinci

BAB I OPERASI ALJABAR DAN PEMFAKTORAN BENTUK ALJABAR

BAB I OPERASI ALJABAR DAN PEMFAKTORAN BENTUK ALJABAR BAB I OPERASI ALJABAR DAN PEMFAKTORAN BENTUK ALJABAR Setelah mempelajari bab ini kamu diharapkan mampu melakukan operasi aljabar, beberapa alternatif penyelesaian yang dihadapi oleh siswa terkait dengan

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

1. Variabel, Konstanta, dan Faktor Variabel Konstanta Faktor

1. Variabel, Konstanta, dan Faktor Variabel Konstanta Faktor ALJABAR BENTUK ALJABAR adalah suatu bentuk matematika yang dalam penyajiannya memuat huruf-huruf untuk mewakili bilangan yang belum diketahui Bentuk aljabar dapat dimanfaatkan untuk menyelesaikan masalah

Lebih terperinci

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel.

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel. Bab Persamaan Garis Lurus Standar Kompetensi Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel. Kompetensi Dasar 1.1. Mengenali bentuk aljabar dan unsur-unsurnya. 1.. Melakukan

Lebih terperinci

Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar

Bab. Faktorisasi Aljabar. A. Operasi Hitung Bentuk Aljabar B. Pemfaktoran Bentuk Aljabar C. Pecahan dalam Bentuk Aljabar Bab Sumber: Science Encylopedia, 997 Faktorisasi Aljabar Masih ingatkah kamu tentang pelajaran Aljabar? Di Kelas VII, kamu telah mengenal bentuk aljabar dan juga telah mempelajari operasi hitung pada bentuk

Lebih terperinci

Ely Purnamasari (2008.V.I.0019) Kd. Winda Mahayanti (2008.V.I.0027) Pend. Matematika IKIP PGRI BALI

Ely Purnamasari (2008.V.I.0019) Kd. Winda Mahayanti (2008.V.I.0027) Pend. Matematika IKIP PGRI BALI Ely Purnamasari (2008.V.I.0019) Kd. Winda Mahayanti (2008.V.I.0027) Pend. Matematika IKIP PGRI BALI Indikator Standar Kompetensi Mamahami dan dapat melakukan operasi bentuk aljabar, persamaan dan pertidaksamaan

Lebih terperinci

PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA. 2. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) :

PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA. 2. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) : PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA.. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) : Bab 3 PERSAMAAN KUADRAT 1. Bentuk Umum : ax bx c 0, a 0, a, b, c Re al Menyelesaikan persamaan kuadrat

Lebih terperinci

BENTUK-BENTUK ALJABAR

BENTUK-BENTUK ALJABAR BENTUK-BENTUK ALJABAR (Pembelajaran Matematika SMP) Oleh : H. Karso FPMIPA UPI A. Kalimat Matematika dalam Bentuk Aljabar Serta Unsur-unsurnya Dalam pelajaran matematika pengertian kalimat matematika dibedakan

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

Faktorisasi Bentuk Aljabar

Faktorisasi Bentuk Aljabar Faktorisasi Bentuk Aljabar Satuan Pendidikan Bidang Study Kelas / Semester : SMP. N 2 Jatipuro : MATEMATIKA : VIII / I 1. STANDAR KOMPETENSI Memahami bentuk aljabar. 2. KOMPETENSI DASAR 1.1 Melakukan operasi

Lebih terperinci

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya

Lebih terperinci

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9

ALJABAR. Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 ALJABAR Al-Khwarizi adalah ahli matematika dan ahlli astronomi yang termasyur yang tinggal di bagdad(irak) pada permulaan abad ke-9 Aljabar adalah salah satu cabang penting dalam matematika. Kata aljabar

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

Menyelesaikan Persamaan Kuadrat. 3. Rumus ABC ax² + bx + c = 0 X1,2 = ( [-b ± (b²-4ac)]/2a. Kemungkinan Jenis Akar Ditinjau Dari Nilai Diskriminan

Menyelesaikan Persamaan Kuadrat. 3. Rumus ABC ax² + bx + c = 0 X1,2 = ( [-b ± (b²-4ac)]/2a. Kemungkinan Jenis Akar Ditinjau Dari Nilai Diskriminan Menyelesaikan Persamaan Kuadrat Bentuk umum : ax² + bx + c = 0 x variabel; a,b,c konstanta ; a 0 Menyelesaikan persamaan kuadrat berarti mencari harga x yang memenuhi persamaan kudrat (PK) tersebut (disebut

Lebih terperinci

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL K-3 Kelas X matematika Wajib PERSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi dan solusi persamaan linear

Lebih terperinci

LEMBAR KERJA SISWA. Semester Ganjil STANDAR ISI KTSP. Nama :... Kelas :... Sekolah :...

LEMBAR KERJA SISWA. Semester Ganjil STANDAR ISI KTSP. Nama :... Kelas :... Sekolah :... LEMBAR KERJA SISWA Semester Ganjil Nama :... Kelas :... Sekolah :... STANDAR ISI KTSP Standar kompetensi : Memahami bentuk aljabar, persamaan dan pertidaksamaan linier dan satu variabel. Kompetensi dasar

Lebih terperinci

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012 MODUL MATEMATIKA PERSIAPAN UJIAN NASIONAL 0 TAHUN AJARAN 0/0 MATERI PERSAMAAN KUADRAT DAN PERTIDAKSAMAAN KUADRAT UNTUK KALANGAN MA AL-MU AWANAH MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 0 Jalan RH. Umar

Lebih terperinci

Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar : 1.1. Melakukan operasi aljabar

Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar : 1.1. Melakukan operasi aljabar Standar Kompetensi :. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar :.. Melakukan operasi aljabar A. PENGERTIAN KOEFISIEN, VARIABEL, KONSTANTA, SUKU SATU, SUKU DUA

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

Bab 1. Faktorisasi Suku Aljabar. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus.

Bab 1. Faktorisasi Suku Aljabar. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Bab 1 Faktorisasi Suku Aljabar Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.1 Melakukan operasi aljabar. 1.2 Menguraikan bentuk aljabar ke dalam

Lebih terperinci

Soal Ulangan Umum Semester 1 Kelas VIII

Soal Ulangan Umum Semester 1 Kelas VIII Soal Ulangan Umum Semester 1 Kelas VIII A. Berilah tanda silang (x) pada huruf a, b, c, d atau e di depan jawaban yang benar! 1. Salah satu factor dari x - xy 4y adalah cm a. (x - 4y)(x + 3y) b. (x + 4y)(x

Lebih terperinci

LEMBAR AKTIVITAS SISWA BENTUK PANGKAT (EKSPONEN)

LEMBAR AKTIVITAS SISWA BENTUK PANGKAT (EKSPONEN) Nama Siswa Kelas PETA KONSEP: LEMBAR AKTIVITAS SISWA BENTUK PANGKAT (EKSPONEN) Latihan :. :. 3. A. PANGKAT BULAT POSITIF Jika a R dan bilangan bulat positif n, maka a n didefinisikan sbg berikut: a n =

Lebih terperinci

Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc

Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc Matematika: Persamaan Kuadrat //0 MATA KULIAH : MATEMATIKA KODE MATA KULIAH : UNM0.0 SKS : (-) ) PERSAMAAN KUADRAT Oleh Syawaludin A. Harahap, MSc UNIVERSITAS PADJADJARAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN

Lebih terperinci

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 015 BIDANG MATEMATIKA BAGIAN A: SOAL ISIAN SINGKAT 1. Banyak faktor persekutuan dari 1515 dan 530 yang merupakan bilangan genap positip

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA 1. ABC adalah segitiga sama

Lebih terperinci

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS)

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS) LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL SEKOLAH KELAS MATA PELAJARAN SEMESTER BILANGAN Standar Kompetensi KOMPETENSI DASAR 1.1 Melakukan operasi hitung bilangan bulat. : SMP : VII : MATEMATIKA

Lebih terperinci

FAQ ALJABAR SMP KELAS 7

FAQ ALJABAR SMP KELAS 7 FAQ ALJABAR SMP KELAS 7 Pertanyaan yang Sering Ditanyakan Seputar Aljabar SMP Kelas 7 http://caramudahbelajarmatematika.com/ Cara Mudah Belajar Matematika Assalamualaikum Wr. Wb. Jumpa Lagi dengan Saya,

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

SMP kelas 9 - MATEMATIKA BAB 20. PYTHAGORASLatihan Soal km. 225 km. 250 km. 280 km

SMP kelas 9 - MATEMATIKA BAB 20. PYTHAGORASLatihan Soal km. 225 km. 250 km. 280 km SMP kelas 9 - MATEMATIKA BAB 20. PYTHAGORASLatihan Soal 20.1 1. Sebuah kapal berangkat dari pelabuhan ke arah utara sejauh 120 km, kemudian berbelok ke arah barat sejauh 160 km. Jarak terdekat kapal dari

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi

Lebih terperinci

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3 11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 7

KUMPULAN SOAL MATEMATIKA SMP KELAS 7 KUMPULAN SOAL MATEMATIKA SMP KELAS 7 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co.cc Email: fatkoer@gmail.com EVALUASI MANDIRI A. SOAL PILIHAN GANDA. Pilih

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

Faktorisasi Aljabar Linear

Faktorisasi Aljabar Linear Faktorisasi Aljabar Linear Click to here INTRO SEJARAH ISI QUIS PENUTUP FAKTORISASI ALJABAR TEAM SHINOBI PRAKATA INTRO SEJARAH ISI QUIS PENUTUP Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa

Lebih terperinci

MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan)

MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan) MSH1B3 LOGIKA MATEMATIKA Aljabar Boolean (Lanjutan) Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Latihan 1 Simplify the following Boolean functions using Boolean

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika Pembahasan OSN Tingkat Provinsi Tahun 202 Jenjang SMP Bidang Matematika Bagian A : Soal Isian Singkat. Sebuah silinder memiliki tinggi 5 cm dan volume 20 cm 2. Luas permukaan bola terbesar yang mungkin

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

KOTA - PROVINSI - NASIONAL TAHUN 2017 MATA PELAJARAN: MATEMATIKA

KOTA - PROVINSI - NASIONAL TAHUN 2017 MATA PELAJARAN: MATEMATIKA OLIMPIADE SAINS SMP/MTs TINGKAT KOTA - PROVINSI - NASIONAL TAHUN 07 MATA PELAJARAN: MATEMATIKA Mata Pelajaran : Matematika Jenjang : SMP/MTs MATA PELAJARAN PETUNJUK UMUM () Kerjakan soal ini dengan JUJUR,

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 013 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 94 + 013 = a + b 013 = 61

Lebih terperinci

= Tentukan jumlah dari : ( 1) ( jawaban boleh di faktorkan) 6. Tentukan semua penyelesaian system persamaan dari : =

= Tentukan jumlah dari : ( 1) ( jawaban boleh di faktorkan) 6. Tentukan semua penyelesaian system persamaan dari : = 1. Diberikan polynomial f(x) = x n + a 1x n-1 +...+ a n-1 x + a 0 dengan koefisien a 1, a,...a n semua bilangan bulat dan ada 4 bilangan bulat berbeda a,b,c, dan d yang memenuhi f(a) = f(b) = f(c) = f(d)

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1

BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1 BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1 BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1 A. Pilihan Ganda 1. Bentuk x + x 48 jika difaktorkan adalah A. (x 6)(x 8) B. (x + 8)(x 6) C. (x 4)(x 1)

Lebih terperinci

LAMPIRAN A. A1. Analisis kurikulum. A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar

LAMPIRAN A. A1. Analisis kurikulum. A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar 86 LAMPIRAN A A1. Analisis kurikulum A2. Skenario (jalan cerita) A3. Flowchart (alur) Permainan Pekerja Aljabar A. Materi, contoh soal dan soal latihan permainan materi operasi aljabar 87 ANALISIS KURIKULUM

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

BERBASIS PENDEKATAN KONTEKSTUAL. SMP/MT s. Kelas :... Sekolah :...

BERBASIS PENDEKATAN KONTEKSTUAL. SMP/MT s. Kelas :... Sekolah :... BERBASIS PENDEKATAN KONTEKSTUAL MODUL MATEMATIKA ALJABAR SMP/MT s SMP/MT s Elvira Resa Krismasari Nama :... Kelas :... Sekolah :... Modul Matematika Aljabar Berbasis Pendekatan Kontekstual Untuk Siswa

Lebih terperinci

PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017

PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017 PENGEMBANGAN KISI-KISI UJIAN SEMESTER GANJIL TAHUN 2016/2017 Jenis Sekolah : SMP Waktu : 90 menit Mata Pelajaran : Matematika Banyak soal : 25/5 Kelas : VII Pembuat Soal : Tim Kurikulum : KTSP Bentuk Soal

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 27 BIDANG MATEMATIKA SMP A. SOAL PILIHAN GANDA. Urutan Bilangan-bilangan 2 5555, 5 2222, dan dari yang terkecil sampai yang terbesar adalah.

Lebih terperinci

Bilangan Berpangkat. Pangkat Bulat Negatif. a bilangan real. bilangan bulat positif

Bilangan Berpangkat. Pangkat Bulat Negatif. a bilangan real. bilangan bulat positif Pangkat sebenarnya Pangkat Tak sebenarnya Pangkat bulat positif Pangkat Bulat Negatif Pangkat Nol Pangkat pecaha a m x a n a m+n a m n an am (a m ) n a nxm p.a n + q. a m a n m n p + qa p.a n - q. a m

Lebih terperinci

LAMPIRAN 1 DAFTAR NILAI SISWA

LAMPIRAN 1 DAFTAR NILAI SISWA LAMPIRAN LAMPIRAN 1 DAFTAR NILAI SISWA DAFTAR NILAI MATEMATIKA KELAS VIII A SEMESTER 1 SMP PANGUDI LUHUR TUNTANG NO NAMA Nilai Sebelum Tindakan Nilai Siklus 1 Nilai Siklus 2 1 R1 40 70 40 2 R2 45 58 90

Lebih terperinci

MATEMATIKA. Jilid 2. SMP dan MTs Kelas VIII. J. Dris Tasari. PUSAT KURIKULUM PERBUKUAN Departemen Pendidikan Nasional

MATEMATIKA. Jilid 2. SMP dan MTs Kelas VIII. J. Dris Tasari. PUSAT KURIKULUM PERBUKUAN Departemen Pendidikan Nasional Untuk Sekolah Menengah Pertama dan Madrasah Tsanawiyah MTMTIK Jilid SMP dan MTs Kelas VIII J. ris Tasari PUST KURIKULUM PRUKUN epartemen Pendidikan Nasional Hak cipta pada Kementerian Pendidikan Nasional.

Lebih terperinci

SOAL DAN PEMBAHASAN OSN 2018 KABUPATEN SUMBA TIMUR NUSA TENGGARA TIMUR

SOAL DAN PEMBAHASAN OSN 2018 KABUPATEN SUMBA TIMUR NUSA TENGGARA TIMUR SOAL DAN PEMBAHASAN OSN 08 KABUPATEN SUMBA TIMUR NUSA TENGGARA TIMUR Oleh : SUKAMTO, S.Pd.,Gr Guru Matematika SMPN Kambata Mapambuhang. Suku keempat, suku ketujuh, suku kesepuluh, dan suku ke-00 suatu

Lebih terperinci

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : ALJABAR

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : ALJABAR MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : ALJABAR STANDAR KOMPETENSI LULUSAN 2. Memahami operasi bentuk aljabar, konsep persamaan dan pertidaksamaan linear, persamaan

Lebih terperinci

RENCANA PELAKSANAN PEMBELAJARAN ( R P P ke - 1)

RENCANA PELAKSANAN PEMBELAJARAN ( R P P ke - 1) RENCANA PELAKSANAN PEMBELAJARAN ( R P P ke - ) A. Identitas Sekolah : SMP Negeri Gerokgak Mata Pelajaran : Matematika Kelas / Semester : VIII (delapan ) / Ganjil Standar Kompetensi :. Memahami bentuk aljabar,

Lebih terperinci

2) Drs. Mustafa, M.Pd., selaku Kepala Dinas Pendidikan Kota Langsa.

2) Drs. Mustafa, M.Pd., selaku Kepala Dinas Pendidikan Kota Langsa. Ucapan Terima Kasih Syukur Alhamdulillah, akhirnya kami dapat menyelesaikan Lembar Kerja Siswa (LKS) Matematika untuk SMP/MTs Kelas VIII Semester 1 dengan bantuan berbagai pihak. Untuk itu, pada kesempatan

Lebih terperinci

diunduh dari

diunduh dari diunduh dari http://www.pustakasoal.com Pusat Perbukuan Departemen Pendidikan Nasional Hak ipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Hak ipta uku ini dibeli oleh Departemen Pendidikan

Lebih terperinci

SMP / MTs Mata Pelajaran : Matematika

SMP / MTs Mata Pelajaran : Matematika Kunci Jawaban Latihan Soal Ujian Nasional 010 Sekolah Menengah Pertama / Madrasah Tsanawiyah SMP / MTs Mata Pelajaran : Matematika 1. Jawab: b Untuk menentukan hasil dari suatu akar telebih dahulu cari

Lebih terperinci

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor

Suku Banyak. A. Pengertian Suku Banyak B. Menentukan Nilai Suku Banyak C. Pembagian Suku Banyak D. Teorema Sisa E. Teorema Faktor Bab 5 Sumber: www.in.gr Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, sifat, dan aturan fungsi komposisi dalam pemecahan masalah; menggunakan konsep, sifat, dan aturan fungsi invers

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 007

Lebih terperinci

Sifat 1 Untuksebarang bilangan rasional a tak nol dan sebarang bilangan bulat m dan n, berlaku a m. a m = a m + n

Sifat 1 Untuksebarang bilangan rasional a tak nol dan sebarang bilangan bulat m dan n, berlaku a m. a m = a m + n Bilangan Berpangkat Kita ingat kembali bahwa untuk bilangan-bilangan cacah a, m, dan n dengan a 0, berlaku: 1 a m = a a a a (sebanyak m faktor) a m a n = a m + n a 0 = 1, di mana a 0 Notasi-notasi di atas

Lebih terperinci

UJIAN NASIONAL SMP/MTs

UJIAN NASIONAL SMP/MTs UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2007/2008 Mata Pelajaran Jenjang : Matematika : SMP/MTs MATA PELAJARAN Hari/Tanggal : Selasa, 6 Mei 2008 Jam : 08.00-10.00 WAKTU PELAKSANAAN PETUNJUK UMUM 1. Isikan

Lebih terperinci

PREDIKSI UN 2012 MATEMATIKA SMP

PREDIKSI UN 2012 MATEMATIKA SMP Dibuat untuk persiapan menghadapi UN 2012 PREDIKSI UN 2012 MATEMATIKA SMP Lengkap dengan kisi-kisi dan pembahasan Mungkin (tidak) JITU 12 1. Menghitung hasil operasi tambah, kurang, kali dan bagi pada

Lebih terperinci

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. SOAL DAN JAWABAN TENTANG NILAI MUTLAK Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Jawaban: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut.

Lebih terperinci

Semester 1 - Edisi v15

Semester 1 - Edisi v15 KTSP Matematika SMP/MTs Kelas VIII-A P a g e Spesial Siswa Yoyo Apriyanto, S.Pd Diktat Matematika SMP/MTs Kelas VII-A Semester - Edisi v + Ringkasan Materi + Soal dan Pembahasan + Soal Uji Kompetensi Siswa

Lebih terperinci

a. 7x 2-5x + 3 = 0 a=, b=, c= b. 4x 2 + 2x = 0 a=, b=, c= e. 3k 2 = -7k a=, b=, c= f. 8n + 14n 2 = 5n +3 a=, b=, c= g. 2(x 2-5x)= x 2 + 3x a=, b=, c=

a. 7x 2-5x + 3 = 0 a=, b=, c= b. 4x 2 + 2x = 0 a=, b=, c= e. 3k 2 = -7k a=, b=, c= f. 8n + 14n 2 = 5n +3 a=, b=, c= g. 2(x 2-5x)= x 2 + 3x a=, b=, c= Nama Siswa Kelas : : KOMPETENSI DASAR (KURIKULUM 2013): 9 Mendeskripsikan berbagai bentuk ekspresi yang dapat diubah menjadi persamaan kuadrat. 10 Mendeskripsikan persamaan dan fungsi kuadrat, memilih

Lebih terperinci

2. Pembahasan: Aturan penjumlahan dan pengurangan pecahan dengan terlebih dahulu menyamakan penyebutnya.

2. Pembahasan: Aturan penjumlahan dan pengurangan pecahan dengan terlebih dahulu menyamakan penyebutnya. PEMBAHASAN SOAL MATEMATIKA 1. Pembahasan: Urutan pengoperasian bilangan bulat adalah: a. Perkalian, pembagian, penjumlahan, pengurangan b. Dalam hal perkalian dan pembagian, atau penjumlahan dan pengurangan

Lebih terperinci

SOAL UJI COBA MATEMATIKA DKI JAKARTA 20 FEBRUARI 2018 D. 97

SOAL UJI COBA MATEMATIKA DKI JAKARTA 20 FEBRUARI 2018 D. 97 SOAL UJI COBA MATEMATIKA DKI JAKARTA 0 FEBRUARI 08. Hasil dari 8 ( )adalah... A. B. 0 C. 8 D. 8. Hasil dari 5 - : adalah... A. B. C. D. 9 9. Hasil dari -./ - 0 A. B. z C. z D. z 5 -. adalah.... Hasil dari

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima BAB II KETERBAGIAN 2.1 Pendahuluan Pada pertemuan minggu ke-3, dan 4 ini dibahas konsep keterbagian, algoritma pembagian dan bilangan prima pada bilangan bulat. Relasi keterbagian pada himpunan semua bilangan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2006 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2007

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2006 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2007 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 006 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 007 Bidang Matematika Waktu : 3,5 Jam DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

1. BARISAN ARITMATIKA

1. BARISAN ARITMATIKA MATEMATIKA DASAR ARITMATIKA BARISAN ARITMATIKA 1. BARISAN ARITMATIKA Sering disebut barisan hitung, adalah barisan bilangan yang setiap sukunya diperoleh dari suku sebelumnya dengan menambah atau mengurangi

Lebih terperinci

Kumpulan Soal Olimpiade Tingkat SMP dan Pembahasannya

Kumpulan Soal Olimpiade Tingkat SMP dan Pembahasannya Kumpulan Soal Olimpiade Tingkat SMP dan Pembahasannya Nama : Ayu Dwi Asnantia Nim : 09320042 Soal Pilihan Ganda!! 1. Jika a + b = 1, b + c = 2, dan c + a = 3, maka a + b + c =... a. 2 b. 3 c. 4 d. 5 e.

Lebih terperinci

Matematika Teknik Dasar-2 4 Aljabar Vektor-1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 4 Aljabar Vektor-1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 4 Aljabar Vektor-1 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Kuantitas Skalar dan Vektor Kuantitas Fisis dibagi menjadi dua, yaitu: 1. Kuantitas skalar:

Lebih terperinci

matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN

matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN K-1 Kelas X matematika WAJIB PERTIDAKSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan linear

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 200

Lebih terperinci

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN. MARZAN NURJANAH, S.Pd.

BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN. MARZAN NURJANAH, S.Pd. BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN MARZAN NURJANAH, S.Pd. Agenda Pengertian dan Sifat Eksponen Persamaan Eksponen Pertidaksamaan Eksponen Latihan Soal Agenda Pengertian

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

C. 30 Januari 2001 B. 29 Januari 2001

C. 30 Januari 2001 B. 29 Januari 2001 1. Notasi pembentuk himpunan dari B = {1, 4, 9} adalah... A. B = {x x kuadrat tiga bilangan asli yang pertama} B. B = {x x bilangan tersusun yang kurang dari 10} C. B = {x x kelipatan bilangan 2 dan 3

Lebih terperinci

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus :

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : RUMUS-RUMUS PERSAMAAN KUADRAT Bentuk umum: ax 2 + bx + c = 0, a 0 AKAR-AKAR PERSAMAAN KUADRAT Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : X 1.2 = Dengan : D = b 2 4ac, dan

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP SOL SELEKSI TINGKT KOT/KUPTEN OLIMPIE SINS NSIONL 7 ING MTEMTIK SMP. SOL PILIHN GN. Urutan ilangan-bilangan 5555, 5, dan dari yang terkecil sampai yang terbesar adalah. a. 5555, 5, dan b. 5,, dan 5555

Lebih terperinci

HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS.

HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS. 15, 20, 23, 25 HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS. Dst. KESIMPULAN : (hubungkan dengan SIKAP yang harus Anda miliki untuk memilih dan memberikan alasan) PROBLEM

Lebih terperinci

Modul 05 Persamaan Linear dan Persamaan Linear Simultan

Modul 05 Persamaan Linear dan Persamaan Linear Simultan Modul 05 Persamaan Linear dan Persamaan Linear Simultan 5.1. Persamaan Linear Persamaan adalah pernyataan kesamaan antara dua ekspresi aljabar yang cocok untuk bilangan nilai variable tertentu atau variable

Lebih terperinci

OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009

OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009 OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 009 Mata pelajaran Matematika Teknologi Kerjasama Dengan FMIPA Universitas Diponegoro Dan Dinas Pendidikan Propinsi Jawa Tengah OLIMPIADE SAINS TERAPAN

Lebih terperinci

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR Persamaan linear Bentuk umun persamaan linear satu vareabel Ax + b = 0 dengan a,b R ; a 0, x adalah vareabel Contoh: Tentukan penyelesaian dari 4x-8 = 0 Penyelesaian.

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 1. Hasil dari 17 - ( 3 x (-8) ) adalah... A. 49 B. 41 C. 7 D. -41 BAB II Bentuk Aljabar - perkalian/pembagian mempunyai tingkat

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2007/2008

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2007/2008 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2007/2008 1. Hasil dari 1.764 + 3.375 adalah... A. 53 B. 57 C.63 D. 67 BAB VIII BILANGAN BERPANGKAT 4 2 15 1.764 3.375 4 x 4 16 1 3 1 1 64

Lebih terperinci