STATISTIK PERTEMUAN VI

Save this PDF as:
Ukuran: px
Mulai penontonan dengan halaman:

Download "STATISTIK PERTEMUAN VI"

Transkripsi

1 STATISTIK PERTEMUAN VI

2 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat

3 1.1 Pendahuluan Definisi 1: Ruang sampel adalah Himpunan semua hasil yang mungkin dari suatu percobaan acak. Notasi : S Definisi : Kejadian adalah himpunan bagian dari ruang sampel. Sifat : Kejadian A dan B dikatakan saling lepas jika A B Prostok-1-firda 3

4 Jika A suatu kejadian, maka peluang kejadian A, ditulis P( A)atau P{ A} dengan sifat: ( i)0 P( A) 1 ( ii) P( S) 1 dan P( ) 0. ( iii) Untuksetiapkejadian A, P( A') 1 P( A). Jika A B,maka P( A) P( B). Untuk setiap kejadian A dan B berlaku P( A B) P( A) P( B) P( AB). Kejadian A dan B dikatakan saling bebas jika P( AB) P( A) P( B). Prostok-1-firda 4

5 Jika A dan B dua kejadian, dengan PA ( ) 0, peluang bersyarat B diberikan A, didefinisikan sebagai: P B A P( A B) PA ( ) Teorema Bayes : A, A,..., Ak Jika kejadian-kejadian 1 adalah partisi dari ruang sampel S maka untuk kejadian B sembarang dari S sedemikian sehingga P(B)>0 berlaku: P( A ) ( ). ( ) i B P B Ai P Ai P( Ai B) k PB ( ) P( B A ). P( A ) i1 i i 5

6 1. Variabel Acak Definisi 3: Variabel acak adalah suatu fungsi dari ruang sampel ke himpunan bilangan real. (R) Variabel acak dinyatakan dengan huruf kapital, sedangkan nilainya dinyatakan dengan huruf kecil. Jika X variabel acak, maka nilainya dinyatakan dengan x, dan peluang kejadian X bernilai kurang dari atau sama dengan x dinyakan dengan P( X x). 6

7 Klasifikasi Variabel Acak: 1. Variabel Acak Diskrit Variabel acak X dikatakan variabel acak diskrit jika semua nilai yang mungkin dari X membentuk himpunan bilangan terbilang (berupa bilangan cacah).. Variabel Acak Kontinu Variabel acak X dikatakan variabel acak kontinu jika semua nilai yang mungkin dari X membentuk himpunan bilangan tak terbilang (berupa bilangan real). 7

8 Definisi 4: Fungsi kepadatan peluang untuk variabel acak diskrit disebut fungsi massa peluang (fmp) atau probability mass function (pmf), atau fungsi peluang, ditulis : p( x) P( X x) Fungsi kepadatan peluang untuk variabel acak kontinu disebut fungsi padat peluang (fpp) atau probability density function (pdf) atau fungsi densitas, ditulis f(x). b P( a X b) f ( x) dx a 8

9 Definisi 5: Fungsi distribusi komulatif (cdf) dari variabel acak X adalah: F( x) P( X x), x Untuk variabel acak diskrit : F( x) P( X x) p( t) tx Untuk variabel acak kontinu : F( x) P( X x) f ( t) dt x 9

10 Definisi 6: (i) Jika X variabel acak diskrit dengan fungsi masa peluang p(x), maka nilai ekspektasi dari X didefinisikan sebagai: E( X ) xp( x) x (ii) Jika X variabel acak kontinu dengan fungsi densitas peluang f(x), maka nilai ekspektasi dari X didefinisikan sebagai: E( X ) x f ( x) dx Prostok-1-firda 10

11 Definisi 7: Variansi dari variabel acak X dinyatakan sebagai: Definisi 8: Var X E X E X ( ) ( ) ( ) Fungsi pembangkit momen (fpm/mgf) dari variabel acak X merupakan salah satu bentuk khusus ekspektasi, yaitu M () t E e X tx tx e p( x), x tx e f ( x) dx, X variabel acak diskrit X variabel acak kontinu 11

12 1.3 Distribusi variabel acak diskrit a. Distribusi Bernoulli pmf: p x p q x x 1x ( ), 0,1 mean: E( X ) p variansi: Var( X ) p(1 p) pq 1

13 b. Distribusi Binomial Peubah acak X menyatakan banyaknya sukses dalam n usaha percobaan binomial pmf: n x nx p( x) p q, x 0,1,..., n x mean: E( X ) np varians: Var( X ) npq 13

14 c. Distribusi Geometri Peubah acak X yang menyatakan banyaknya usaha sampai terjadinya sukses pertama kali pmf: p x pq x x1 ( ), 1,,3,... mean: varians: EX ( ) 1 p Var ( X ) q p 14

15 d. Distribusi Poisson Peubah acak X menyatakan banyaknya sukses dalam n usaha percobaan poison pmf: x e p( x), x 0,1,,... x! mean: EX ( ) varians: Var( X ) 15

16 1.4 Distribusi variabel acak kontinu a. Distribusi Uniform pdf: mean: varians: 1 f ( x), a x b b a E( X) a Var ( X ) b ( ) b a 1 16

17 b. Distribusi Eksponensial pdf: x f ( x) e, x 0 mean: EX ( ) 1 varians: Var( X ) 1 17

18 c. Distribusi Normal pdf: 1 e 1 ( x ) f ( x), x mean: EX ( ) varians: Var( X ) 18

19 X Bernoulli ( p) Distribusi Peluang Diskrit Fungsi peluang (Pmf) Mean Varians i p x p q x x 1x ( ), 0,1 Mgf p pq t q pe X B( n, p) n x nx p( x) p q, x x 0,1,..., n n np npq ( t q pe X GEO( p) p x x1 ( ) pq, x 1,,3,... 1 p q pe t p (1 qe ) t X POI ( ) x e px ( ), x! x 0,1,,... e (1 e ) t 19

20 Distribusi Peluang Kontinu Fungsi densitas (Pdf) Mean Variansi Mgf X U( a, b) 1 f ( x), a x b b a a b ( b a) 1 bt at e e t( b a) X EXP( ) x f ( x) e, x t X GAM (, k) X N (, ) k k 1 x x e f ( x), x 0 ( k) 1 1 ( x ) f( x) e, x k k t 1 t e k t 0

21 1.5 Distribusi multivariat a. Jika X dan Y variabel acak diskrit, maka (i) Pmf bersama (gabungan) dari X dan Y : p ( x, y) P( X x, Y y) XY (ii) Distribusi bersama dari X dan Y : F ( x, y) p ( a, b) XY ax by (iii) Pmf marjinal dari X : XY px ( x) pxy ( x, y) (iv) Pmf marjinal dari Y : py ( y) pxy ( x, y) x y 1

22 (v) Pmf bersyarat dari X diberikan Y=y : pxy ( x, y) px Y ( x y), py ( y) 0 p ( y) Y (vi) Distribusi bersyarat dari X diberikan Y=y : pxy ( a, y) FX Y ( x y), py ( y) 0 p ( y) ax Y (vii) Ekspektasi bersyarat dari X diberikan Y=y : E[ X Y y] x. p ( x y) XY x Prostok-1-firda

23 b. Jika X dan Y variabel acak kontinu, maka (i) Pdf bersama (gabungan) dari X dan Y : f XY ( x, y) F( x, y) y x (ii) Distribusi bersama dari X dan Y : y x F ( x, y) f ( s, t) ds dt XY (iii) Pdf marjinal dari X : XY f X ( x) f XY ( x, y) dy (iv) Pdf marjinal dari Y : fy ( y) f XY ( x, y) dx x y 3

24 (v) Pdf bersyarat dari X diberikan Y=y : f XY ( x, y) f XY ( x y), f ( y) 0 f ( y) Y (vi) Distribusi bersyarat dari X diberikan Y=y : x f XY ( t, y) FXY ( x y) dt f ( y) Y (vii) Ekspektasi bersyarat dari X diberikan Y=y : ( ) E X Y y xf XY x y dx 4

25 E[ X Y] E[ X ] E[ Y] Kovariansi dari X dan Y: Cov( X, Y) E[ XY ] E[ X ] E[ Y] Koefisien korelasi dari X dan Y: ( XY, ) Cov( X, Y) Var( X ). Var( Y ) 5

26 Soal 1. Jika X,Y variabel acak saling bebas dan masingmasing berdistribusi Poisson dengan mean dan. Tunjukkan bahwa variabel acak X+Y berdistribusi Poisson dengan mean Jika X variabel acak non negatif dengan distribusi F( x). Asumsikan F(0) 0,, tunjukkan bahwa a. E( X ) (1 F( x)) dx 0 1. ( n n be X ) nx (1 F( x)) dx Prostok-1-firda 0 6

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Soal 1: Misalkan fungsi peluang gabungan dari peubah acak X dan Y berbentuk: p(x,y) =(1/21) (x + y) ; x = 0,1, 2, 3 y = 1, 2 Hitung E(2XY 2 1)

Soal 1: Misalkan fungsi peluang gabungan dari peubah acak X dan Y berbentuk: p(x,y) =(1/21) (x + y) ; x = 0,1, 2, 3 y = 1, 2 Hitung E(2XY 2 1) 1 Pokok Bahasan HANDOUT PERKULIAHAN : Ekspektasi Dua Peubah Acak Diskrit URAIAN POKOK PERKULIAHAN A. Nilai Ekspektasi Gabungan Jika X dan Y adalah dua peubah acak diskrit, p(x,y) adalah nilai fungsi peluang

Lebih terperinci

Variabel acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur dalam ruang sampel. Bila suatu ruang sampel berisi

Variabel acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur dalam ruang sampel. Bila suatu ruang sampel berisi DISTRIBUSI PROBABILITAS Variabel acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur dalam ruang sampel. Bila suatu ruang sampel berisi sejumlah kemungkinan terhingga atau

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Variabel random adalah fungsi yang mengasosiasikan suatu bilangan real dengan setiap elemen dalam ruang sampel dan mendapatkan probabilitas dari suatu variabel random pada nilai

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY PENGANTAR PROBABILITAS GANGGA ANURAGA POKOK BAHASAN Konsep dasar probabilitas Teori himpunan Permutasi Kombinasi Koefisien binomial Koefisien multinomial Probabilitas Aksioma probabilitas Probabilitas

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab Peubah Acak. Konsep Dasar Peubah Acak Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh peubah acak: Jika X adalah peubah acak banyaknya sisi muka yang muncul pada

Lebih terperinci

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar 1 EKSPEKTASI (HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 0 September 01 Utriweni Mukhaiyar Ekspektasi Suatu Peubah Acak Misalkan X peubah acak Ekspektasi dari X EX [ ] xp( X x), jika X peubah acak

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 8-14) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 8:MOMEN VARIABEL RANDOM Mean dan Variansi Fungsi Pembangkit Momen (MGF) 2 Minggu

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan.

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan. RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 306203 Nama Mata Kuliah : Probabilitas Jumlah sks : 3 sks Semester : III Alokasi Waktu

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Seri Pendidikan Aktuaris Indonesia Lia Yuliawati Windiani Erliana

Seri Pendidikan Aktuaris Indonesia Lia Yuliawati Windiani Erliana Seri Pendidikan Aktuaris Indonesia Lia Yuliawati Windiani Erliana 50+ Soal & Jawab Pengantar Teori Peluang dan Matematika Statistik Buku Kerja Soal-soal PAI Mata Ujian Probabilitas dan Statistika October

Lebih terperinci

Distribusi Peluang Gabungan

Distribusi Peluang Gabungan Distribusi Peluang Gabungan EXPERT COURSE #bimbelnyamahasiswa Variabel Acak Random Variabel = chance variable, stochastic variable, variate. Variabel Acak / Random Variabel (Variate) Univariate (Single-variable)

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

Dasar-dasar Statistika Pemodelan Sistem

Dasar-dasar Statistika Pemodelan Sistem Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Peluang terjadinya nilai variabel random X yang meliputi semua nilai ditentukan melalui distribusi peluang. Distribusi peluang suatu variabel random X adalah

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah : Statistika Matematika Pertemuan Ke : 5 Pokok Bahasan : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

A. Distribusi Bernoulli

A. Distribusi Bernoulli HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Beberapa Distribusi Khusus Diskrit URAIAN POKOK PERKULIAHAN A. Distribusi Bernoulli Peubah acak X dikatakan berdistribusi Bernoulli,

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X)

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat

Lebih terperinci

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

RANCANGAN PEMBELAJARAN

RANCANGAN PEMBELAJARAN RANCANGAN PEMBELAJARAN Mata Kuliah : dan Proses Stokastik Semester : Jurusan : Dosen : TIU : respon sistem linear dengan input menggunakan konsep probabilitas dan proses stokastik (C4) No.. Mahasiswa mampu

Lebih terperinci

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 4. Variabel Acak dan Distribusi Probabilitas Prima Kristalina April 2015 1 Outline 1. Definisi

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak STK511 Analisis Statistika Pertemuan 3 Sebaran Peluang Peubah Acak Beberapa Konsep Dasar Percobaan statistika: kegiatan yang hasil akhir keluarannya tidak diketahui di awal, tetapi kemungkinan-kemungkinannya

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

Contoh Solusi PR 2 Statistika & Probabilitas. 1. Semesta dari kejadian adalah: pemilihan 5 soal dari 10 soal. Jumlah kemungkinannya ( 10 = 252.

Contoh Solusi PR 2 Statistika & Probabilitas. 1. Semesta dari kejadian adalah: pemilihan 5 soal dari 10 soal. Jumlah kemungkinannya ( 10 = 252. Contoh Solusi PR Statistika & Probabilitas Semesta dari kejadian adalah: pemilihan soal dari soal Jumlah kemungkinannya ( ) = (a) Kemungkinannya dapat dihitung dengan memilih soal tes dari soal yang anak

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit dan Distribusi Peluang Peubah Acak (Random Variable): Sebuah keluaran numerik yang merupakan hasil dari percobaan (eksperimen) Untuk setiap anggota dari ruang sampel percobaan,

Lebih terperinci

HANDOUT PERKULIAHAN. Pertemuan Ke : 3 : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak

HANDOUT PERKULIAHAN. Pertemuan Ke : 3 : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak HANDOUT PERKULIAHAN Pertemuan Ke : 3 Pokok Bahasan : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak URAIAN POKOK PERKULIAHAN A. Peubah Acak Definisi 1 : Peubah Acak Misalkan E adalah suatu

Lebih terperinci

Sampling dengan Simulasi Komputer

Sampling dengan Simulasi Komputer Modul Sampling dengan Simulasi Komputer PENDAHULUAN Sutawanir Darwis M etode statistika merupakan alat untuk menyelesaikan masalah apabila solusi analitik tidak mungkin diperoleh. Dengan metode statistika

Lebih terperinci

PEUBAH ACAK DAN DISTRIBUSINYA

PEUBAH ACAK DAN DISTRIBUSINYA 4/6/009 Pemetaan (Fungsi) PEUBAH ACAK DAN DISTRIBUSINYA Suatu pemetaan / fungsi Kategori fungsi:. Fungsi titik A B MA 08 Statistika Dasar Dosen : Udjianna S. Pasaribu Utriweni Mukhaiyar Senin, 6 Februari

Lebih terperinci

Fungsi Peluang Gabungan

Fungsi Peluang Gabungan Fungsi Peluang Gabungan MA3181 Teori Peluang 15 September 2014 Utriweni Mukhaiyar Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ingin diasuransikan dengan kategori-kategori yang

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

Joint Distribution Function

Joint Distribution Function DISTRIBUSI PROBABILITAS MARGINAL & BERSYARAT TI2131 TEORI PROBABILITAS MINGGU KE-6 1 Joint Distribution Function Distribusi peluang gabungan dari dua variabel random X dan Y merupakan distribusi peluang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol BAB II TINJAUAN PUSTAKA A. Regresi Regresi adalah suatu studi statistik untuk menjelaskan hubungan dua variabel atau lebih yang dinyatakan dalam bentuk persamaan. Salah satu variabel merupakan variabel

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG2D3 PROBABILITAS DAN STATISTIKA Disusun oleh: INDWIARTI FAKULTAS INFORMATIKA TELKOM UNIVERSITY 1 LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Sebaran Peubah Acak Bersama

Sebaran Peubah Acak Bersama Bab 6 Sebaran Peubah Acak Bersama 6. Peubah Acak Ganda Misalnya terdapat suatu tindakan pelemparan sekeping mata uang seimbang sebanyak 3 kali, dan X adalah peubah acak banyaknya sisi muka yang muncul

Lebih terperinci

BAB 2 MOMEN DAN ENTROPI

BAB 2 MOMEN DAN ENTROPI BAB MOMEN DAN ENTROPI. Satu Peubah Acak (Univariat) Misalkan diketahui suatu peubah acak X. Didefinisikan ekspektasi dari peubah acak X adalah sebagai berikut E [ X ] - P X =, X diskrit = f d, X kontinu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR)

Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR) CNH4S3 Analisis Time Series [Dosen] Aniq A Rohmawati, M.Si [Jadwal] Need to reschedule? [About] The purpose of time series analysis is generally twofold: to understand or model the stochastic mechanism

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I II. PEUBAH ACAK DISKRET II. Peubah Acak Diskret 1 PEUBAH ACAK DISKRET Definisi 2.1. (Peubah Acak) : Peubah Acak Y adalah suatu fungsi yang memetakan seluruh anggota ruang contoh

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

PEUBAH ACAK DAN DISTRIBUSINYA

PEUBAH ACAK DAN DISTRIBUSINYA 8/3/00 PEUBAH ACAK DAN DISTRIBUSINYA MA 8 Analisis Data Utriweni Mukhaiyar 3 Agustus 00 PEMETAAN (FUNGSI) Suatu pemetaan / fungsi Kategori fungsi:. Fungsi titik. Fungsi himpunan A A B B PEUBAH ACAK Peubah

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS SATUAN ACUAN PERKULIAHAN MATA KULIAH : KODE : TIK1010 / SKS : 3 SKS SEMESTER : III / GANJIL WAKTU : 150 Menit JUMLAH PERTEMUAN : 16 x pertemuan (14 x materi kuliah, 2 x Ujian (UTS dan UAS)) 1 ANALISIS

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

Sebaran Peubah Acak Bersama

Sebaran Peubah Acak Bersama Bab 6 Sebaran Peubah Acak Bersama 6. Peubah Acak Ganda Misalnya terdapat suatu tindakan pelemparan sekeping mata uang seimbang sebanyak 3 kali, dan X adalah peubah acak banyaknya sisi muka yang muncul

Lebih terperinci

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar DISTRIBUSI DISKRIT Uniform (seragam) Bernoulli Binomial Poisson Beberapa distribusi lainnya : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 081 Statistika Dasar Utriweni Mukhaiyar 5 Maret

Lebih terperinci

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang. MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial

Lebih terperinci

FUNGSI PEMBANGKIT MOMEN UNTUK MEMENUHI TUGAS MATAKULIAH. Statistika Matematika. Yang dibina oleh Bapak Hendro Permadi. Oleh :

FUNGSI PEMBANGKIT MOMEN UNTUK MEMENUHI TUGAS MATAKULIAH. Statistika Matematika. Yang dibina oleh Bapak Hendro Permadi. Oleh : FUNGSI PEMBANGKIT MOMEN UNTUK MEMENUHI TUGAS MATAKULIAH Statistika Matematika Yang dibina oleh Bapak Hendro Permadi Oleh : Intan Putri Natari 10311418961 Nurroh Fitri A 1031419469 Reza Taufikurachman 1031419470

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E

Lebih terperinci

VARIABEL RANDOM DAN DISTRIBUSI PELUANG

VARIABEL RANDOM DAN DISTRIBUSI PELUANG 1 VARIABEL RANDOM DAN DISTRIBUSI PELUANG Dr. Vita Ratnasari, M.Si Definisi Variabel Random 2 Variabel random ialah Suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur dalam ruang sampel.

Lebih terperinci

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA VARIABEL RANDOM Misalkan (Ω, A, P) ruang probabilitas dan R = {x < x < } dan B : Borel field pada R. Andaikan X : Ω R dan untuk setiap A R, kita definisikan

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

DISTRIBUSI PROBABILITAS (PELUANG)

DISTRIBUSI PROBABILITAS (PELUANG) DISTRIBUSI PROBABILITAS (PELUANG) Distribusi Probabilitas (Peluang) Distribusi? Probabilitas? Distribusi Probabilitas? JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Distribusi = sebaran,

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 1-7) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 1:HIMPUNAN Operasi Himpunan Sifat-Sifat Operasi Himpunan 2 Minggu 2:COUNTING TECHNIQUE

Lebih terperinci

Seputar UJIAN Informasi Situs. 0.2 Materi Ujian - I. 0.3 Materi Ujian - II. Info Kuliah:

Seputar UJIAN Informasi Situs. 0.2 Materi Ujian - I. 0.3 Materi Ujian - II. Info Kuliah: 0.1 Informasi Situs Seputar UJIAN 1 Info Kuliah: http://personal.fmipa.itb.ac.id/khreshna/courses/ 0.2 Materi Ujian - I Materi Ujian - I: 1. Ruang sampel, kejadian 2. Peluang (bersyarat suatu kejadian

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR 24 FEBRUARI 2011

MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR 24 FEBRUARI 2011 Fungsi Peluang Gabungan MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR 24 FEBRUARI 2011 Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ditawarkan dengan kategori-kategori yang berbeda.

Lebih terperinci