BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer"

Transkripsi

1 BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat penerapannya dalam kehidupan sehari-hari di berbagai bidang. Salah satunya adalah teori probabilitas yang memuat variabel random dan distribusinya. Variabel random dan distribusinya sangat berguna di bidang produksi, peramalan, penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer (Walpole dan Myers, 2007). Variabel random tidak dapat terbentuk tanpa adanya ruang sampel karena variabel random merupakan fungsi yang terdefinisi dalam ruang sampel. Ruang sampel adalah himpunan dari semua hasil yang mungkin dari suatu percobaan. Variabel random dibagi menjadi variabel random diskrit dan variabel random kontinu. Variabel random-variabel random tersebut dapat dibentuk distribusinya. Fungsi yang berkaitan dengan variabel random disebut probability density function ( ) atau fungsi kepadatan peluang. Dari tersebut dapat diperoleh ukuran lain seperti ekspektasi dan variansinya. Variabel random kontinu merupakan fungsi yang terdefinisi dalam ruang sampel kontinu, yaitu ruang sampel tak berhingga yang berupa ruas bilangan/ interval. Variabel random kontinu memiliki distribusi kontinu. 1

2 2 Distribusi Gamma dan distribusi Beta merupakan distribusi kontinu yang berturut-turut dibentuk dari fungsi Gamma dan fungsi Beta. Jika merupakan variabel random kontinu berdistribusi Gamma dengan parameter bentuk dan parameter skala maka dapat dinotasikan dengan. Jika merupakan variabel random kontinu berdistribusi Beta dengan parameter bentuk dan maka dapat dinotasikan dengan. Masing-masing dari distribusi tersebut dapat diperoleh fungsi kepadatan peluang (probability density function/ ) sehingga dapat diturunkan ukuran lain pula seperti ekspektasi dan variansinya. Distribusi Gamma dan distribusi Beta memiliki kaitan yang sangat erat karena distribusi Beta dibangun dari dua variabel random kontinu yang berdistribusi Gamma. Jika diketahui dan, dan U X X Y, dengan menggunakan metode transformasi Jacobian, maka diperoleh. Distribusi yang dibentuk dari dua variabel random dalam ruang sampel yang sama disebut distribusi bivariat. Jika terdiri dari tiga variabel random disebut distribusi trivariat. Sedangkan jika lebih dari tiga variabel random disebut distribusi multivariat. Distribusi-distribusi tersebut sering dinamakan sebagai distribusi bersama (joint distribution). Fungsi yang berkaitan dengan variabel random-variabel random tersebut disebut bersama. Selain pdf bersama, dapat diperoleh ekspektasi, variansi, dan momennya. Namun apabila variabel random-variabel random tersebut tidak

3 3 bebas/ bergantung (dependent), maka diperoleh pula variansi dari varibelvariabel random tersebut yang disebut dengan kovarian. Salah satu macam distribusi bivariat adalah distribusi Gamma Bivariat. Sesuai dengan namanya, maka distribusi Gamma Bivariat disyaratkan mempunyai dua variabel random, misal sebagai variabel random pertama dan sebagai variabel random ke dua, dimana dan merupakan variabel random yang memiliki distribusi yang sama yaitu berdistribusi Gamma. Apabila variabel random-variabel random yang diberikan tidak semuanya berdistribusi Gamma, syarat terbentuknya distribusi Gamma Bivariat tentunya tidak terpenuhi. Namun pada kasus ini, jika diberikan variabel random kontinu yang berdistribusi Gamma dan Beta, maka berdasarkan kaitan antara distribusi Gamma dan Beta, variabel random dapat ditransformasikan ke dalam dan sedemikian rupa sehingga masing-masing dan berdistribusi Gamma. Dalam hal ini, dapat dibentuk distribusi Gamma Bivariat dari dan jika diberikan variabel random dan yang berdistribusi Gamma dan Beta. Berdasarkan uraian di atas maka perlu dikaji bagaimana cara membangun distribusi Gamma Bivariat berdasarkan karakteristik distribusi Gamma dan distribusi Beta. Selanjutnya akan dibangun pula bersama, ekspektasi, dan kovarian dari distribusi Gamma Bivariat tersebut.

4 4 B. Rumusan Masalah Berdasarkan latar belakang di atas, permasalahan yang timbul adalah: 1. Bagaimana membangun distribusi Gamma Bivariat berdasarkan karakteristik distribusi Gamma dan distribusi Beta? 2. Bagaimana membangun bersama, ekspektasi, dan kovarian dari distribusi Gamma Bivariat berdasarkan karakteristik distribusi Gamma dan distribusi Beta? C. Tujuan Penelitian Tujuan dalam penelitian ini adalah: 1. Membangun distribusi Gamma Bivariat berdasarkan karakteristik distribusi Gamma dan distribusi Beta 2. Membangun bersama, ekspektasi, dan kovarian dari distribusi Gamma Bivariat berdasarkan karakteristik distribusi Gamma dan Beta. D. Manfaat Penelitian 1. Bagi Peneliti Sebagai tambahan referensi tentang distribusi Gamma Bivariat berdasarkan karakteristik distribusi Gamma dan distribusi Beta serta bersama, ekspektasi, dan kovarian dari distribusi Gamma Bivariat tersebut.

5 5 2. Bagi Pembaca Sebagai tambahan pengetahuan bidang matematika statistika mengenai distribusi Gamma Bivariat berdasarkan karakteristik distribusi Gamma dan distribusi Beta.

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

1 PROBABILITAS. Pengertian

1 PROBABILITAS. Pengertian PROBABILITAS Pengertian Pada awal perkuliahan, sebelum menjelaskan probabilitas, dibahas sepintas sebagai pengantar tentang eksperimen, titik sampel, ruang sampel, dan peristiwa, serta variabel random

Lebih terperinci

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam pembicaraan statistik, jawaban yang diinginkan adalah jawaban untuk ruang lingkup yang lebih luas, yakni populasi. Tetapi objek dari studi ini menggunakan sampel

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Distribusi eksponensial tergenaralisir (Generalized Eponential Distribution) pertama kali diperkenalkan oleh Gupta dan Kundu pada tahun 1999. Distribusi ini diambil

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 4 BAB II KAJIAN PUSTAKA Pada sub bab ini akan diberikan beberapa definisi dan teori yang mendukung rancangan Sequential Probability Ratio Test (SPRT) yaitu percobaan dan ruang sampel, peubah acak dan fungsi

Lebih terperinci

PENENTUAN ESTIMASI INTERVAL DARI DISTRIBUSI NORMAL DENGAN METODE BAYES SKRIPSI. Oleh : Pramita Elfa Diana Santi J2E

PENENTUAN ESTIMASI INTERVAL DARI DISTRIBUSI NORMAL DENGAN METODE BAYES SKRIPSI. Oleh : Pramita Elfa Diana Santi J2E PENENTUAN ESTIMASI INTERVAL DARI DISTRIBUSI NORMAL DENGAN METODE BAYES SKRIPSI Oleh : Pramita Elfa Diana Santi JE 005 40 PROGRAM STUDI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini diberikan beberapa konsep dasar seperti teorema dan beberapa definisi sebagai landasan dalam penelitian ini. Konsep dasar ini berkaitan dengan masalah yang dibahas dalam

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

Dasar-dasar Statistika Pemodelan Sistem

Dasar-dasar Statistika Pemodelan Sistem Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

II. TINJAUAN PUSTAKA. kontinu. Bentuk kurva distribusi logistik adalah simetri dan uni-modal. Bentuk

II. TINJAUAN PUSTAKA. kontinu. Bentuk kurva distribusi logistik adalah simetri dan uni-modal. Bentuk 5 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan beberapa tinjauan pustaka yang digunakan penulis pada penelitian ini, antara lain : 2.1 Distribusi Logistik Distribusi logistik merupakan distribusi

Lebih terperinci

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi DISTRIBUSI SAMPLING Definisi : distribusi sampling adalah distribusi peluang untuk nilai statistik yang diperoleh dari sampel acak untuk menggambarkan populasi. 1. Distribusi rata rata Misal sampel acak

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG2D3 PROBABILITAS DAN STATISTIKA Disusun oleh: INDWIARTI FAKULTAS INFORMATIKA TELKOM UNIVERSITY 1 LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan

Lebih terperinci

Disusun oleh: 1. Diah Sani Susilawati ( / 7B) 2. Farid Hidayat ( / 7B) 3. Rico Nurcahyo ( / 7B)

Disusun oleh: 1. Diah Sani Susilawati ( / 7B) 2. Farid Hidayat ( / 7B) 3. Rico Nurcahyo ( / 7B) DISTRIBUSI MARGINAL DAN DISTRIBUSI GABUNGAN Disusun guna memenuhi tugas mata kuliah Statistika Matematika Dosen Pengampu: Supandi, M.Si Disusun oleh:. Diah Sani Susilawati (8355/ 7B). Farid Hidaat (836/

Lebih terperinci

Joint Distribution Function

Joint Distribution Function DISTRIBUSI PROBABILITAS MARGINAL & BERSYARAT TI2131 TEORI PROBABILITAS MINGGU KE-6 1 Joint Distribution Function Distribusi peluang gabungan dari dua variabel random X dan Y merupakan distribusi peluang

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

Medan, Juli Penulis

Medan, Juli Penulis 9. Seluruh teman-teman seperjuangan di Ekstensi Matematika Statistika, dan semua pihak yang turut membantu menyelesaikan skripsi ini. Sepenuhnya penulis menyadari bahwa dalam penulisan skripsi ini masih

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan 4 II. LANDASAN TEORI Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan Schmeiser (1974), yang memiliki empat parameter dari pengembangan distribusi Lambda Tukey. Keluarga distribusi

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI GHAZALI WARDHONO 090823040 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA

RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER (FILKOM) UNIVERSITAS PUTRA INDONESIA YPTK PADANG LEMBAR PENGESAHAN Rencana

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi Garansi dapat diartikan sebagai jaminan yang diberikan secara tertulis oleh pabrik atau supplier kepada

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS SATUAN ACUAN PERKULIAHAN MATA KULIAH : KODE : TIK1010 / SKS : 3 SKS SEMESTER : III / GANJIL WAKTU : 150 Menit JUMLAH PERTEMUAN : 16 x pertemuan (14 x materi kuliah, 2 x Ujian (UTS dan UAS)) 1 ANALISIS

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

Menentukan Keandalan Komponen Mesin Produksi Pada Model Stress Strength yang Berdistribusi Gamma

Menentukan Keandalan Komponen Mesin Produksi Pada Model Stress Strength yang Berdistribusi Gamma Menentukan Keandalan Komponen Produksi Pada Model Stress Strength yang Berdistribusi Gamma Muh Nurcahyo Utomo, Farida Agustini W. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut

Lebih terperinci

terhadap kesehatan persalinan. Sehingga tak heran jika negara-negara maju di

terhadap kesehatan persalinan. Sehingga tak heran jika negara-negara maju di Nama: Ummi Fadilah NIM: 12/339683/PPA/3995 Teori Resiko Aktuaria PROSES PEMODELAN PENDAHULUAN Salah satu ciri dari negara maju adalah pemerintah dan masyarakat yang peduli terhadap kesehatan persalinan.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Ekspektasi Satu Peubah Acak Kontinu

Ekspektasi Satu Peubah Acak Kontinu Chandra Novtiar 0857948015 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMputer Semester : 4

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMputer Semester : 4 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMputer Semester : 4 Berlaku mulai : Genap/2011 MATA KULIAH : STATISTIKA DAN PROBABILITAS KODE MATA KULIAH / SKS : 410202061 / 3 SKS MATA

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 \ BAB I PENDAHULUAN 1.1 Latar Belakang Informasi-informasi faktual yang diperoleh berdasarkan hasil observasi maupun penelitian sangatlah beragam. Informasi yang dirangkum sedemikian rupa disebut dengan

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan:

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan: II. TINJAUAN PUSTAKA Dalam tinjauan pustaka penelitian Karakteristik Penduga Parameter Distribusi Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan beberapa definisi dan teorema yang

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata Probabilitas dan Statistika Adam Hendra Brata Himpunan nilai-nilai yang mungkin dari peubah acak X merupakan himpunan tak terhitung yaitu tidak dapat dinyatakan sebagai {,, 3,., n } atau {,, 3,.} tetapi

Lebih terperinci

Distribusi Weibull Power Series

Distribusi Weibull Power Series Distribusi Weibull Power Series Maulida Yanti 1, Sarini S.Si.,M.Stats 2 1 Mahasiswa Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424 2 Staff Pengajar Departemen Matematika, FMIPA UI, Kampus UI Depok,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan dalam statistika biasanya dirumuskan melalui variabel random yang menjadi perhatian, tetapi fungsi kepadatan probabilitas atau fungsi massa probabilitas

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau BAB II TINJAUAN PUSTAKA 2.1 Proses Stokastik Menurut Gross (2008), proses stokastik adalah himpunan variabel acak Semua kemungkinan nilai yang dapat terjadi pada variabel acak X(t) disebut ruang keadaan

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Distribusi Eksponensial Distribusi eksponensial adalah distribusi yang paling penting dan paling sederhana kegagalan mesin penghitung otomatis dan kegagalan komponen

Lebih terperinci

FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK

FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK Oleh : Entit Puspita Jurusan Pendidikan Matematika Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia ABSTRACT We can

Lebih terperinci

KONSEP DASAR TERKAIT METODE BAYES

KONSEP DASAR TERKAIT METODE BAYES KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan

Lebih terperinci

Penggunaan Statistik Tataan untuk Menentukan Median Contoh Acak dari Distribusi Eksponensial

Penggunaan Statistik Tataan untuk Menentukan Median Contoh Acak dari Distribusi Eksponensial Jurnal Penelitian Sains Volume 3 Nomer A) 3 Penggunaan Statistik Tataan untuk Menentukan Median Contoh Acak dari Distribusi Eksponensial Herlina Hanum Yuli Andriani dan Retno Jurusan Matematika FMIPA Universitas

Lebih terperinci

Pertemuan 8 & 9. Distribusi Probab Multivariat Distr Multivar untuk Kombinasi Linier Uji Hipotesis Kesamaan Mean

Pertemuan 8 & 9. Distribusi Probab Multivariat Distr Multivar untuk Kombinasi Linier Uji Hipotesis Kesamaan Mean Pertemuan 8 & 9 Distribusi Probab Multivariat Distr Multivar untuk Kombinasi Linier Uji Hipotesis Kesamaan Mean Distribusi Normal Multivariat Ingat V.R.Univariat Variabel random univariat X berdistribusi

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan.

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan. II. TINJAUAN PUSTAKA Distribusi generalized,,, adalah salah satu distribusi probabilitas kontinu. Distribusi ini pertama kali diperkenalkan McDonald dan Newey 988 untuk mengestimasi parameter regresi.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fungsi Densitas Definisi 2.1 (Walpole & Myers, 1989) Fungsi adalah fungsi kepadatan peluang peubah acak kontinu, yang biasanya disebut fungsi densitas,yang didefinisikan di atas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pendahuluan Projek R mulai dikembangkan oleh Robert Gentlemean dan Ross Ihaka dari departemen statistika di universitas Auckland pada tahun 1995. R merupakan lanjutan pengembangan

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

Distribusi Peubah Acak

Distribusi Peubah Acak Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG 4 April 2017 Garis Besar Pembahasan FUNGSI

Lebih terperinci

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM.

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. HUKUM ITERASI LOGARITMA TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. 00290 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian BAB II KAJIAN TEORI A. Probabilitas Teorema 2.1 (Walpole, 1992) Probabilitas menunjukan suatu percobaan mempunyai hasil percobaan yang berbeda dan masing-masing mempunyai kemungkinan yang sama untuk terjadi,

Lebih terperinci

INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT. Oleh : ADE CANDRA SISKA NIM: J2E SKRIPSI

INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT. Oleh : ADE CANDRA SISKA NIM: J2E SKRIPSI INFERENSI STATISTIK DISTRIBUSI BINOMIAL DENGAN METODE BAYES MENGGUNAKAN PRIOR KONJUGAT Oleh : ADE CANDRA SISKA NIM: J2E 006 002 SKRIPSI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

II. TINJAUAN PUSTAKA. Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi

II. TINJAUAN PUSTAKA. Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi II. TINJAUAN PUSTAKA 2.1 Distribusi Normal Umum Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi normal umum, jika dan hanya jika fungsi densitasnya berbentuk: ; Penulisan notasi

Lebih terperinci

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar yang akan digunakan dalam pembahasan hasil penelitian ini, antara lain : 2.1 Fungsi Gamma Fungsi gamma merupakan suatu fungsi khusus. Fungsi

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Kajian Generalisasi Distribusi Binomial yang Bertipe COM-Poisson dan Sifat-Sifatnya

Kajian Generalisasi Distribusi Binomial yang Bertipe COM-Poisson dan Sifat-Sifatnya JURNAL SAINS DAN SENI ITS Vol. 4, No.2, 2015 2337-3520 2301-928X Print A-67 Kajian Generalisasi Distribusi Binomial yang Bertipe COM-Poisson dan Sifat-Sifatnya Marselly Dian Saputri, Farida Agustini Widjajati,

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 4. Variabel Acak dan Distribusi Probabilitas Prima Kristalina April 2015 1 Outline 1. Definisi

Lebih terperinci

STATISTIKA MATEMATIKA Probabilitas, Distribusi, dan Asimtosis dalam Statistika

STATISTIKA MATEMATIKA Probabilitas, Distribusi, dan Asimtosis dalam Statistika STATISTIKA MATEMATIKA Probabilitas, Distribusi, dan Asimtosis dalam Statistika Penulis: Prof. Drs. Subanar, Ph.D Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

Menentukan Keandalan Komponen Mesin Produksi Pada Model Stress Strength yang Berdistribusi Gamma

Menentukan Keandalan Komponen Mesin Produksi Pada Model Stress Strength yang Berdistribusi Gamma JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) A-22 Menentukan Keandalan Komponen Produksi Pada Model Stress Strength yang Berdistribusi Gamma Muh Nurcahyo Utomo dan

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA DESSY ROFICA WULANDARI SUHENDRA PRADESA

MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA DESSY ROFICA WULANDARI SUHENDRA PRADESA MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA 12611006 DESSY ROFICA WULANDARI 12611018 SUHENDRA PRADESA - 12611089 SRI SISKA WIRDANIYATI 12611125 UNIB SEDYA PAMUJI - 12611150 JURUSAN STATISTIKA

Lebih terperinci

Ekspektasi Satu Peubah Acak Diskrit

Ekspektasi Satu Peubah Acak Diskrit Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

SIDANG TERTUTUP TUGAS AKHIR MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA

SIDANG TERTUTUP TUGAS AKHIR MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA SIDANG TERTUTUP TUGAS AKHIR HOME MENENTUKAN KEANDALAN KOMPONEN MESIN PRODUKSI PADA MODEL STRESS-STRENGTH YANG BERDISTRIBUSI GAMMA I V Oleh : Muh. Nurcahyo Utomo 121 1 37 Dosen Pembimbing: Dra. Farida Agustini

Lebih terperinci

Peubah Acak dan Distribusi Kontinu

Peubah Acak dan Distribusi Kontinu BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi

Lebih terperinci

LANDASAN TEORI. Dalam proses penelitian pendekatan distribusi generalized t(,,, ), ), melalui distribusi generalized beta 2

LANDASAN TEORI. Dalam proses penelitian pendekatan distribusi generalized t(,,, ), ), melalui distribusi generalized beta 2 5 II. LANDASAN TEORI Dalam proses penelitian pendekatan distribusi generalized t terhadap distribusi gamma dan melalui distribusi generalized beta 2 distribusi generalized diperlukan gamma beberapa konsep

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang.

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang. MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL Winda Faati Kartika 1, Triastuti Wuryandari 2 1, 2) Program Studi Statistika Jurusan Matematika FMIPA Universitas Diponegoro

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2011 MATA KULIAH : STATISTIKA KODE MATA KULIAH / SKS : 410102047 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

BAB III PROSES POISSON MAJEMUK

BAB III PROSES POISSON MAJEMUK BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat BAB I PENDAHULUAN 1.1 Latar Belakang Jika kita mempunyai data yang terdiri dari dua atau lebih variabel maka sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat berhubungan, hubungan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan berjalannya waktu, ilmu pengetahuan dan teknologi (sains dan teknologi) telah berkembang dengan cepat. Salah satunya adalah ilmu matematika yang

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi

Lebih terperinci