Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1"

Transkripsi

1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

2 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real. merepresentasikan setiap hasil eksperimen/pengukuran dengan suatu nilai real X : peubah acak x : nilai diskrit yang mungkin dari masing-masing elemen P(X = x) : probabilitas X sama dengan x. Misal: Pelemparan sebuah dadu X = nilai dari muka dadu x = 1,2,,6 S = {1,2,,6} P(X = 1) = P(X = 2) = = P(X = 6) = 1/6 Suhu kota Bandung dalam bulan Agustus X = nilai suhu x = 22.0,, 30.0 (sembarang, kontinyu ) S = [22.0, 30.0] P(X < 28) =? P(25 < X < 28) =? Peubah acak dapat bersifat diskrit atau kontiyu 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 2

3 Distribusi diskrit dan fungsi probabilitas Jika ruang sampel terdiri dari sejumlah kemungkinan yang terbatas, fungsi probabilitas atau distribusi probabilitas dari peubah acak diskrit X adalah suatu set pasangan (x, f(x)), dimana f(x) = P(X = x) f(x) = P(X = x) 0 f(x) 1 f x = x ( ) 1 rapat fungsi Misal: Pelemparan sebuah dadu X = nilai dari muka dadu x = 1,2,,6 f(1) = P(X = 1) = 1/6 f(2) = P(X = 2) = 1/6 f(6) = P(X = 6) = 1/6 rapat fungsi diskrit uniform 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 3

4 Fungsi distribusi komulatif (jumlah) dari distribusi diskrit Fungsi distribusi komulatif F(x) dari suatu peubah acak X dengan rapat fungsi f(x) adalah Jelas bahwa ( ) ( ) ( ) F x = P X x = f x x x= 0 ( ) 1 ( ) P X x f x x = x= 0 Contoh: Sebuah dadu dilempar dua kali. Tentukan peubah acak, distribusi probabilitas dan fungsi distribusi komulatif dari eksperimen tersebut!!! 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 4

5 Distribusi binomial N kejadian independen dengan hanya ada 2 kemungkinan untuk setiap keluaran: berhasil atau gagal (Bernoulli Trial) dimana p : probabilitas berhasil (q=1-p : probabilitas gagal ) X=jumlah keberhasilan dalam N percobaan (peubah acak binomial) x = 1,2,,N Peluang muncul keluaran (dalam urutan tertentu), mis. ssfsf adalah x ( 1 ) ( 1 ) = ( 1 ) N x pp p p p p p N! Tetapi, jika urutan pemunculan tidak penting, maka ada x! ( N x)! cara (permutasi) untuk mendapatkan x kali berhasil dalam N percobaan. Fungsi probabilitas untuk x kali berhasil adalah n! x f ( x; n, p) = P( X = x) = p 1 p x! ( n x)! n x n x atau f ( xnp ;, ) = pq x ( ) 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 5 n x

6 Contoh: Pelemparan koin dengan keluaran H dan T (p = q = 0.5) sebanyak 10 kali f x = p q x x 10 ( ;10,0.5) x 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 6

7 ( ) ( ) ( ) F x = P X x = f x x x= Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 7

8 Pelemparan koin dengan keluaran H dan T (p = 0.2) sebanyak 10 kali Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 8

9 Distribusi Binomial untuk berbagai variasi parameter 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 9

10 Contoh: Pelemparan koin sebanyak 3 kali Kemungkinan keluaran untuk setiap pelemparan: heads = berhasil tails = gagal Ruang sampel S = {HHH, HHT, HTT, TTT, TTH, THH, THT, dan HTH} Keluaran x freq 4 HHH 3 1 HHT 2 THH HTH H 2 HTT 1 THT 1 3 TTH 1 TTT x 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 10

11 Nilai ekspektasi (rata-rata) dan ukuran sebaran n ( ;, ) x f xnp = pq x n x peubah acak parameter Nilai ekspektasi (rata-rata) dan standard deviasi (akar dari variansi): ( ) ( ) Rata-rata μ = E X = x f x; n, p = np n i= 0 ( ) ( ( )) 2 2 i= 1 ( x μ ) 2 ( ) Deviasi standard σ = E X E X = = np 1 p n i i n i 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 11

12 z Score. Quartile dan Percentile z = x σ μ Unusual Values Ordinary Values Z Unusual Values Quartile (Q) 25% 25% 25% 25% (minimum) Q 1 Q 2 (median) Q 3 (maximum) Percentile (Q) P 25 = Q1 P 50 = Q2 P 75 = Q3 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 12

13 Peubah Acak Kontinyu 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 13

14 Peubah acak kontinyu dan fungsi rapat probabilitas Nilai dari peubah acak (X) atau keluaran dari eksperimen/pengukuran (x) bersifat kontinyu f(x) = fungsi rapat probabilitas (probability density function (pdf)) Peluang menemukan keluaran lebih kecil atau sama dengan x adalah fungsi jumlah/ distribusi komulatif (cumulative distribution function (cdf)) 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 14

15 Kurva pdf dan cdf Hubungan pdf dan cdf: f ( x) = ( ) F x x x ( ) ( ) ( ) F x = P X x = f x dx ( ) ( ) = ( < < ) F b F a P a X b 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 15

16 Nilai ekspektasi (rata-rata) E X μ x f x dx = = ( ) ( ) ~ centre of gravity of pdf Untuk fungsi y(x) dengan pdf g(y), Variansi: Deviasi standard: (σ ~ lebar dari pdf) 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 16

17 Distribusi Normal (Gaussian) binomial (diskrit) normal (Gaussian) (kontinyu) Kasus khusus: μ = 0, σ 2 = 1 ( standard Gaussian, tersedia dalam bentuk tabel ): Dipakai untuk menentukan fungsi probabilitas dari sembarang fungsi Gaussian dengan melakukan transformasi 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 17 z = x μ σ

18 Tabel Distribusi Normal Standard (P(Z z)) dan Pemakaiannya P(Z -3.00) = Luas = P(Z -2.59) = P(Z 1.31) = P(Z 1.31) = z Luas = P(Z 1.31) = Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 18 z

19 Probabilitas dan luas di bawah kurva P(z > a) P(Z z) P(Z z) 0.5 x P (z a) P(Z z) P(Z z) 0.5 Add?? x P(a < z < b) a b a b 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 19

20 Arti dari σ 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 20

21 The Central Limit Theorem Fungsi Gaussian memiliki sifat yang unik, yakni hasil penjumlahan dua atau lebih fungsi Gaussian akan merupakan fungsi Gaussian juga. Sehingga suatu fungsi Gaussian dapat dipandang sebagai hasil penjumlahan dari beberapa sumber yang juga merupakan fungsi Gaussian. Untuk sejumlah n peubah acak x i yang terpisah dengan variansi σ i2, Dalam batas limit n, y adalah fungsi Gaussian dengan Kesalahan pengukuran sering merupakan hasil dari beberapa sumber. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 21

22 Beberapa macam distribusi probabilitas lainnya Distribusi/pdf Binomial Multinomial Poisson Uniform Exponential Gaussian Chi-square Cauchy Landau Contoh penggunaan 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 22

23 Distribusi Multinomial Seperti binomial tetapi dengan m (>2) keluaran Jika dalam N percobaan: n 1 keluaran dengan p 1, n 2 keluaran dengan p 2, n m keluaran dengan p m. Distribusi probabilitas multinomial untuk 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 23

24 Distribusi Uniform Tinjau peubah acak kontinyu x dengan - < x <. Pdf uniform: 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 24

25 Distribusi Exponensial Contoh: waktu paruh dari suatu partikel meta-stabil (τ = waktu paruh rata-rata) 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 25

26 Distribusi Poisson Tinjau kasus binomial dengan batasan limit fungsi distribusi akan memiliki bentuk distribusi Poisson: 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 26

27 Distribusi Chi-square (χ 2 ) Untuk peubah acak kontinyu z (z 0): n = 1, 2,... = derajad kebebasan Distribusi ini sering dipakai untuk menilai hasil fitting dengan metoda kuadrat terkecil (least squares) Untuk fungsi Gaussian yang terpisah (independent) dari x i, dengan i = 1,..., n, nilai rata-rata μ i, dan variansi σ i2, merupakan χ 2 pdf dengan n derajad kebebasan 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 27

28 Fungsi probabilitas lainnya Jika keluaran eksperimen ternyata bergantung dari beberapa peubah acak diskrit, mis. X dan Y, pdf-nya didefinisikan sebagai joint pdf ( ) dengan sifat-sifat: f ( x, y) 0 ( ) f x, y = 1 x y f x, y = PX ( = xy, = y) untuk semua (x,y) Untuk peubah acak kontinyu, mis. X dan Y, pdf-nya didefinisikan sebagai joint pdf ( ) dengan sifat-sifat: f ( ) f x, y dx dy = P( x X x + dx, y Y y + dy) x, y 0 f ( x y), = 1 untuk semua (x,y) 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 28

29 Pdf marginal, independen, dan bersyarat Jika diinginkan pdf hanya salah satu peubah acak, X atau Y, pdf marginal ( ) = (, ) ( ) (, ) g x f x y dy h y = f x y dx Jika X dan Y independen pdf independen (, ) = ( ) ( ) f xy g xh y Jika X dan Y tidak independen pdf bersyarat f ( x y) f ( xy, ) ( ) = f ( y x) h y = f ( xy, ) ( ) g x 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 29

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

Beberapa Distribusi Peluang Diskrit

Beberapa Distribusi Peluang Diskrit Beberapa Distribusi Peluang Diskrit Departemen Teknik Informatika Institut Teknologi Bandung Page 1 Isi : Distribusi Seragam Distribusi Binomial Distribusi Multinomial Page 2 Distribusi

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT BAB IV. DISTRIBUSI PROBABILITAS DISKRIT A. Variabel random diskrit. Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari

Lebih terperinci

Review Teori Probabilitas

Review Teori Probabilitas Rekayasa Trafik 1 Review Teori Probabilitas Rekayasa Trafik Outline Arti Probabilitas Counting Method Random Variable Discrete RV Continuous RV Multiple RVs Rekayasa Trafik 2 Arti Probabilitas Rekayasa

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

Distribusi Peluang. Kuliah 6

Distribusi Peluang. Kuliah 6 Distribusi Peluang Kuliah 6 1. Diskrit 1. Bernoulli 2. Binomial 3. Poisson Distribution 2. Kontinu 1. Normal (Gaussian) 2. t 3. F 4. Chi Kuadrat Distribusi Peluang 1.1. Distribusi Bernoulli Distribusi

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY PENGANTAR PROBABILITAS GANGGA ANURAGA POKOK BAHASAN Konsep dasar probabilitas Teori himpunan Permutasi Kombinasi Koefisien binomial Koefisien multinomial Probabilitas Aksioma probabilitas Probabilitas

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

DASAR-DASAR TEORI PELUANG

DASAR-DASAR TEORI PELUANG PROBABILITAS dan STATISTIKA DASAR-DASAR TEORI PELUANG MK. STATISTIKA Konsep Dasar Probabilitas Teori Probabilitas didasarkan pada konsep dari suatu eksperimen random Random fenomena/eksperimen dimana keluaran

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

DISTRIBUSI PROBABILITAS VARIABEL RANDOM

DISTRIBUSI PROBABILITAS VARIABEL RANDOM Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan DISTRIBUSI PROBABILITAS VARIABEL RANDOM Statistika dan Probabilitas 2 Distribusi probabilitas variabel random diskrit Distribusi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan.

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan. RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 306203 Nama Mata Kuliah : Probabilitas Jumlah sks : 3 sks Semester : III Alokasi Waktu

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 2 Sinyal Acak

SISTEM PENGOLAHAN ISYARAT. Kuliah 2 Sinyal Acak TK 403 SISTM PNGOLAHAN ISYARAT Kuliah Sinyal Acak Indah Susilawati, S.T., M.ng. Program Studi Teknik lektro Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana Yogyakarta 009 KULIAH SISTM PNGOLAHAN

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Dasar-dasar Statistika Pemodelan Sistem

Dasar-dasar Statistika Pemodelan Sistem Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Zaman modern (>1940), dgn cara membentuk bilangan acak secara numerik/aritmatik (menggunakan komputer), disebut Pseudo Random

Lebih terperinci

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU

STATISTIK INDUSTRI 1. Random Variable. Distribusi Peluang. Distribusi Peluang Diskrit. Distribusi Peluang Diskrit 30/10/2013 DISKRIT DAN KONTINYU STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Distribusi Peluang DISKRIT DAN KONTINYU Random Variable Random variable / peubah acak: Suatu fungsi yang mengaitkan suatu bilangan real dengan tiap elemen

Lebih terperinci

Metode Statistika (STK211)

Metode Statistika (STK211) Metode Statistika (STK211) Peubah Acak dan Sebaran Peluang (Random Variable and Probability Distribution) Dr. Ir. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 1 Konsep Peubah Acak (Random Variable) Peubah

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 1-7) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 1:HIMPUNAN Operasi Himpunan Sifat-Sifat Operasi Himpunan 2 Minggu 2:COUNTING TECHNIQUE

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS Dasar Statistik untuk Pemodelan dan Simulasi oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS . Probabilitas Probabilitas=Peluang, bisa diartikan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci

BAB 8 DISTRIBUSI PELUANG DISKRIT

BAB 8 DISTRIBUSI PELUANG DISKRIT BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14 Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Distribusi Normal 1-Sep-14 http://istiarto.staff.ugm.ac.id 1 Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari

Lebih terperinci

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah fungsi) ke ruang bilangan

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi

Lebih terperinci

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Distribusi Peluang Diskrit 1. Hitunglah P( < 10) dengan distribusi binomial untuk n = 15, p = 0,4!

Lebih terperinci

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA 1 LUVY S. ZANTHY KAPSEL SMA 2 LUVY S. ZANTHY KAPSEL SMA 3 Distribusi Binomial O Dalam suatu percobaan statistik sering dijumpai pengulangan

Lebih terperinci

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

BeberapaDistribusiPeluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB BeberapaDistribusiPeluang Diskrit Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Pengantar Pengamatanyang dihasilkanmelaluipercobaanyang berbeda

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit dan Distribusi Peluang Peubah Acak (Random Variable): Sebuah keluaran numerik yang merupakan hasil dari percobaan (eksperimen) Untuk setiap anggota dari ruang sampel percobaan,

Lebih terperinci

2. Peubah Acak (Random Variable)

2. Peubah Acak (Random Variable) . Peubah Acak (Random Variable) EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 0. Review dari EL009 KonsepPeubahAcak Sebaran Peluang Diskrit Sebaran Peluang Kontinyu Sebaran Empiris Sebaran

Lebih terperinci

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 4. Variabel Acak dan Distribusi Probabilitas Prima Kristalina April 2015 1 Outline 1. Definisi

Lebih terperinci

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1.

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1. Pertemuan ke- BAB IV POPULASI, SAMPEL, DISTRIBUSI TEORITIS, VARIABEL KONTINU, DAN FUNGSI PROBABILITAS. Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat α Jika x berdistribusi χ (v) dengan v = derajat

Lebih terperinci

Binomial Distribution. Dyah Adila

Binomial Distribution. Dyah Adila Binomial Distribution Dyah Adila Binomial Distribution adalah bentuk percobaan yang memiliki syarat-syarat sebagai berikut: 1. Percobaan dilakukan sebanyak n kali. 2. Setiap percobaan memiliki dua hasil

Lebih terperinci

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS 5 Pengendalian Kualitas Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e- Mail : debrina@ub.ac.id Blog : hbp://debrina.lecture.ub.ac.id/ 2

Lebih terperinci

5. Peluang Diskrit. Pengantar

5. Peluang Diskrit. Pengantar 5. Peluang Diskrit Pengantar Semua yang telah dipelajari di dalam teori pencacahan (counting) akan menjadi dasar dalam perhitungan peluang terjadinya suatu peristiwa. Dalam pembahasan berikut, istilah

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISKRIT Distribusi binomial Distribusi binomial - Distribusi peluang diskrit Distribusi geometrik Distribusi hipergeometrik Distribusi poison BERNOULLI TRIAL

Lebih terperinci

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab Peubah Acak. Konsep Dasar Peubah Acak Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh peubah acak: Jika X adalah peubah acak banyaknya sisi muka yang muncul pada

Lebih terperinci

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan Tujuan Pembelajaran Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan dan penyebaran distribusi binomial

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution.

Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. Contoh Solusi PR 4 Statistika & Probabilitas 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. a X := curah hujan satu tahun. X : N 42,16. Dit: PX > 50. 50

Lebih terperinci

Teori Peluang Diskrit

Teori Peluang Diskrit Teori Peluang Diskrit Peluang Diskrit Apa yang terjadi jika keluaran dari suatu eksperimen tidak memiliki peluang yang sama? Dalam kasus ini, peluang p(s) dipadankan dengan setiap keluaran s S, di mana

Lebih terperinci

DISTRIBUSI PELUANG.

DISTRIBUSI PELUANG. DISTRIBUSI PELUANG readonee@yahoo.com Distribusi? Peluang? Distribusi Peluang? Distribusi = sebaran, pencaran, susunan data Peluang : Ukuran/derajat ketidakpastian suatu peristiwa Distribusi Peluang adalah

Lebih terperinci

Sistem Komunikasi II (Digital Communication Systems)

Sistem Komunikasi II (Digital Communication Systems) Sistem Komunikasi II (Digital Communication Systems) Lecture #1: Stochastic Random Process Topik: 1.1 Pengenalan Sistem Komunikasi Digital. 1.2 Pendahuluan Stochastic Random Process. 1.3 Random Variable

Lebih terperinci

Joint Distribution Function

Joint Distribution Function DISTRIBUSI PROBABILITAS MARGINAL & BERSYARAT TI2131 TEORI PROBABILITAS MINGGU KE-6 1 Joint Distribution Function Distribusi peluang gabungan dari dua variabel random X dan Y merupakan distribusi peluang

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

Distribusi Teoritis Probabilitas

Distribusi Teoritis Probabilitas Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 2 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG2D3 PROBABILITAS DAN STATISTIKA Disusun oleh: INDWIARTI FAKULTAS INFORMATIKA TELKOM UNIVERSITY 1 LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII October 7, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas October 7,

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1. Distribusi Seragam Diskrit

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1. Distribusi Seragam Diskrit DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1 TI2131 TEORI PROBABILITAS MINGGU KE-9 Distribusi Seragam Disrit Jia sebuah variabel random X mengambil nilai x 1, x 2,, x dengan probabilitas yang sama, maa distribusi

Lebih terperinci

Peubah Acak (Lanjutan)

Peubah Acak (Lanjutan) Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat

Lebih terperinci

STATISTIKA. Distribusi Binomial. Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai. Distribusi Normal

STATISTIKA. Distribusi Binomial. Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai. Distribusi Normal STATISTIKA Distribusi Normal Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai Distribusi Binomial Histogram Distribusi Probabilitas Sukses Statistika Distribusi

Lebih terperinci

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak Konsep Peubah Acak Metode Statistika (STK11) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan

Lebih terperinci

Contoh Solusi PR 2 Statistika & Probabilitas. 1. Semesta dari kejadian adalah: pemilihan 5 soal dari 10 soal. Jumlah kemungkinannya ( 10 = 252.

Contoh Solusi PR 2 Statistika & Probabilitas. 1. Semesta dari kejadian adalah: pemilihan 5 soal dari 10 soal. Jumlah kemungkinannya ( 10 = 252. Contoh Solusi PR Statistika & Probabilitas Semesta dari kejadian adalah: pemilihan soal dari soal Jumlah kemungkinannya ( ) = (a) Kemungkinannya dapat dihitung dengan memilih soal tes dari soal yang anak

Lebih terperinci

KAJIAN TENTANG PENDEKATAN DISTRIBUSI BINOMIAL OLEH DISTRIBUSI NORMAL SKRIPSI MUSTAFA KEMAL RAMBE

KAJIAN TENTANG PENDEKATAN DISTRIBUSI BINOMIAL OLEH DISTRIBUSI NORMAL SKRIPSI MUSTAFA KEMAL RAMBE KAJIAN TENTANG PENDEKATAN DISTRIBUSI BINOMIAL OLEH DISTRIBUSI NORMAL SKRIPSI MUSTAFA KEMAL RAMBE 090823073 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA

Lebih terperinci

Peubah Acak dan Distribusi Kontinu

Peubah Acak dan Distribusi Kontinu BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi

Lebih terperinci

Distribusi Normal, Skewness dan Qurtosis

Distribusi Normal, Skewness dan Qurtosis Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan

Lebih terperinci

D I S T R I B U S I P R O B A B I L I T A S

D I S T R I B U S I P R O B A B I L I T A S D I S T R I B U S I P R O B A B I L I T A S Amiyella Endista Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Distribusi Probabilitas Kunci aplikasi probabilitas dalam statistik

Lebih terperinci

Distribusi Probabilitas Diskrit: Poisson

Distribusi Probabilitas Diskrit: Poisson Distribusi Probabilitas Diskrit: Poisson 7.2 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pendahuluan Pendekatan Binomial Poisson Distribusi Poisson Kapan distribusi

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial & Multinomial

Distribusi Probabilitas Diskrit: Binomial & Multinomial Distribusi Probabilitas Diskrit: Binomial & Multinomial 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi Binomial Distribusi

Lebih terperinci

DISTRIBUSI PROBABILITAS DAN TERMINOLOGI KEANDALAN

DISTRIBUSI PROBABILITAS DAN TERMINOLOGI KEANDALAN #7 DISTRIBUSI PROBABILITAS DAN TERMINOLOGI KEANDALAN 7.1. Pendahuluan Pada pembahasan terdahulu, keandalan hanya dievaluasi sebagai suatu sistem rekayasa (engineering) dengan tidak menggunakan distribusi

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada. 1http://istiarto.staff.ugm.ac.id STATISTIKA. Discrete Probability Distributions

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada. 1http://istiarto.staff.ugm.ac.id STATISTIKA. Discrete Probability Distributions Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Discrete Probability Distributions 1http://istiarto.staff.ugm.ac.id Discrete Probability Distributions Distribusi Hipergeometrik Bernoulli

Lebih terperinci