Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2"

Transkripsi

1 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan oleh terjadinya hasil suatu percobaan dinamakan variabel random. Contoh : Bila 2 mata uang dilempar 1 x, maka ruang sampelnya : S = { AA,AG, GA, GG } Variabel Acak yang terdapat dalam fungsi probabilitas : a. Variabel diskrit Variabel diskrit hanya dapat dinyatakan dengan nilai nilai yang terbatas jumlahnya, dan dinyatakan dengan bilangan bulat. b. Variabel kontinu Variabel kontinu dinyatakan dengan harga yang terdapat dalam suatu interval. Fungsi Distribusi Jika kita mempunyai variabel acak x maka fungsi sebenarnya adalah Σ f( x ) ; x diskrit (dinyatakan dengan sigma ) F ( x ) = P ( X x ) = f ( x ) dx ; x kontinu (dinyatakan dengan integral) 3.2 Nilai Harapan (Mean/Rata rata) dan Varians Distribusi Diskrit Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Jika k suatu bilangan, maka E ( k ) = k Contoh : E (3) = 3 dan seterusnya.

2 Latihan Soal 1.Dua buah dadu dilempar. Jika x = jumlah mata dadu yang timbul, berapakah: a. P (3 < x 6) b. Rata rata (Nilai harapan) Jawab: a. P (3 < x 6) = P (x = 4) + P (x = 5) + P (x = 6) = f (4) + f (5) + f (6) = 3/36 + 4/36 + 5/36 = 12/36 = 1/3 b. E (x) = Σ x. f(x) = 2.1/ / / / / / / / / / /36 = 252/36 = 7 2. Jika Nilai E (x) = 1/3 dan E (x 2 ) = 1/3. Tentukan Nilai Variansnya. Jawab : Var (x) = E (x 2 ) { E (x) } 2 = 1/3 (1/3) 2 = 1/3 1/9 = 2/9 3. Jika E (x) = 2, berapa nilai dari : a. E [ 3 (x + 2)] b. E [x 3 (x + 2)] Jawab : a. E [ 3 (x + 2) ] = E [ 3x + 6 ] = E (3x) + E (6) = 3. E (x) + 6 = = = 12 b. E [ x 3 (x + 2) ] = E (x) E [ 3 (x + 2) ] = 2 12 = Jika x mata dadu seimbang, berapa nilai harapan (rata rata) nya? Jawab : E (x) = Σ x. f (x) = 1.1/ / / / / /6 = 21/6 = 3,5

3 Fungsi probabilitas dengan variabel diskrit terdiri dari : 1. Distribusi Binomial 2. Distribusi Poisson 3.3 Distribusi Binomial Rumus Distribusi Binomial : b (x / n, p) = P (X = x)= n C x p x. q n-x ; x = 0,1, n q = 1 p Dimana : - b ( x / n, p ) 0 - Σ b ( x/n, p ) = ( q + p ) n = 1 Rata rata ( Mean ) = µ x = n. p Varians ( x ) = σ 2 x = n. p. q Distribusi yang dipakai sebagai pendekatan bagi distribusi binomial adalah Distribusi Poisson dan Distribusi Normal. Suatu eksperimen Binomial akan memenuhi 4 syarat sebagai berikut : 1. Jumlah percobaan harus tetap 2. Setiap percobaan harus menghasilkan dua alternatif yaitu sukses atau tidak sukses merupakan percobaan Binomial. 3. Semua percobaan mempunyai nilai probabilitas yang sama untuk sukses. 4. Percobaan percobaan tersebut harus bebas satu sama lain.

4 Latihan Soal 1. Bila sekeping uang logam yang seimbang dilempar sebanyak 6 kali, berapa: a. probabilitas memperoleh 5 sisi gambar b. probabilitas memperoleh paling sedikit 5 sisi gambar Jawab : a. n = 6 ; p = ½ ; q = 1 p = 1 ½ = ½ b ( x / n, p ) = b ( 5/6, ½ ) = 6 C 5 ( ½ ) 5. ( ½ ) 6-5 = 6! (½) 5. (½) 1 = 3/32 5!.1! b. n = 6 ; x = 6 ; p = 1/2 b ( x/n, p ) = b ( 6/6, ½ ) = 6 C 6 ( ½ ) 6. ( ½ ) 6-6 = 6! ( ½ ) 6. ( ½ ) 0 = 1/64 6!0! Probabilitas memperoleh 5 sisi gambar adalah : b ( 5/6, ½ ) + b ( 6/6, ½ ) = 3/32 + 1/64 = 6/64 + 1/64 = 7/64 2. Jika x berdistribusi Binomial dengan n = 4 dan p = 1/6, berapa : a. Rata rata dari x b. Varians (x) Jawab : a. n = 4 ; p = 1/6 ; q = 1 p = 1 1/6 = 5/6 E ( x ) = n.p = 4.1/6 = 2/3 b. Var ( x ) = σ x 2 = n.p.q = 4.1/6.5/6 = 20/36 = 5/9 3. Ada 4000 paku pada sayap. Probabilitas kerusakan sebuah paku khusus pada permukaan sayap pesawat terbang adalah 0,001. Berapa E (x) nya? Jawab : E (x) = n. p = (0,001) = 4

5 3.4 Distribusi Poisson Ciri-ciri Distribusi Poisson Digunakan untuk menghitung probabilitas terjadinya kejadian menurut satuan waktu atau ruang. Distribusi Poisson digunakan sebagai pendekatan dari distribusi binomial. Rumus Distribusi Poisson f ( x ) = µ x. e -µ = p ( x/n, p ) x! Dimana : x = 0, 1, 2 n dan e = 2,71828 Rata rata = µ x = n. p Varians (x) = σ x2 = n. p Dalam distribusi Poisson Rata rata dengan Variansnya adalah sama Latihan soal! 1. Bila 5 keping uang logam dilempar sebanyak 64 kali, berapa probabilitas timbulnya 5 sisi angka sebanyak 0,1, 2, 3,4, 5 kali? Jawab: probabilitas memperoleh 5 sisi angka dari pelemparan 5 keping uang logam sebanyak satu kali adalah : p = 1.( ½ ) 5 = 1/32 Bila p = 1/32, n = 64 ; probabilitas memperoleh 5 sisi angka dari pelemparan 5 keping uang logam sebanyak 64 kalimenjadi : f( x ) = 64 1 / 32 x 31 / x x

6 Rumus ini sulit dikerjakan dengan Distribusi Binomial, maka diambil µ=n.p = 64. 1/32 = 2 diperoleh : f ( x ) = µ x. e -µ = 2 x. e -2 ; x = 0, 1, 2, 3, 4, 5 x! x! e -2 = 0,1353 x f ( x ) 0,135 0,271 0,271 0,180 0,090 0, Jika x berdistribusi Poisson dengan n = 7 dan p = 1/4 berapa : a. Rata rata x b. Varians (x) jawab : a. E (x) = n. p = 7.1/4 = 7/4 b. Var (x) = n. p = 7. 1/4 = 7/4 3. Mata uang dilempar 6 kali. Jika x = banyaknya gambar, berapa E (x)? Jawab : n = 6 ; p = ½ E (x) = n.p = 6.1/2 = 3

7 X P(X) Latihan soal: ¼ 1/12 1/6 1/8 3/8 1. Dari tabel diatas tentukan: a. mean X; b. standar deviasi X; c. E(2X 3 ) 2 2. Misalkan X adalah suatu variabel acak dengan E{(X-1) 2 } =10 dan E{(X-2) 2 } = 6, tentukan mean X dan simpangan baku X. 3. Bila sekeping uang logam dilemparkan 6 kali, hitunglah probabilitas memperoleh: a. 5 muka b. paling sedikit 5 muka 4. Bila 20 dadu dilemparkan sekaligus, tentukanlah: a. rata-rata dari banyaknya muncul muka 3; b. simpangan baku dari banyaknya muncul muka 3! 5. Bila variabel acak X berdistribusi binomial dengan n = 100, p = 0,005, hitunglah P(X=15)! 6. Bila 5 uang logam dilemparkan sebanyak 128 kali, hitunglah probabilitas munculnya 5 muka sebanyak 0,1,2,3,4 dan 5 dari seluruh pelemparan!

8 3.5 Aplikasi Excel menghitung distribusi Binomial Langkah-langkahnya sbb: 1. Klik icon fx atau klik icon insert dan pilih fx function. 2. Pilih menu statistical pada function category 3. Pilih menu Binomdist pada function name, dan OK. Maka akan keluar kotak dialog seperti berikut: Contoh : PT MJF mengirim buah melon ke Hero. Buah yang dikirim 90% diterima dan sisanya ditolak. Setiap hari 15 buah dikirim ke Hero. Berapa peluang hanya 13 buah diterima? Jawab: Diketahui n=15; dimana X = 13 dengan p= 0,9 nilai P ( x = 13 ) =? BINOMDIST Number_s : (masukkan nilai X) Trials :.. (masukkan nilai n) Probability : (masukkan nilai p) Cumulative: (tulis kata False) Nilai P(x) ada pada baris Formula result atau tanda (=)

9 Distribusi Poisson Langkah-langkahnya 1. Klik icon fx atau klik icon insert dan pilih fx function 2. Pilih menu statistical pada function category 3. Pilih menu POISSON pada function name, tekan OK maka akan keluar kotak dialog seperti berikut: POISSON X : (masukkan nilai x) Mean :.. (masukkan nilai µ) Cumulative : (tulis FALSE / 0 ) Contoh: Jumlah emiten di BEJ ada 120 perusahaan. Akibat krisis ekonomi, peluang perusahaan memberikan deviden hanya 0,1. Apabila BEJ meminta secara acak 5 perusahaan, berapa peluang ke-5 perusahaan tersebut akan membagikan dividen? Jawab: Nilai µ = 12 dan nilai X = 5, maka akan didapat nilai P( X = 5 ) =?

10 Untuk menghitung dist. Binomial dengan SPSS langkah-langkahnya sbb: 1. Definisikan variabel x, lalu ketik nilai variabelnya 2. Kilk menu transform dan pilih compute 3. Ketik ekspresi perhitungan seperti pada layar dibawah ini, tekan OK maka tampil hasil perhitungan pada data editor seperti pada gambar 2 Gambar 2 P( X=13 ) 0,2669

11 Untuk menghitung dist. Poisson langkah-langkahnya sbb: 1. Definisikan variabel x, lalu ketik data misal 1 sampai 5 2. Kilk menu transform dan pilih compute 3. Ketik ekspresi perhitungan seperti pada layar dibawah ini, tekan OK maka tampil hasil perhitungan pada data editor seperti pada gambar 2 Gambar 2 P(X=5) = 0,127

12 SOAL SOAL LATIHAN 01. Suatu variabel acak diskrit, maka nilai harapan, E(x) fungsinya akan dinyatakan dengan : a. Σ x.f(x) c. Σ f(x) b. f(x)dx d. x.f(x)dx 02. Suatu bilangan yang ditentukan oleh terjadinya hasil suatu percobaan bervariasi adalah. acak dimana nilainya a. Variabel random c. Permutasi b. Probabilitas d. Kombinasi

13 02. Suatu bilangan yang ditentukan oleh terjadinya hasil suatu percobaan acak dimana nilainya bervariasi adalah. a. Variabel random c. Permutasi b. Probabilitas d. Kombinasi 03. Jika E (x) = -2 maka nilai dari E [3(x-2)] adalah : a. - 6 c. -12 b. - 8 d Jika E (x) = -2 maka nilai dari E [3(x-2)] adalah : a. - 6 c. -12 b. - 8 d Jika x variabel berdistribusi binomial, dan banyaknya observasi adalah 10 dan peluang sukses 1/5, maka nilai harapan x adalah: a. ½ c. 2 b. 50 d. 25

14 04. Jika x variabel berdistribusi binomial, dan banyaknya observasi adalah 10 dan peluang sukses 1/5, maka nilai harapan x adalah: a. ½ c. 2 b. 50 d Fungsi distribusi peluang variabel X diskrit diketahui sebagai berikut: X P(X) 0,1 0,2 Maka nilai harapan X adalah: a. 1 c. 3 b. 2 d. 4 0,3 0,4 05. Fungsi distribusi peluang variabel X diskrit diketahui sebagai berikut: X P(X) 0,1 Maka nilai harapan X adalah: a. 1 c. 3 b. 2 d. 4 0,2 0,3 0,4 01. Suatu variabel acak diskrit, maka nilai harapan, E(x) fungsinya akan dinyatakan dengan : a. Σ x.f(x) c. Σ f(x) b. f(x)dx d. x.f(x)dx

DISTRIBUSI PROBABILITAS DISKRET

DISTRIBUSI PROBABILITAS DISKRET DISTRIBUSI PROBABILITAS DISKRET 1 OUTLINE BAGIAN II Probabilitas dan Teori Keputusan Konsep-konsep Dasar Probabilitas Diskret Distribusi Normal Teori Keputusan Pengertian Distribusi Probabilitas Binomial

Lebih terperinci

PENDAHULUAN Definisi: Contoh Kasus:

PENDAHULUAN Definisi: Contoh Kasus: DISTRIBUSI PROBABILITAS 1 PENDAHULUAN Definisi: Distribusi probabilitas adalah sebuah susunan distribusi yang mempermudah mengetahui probabilitas sebuah peristiwa. Merupakan hasil dari setiap peluang peristiwa.

Lebih terperinci

Tipe Peubah Acak. Diskret. Kontinu

Tipe Peubah Acak. Diskret. Kontinu 2 N i 1 x i N 2 Tipe Peubah Acak Diskret Segugus nilai dari suatu peubah acak yang dapat dicacah (countable) Misalkan X = banyaknya tendangan penalti yang berhasil dilakukan oleh pemain A Kontinu Nilai-nilai

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1.

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1. Pertemuan ke- BAB IV POPULASI, SAMPEL, DISTRIBUSI TEORITIS, VARIABEL KONTINU, DAN FUNGSI PROBABILITAS. Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat α Jika x berdistribusi χ (v) dengan v = derajat

Lebih terperinci

: Distribusi Peluang. : D. Rizal Riadi

: Distribusi Peluang. : D. Rizal Riadi MATERI 3 Mata Kuliah Dosen : Distribusi Peluang : Statistik : D. Rizal Riadi Mengingat data kuantitatif dipengaruhi faktor-faktor ketidakpastian dan variasi yang disebabkan akurasi instrumen penelitian

Lebih terperinci

Pembuatan Distribusi Peluang (Teoritis) dengan Excel

Pembuatan Distribusi Peluang (Teoritis) dengan Excel Pembuatan Distribusi Peluang (Teoritis) dengan Excel Pembuatan Tabel distribusi Peluang dengan EXCEL melibatkan fungsi-fungsi Statistika dalam EXCEL yang dapat dipilih dengan menggunakan menu INSERT lalu

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

DISTRIBUSI PROBABILITAS NORMAL

DISTRIBUSI PROBABILITAS NORMAL DISTRIBUSI PROBABILITAS NORMAL 1 OUTLINE BAGIAN II Probabilitas dan Teori Keputusan Konsep-konsep Dasar Probabilitas Distribusi Probabilitas Diskret Distribusi Normal Teori Keputusan Pengertian dan Karakteristik

Lebih terperinci

Jenis Distribusi. 1. Distribusi Probabilitas 2. Distribusi Binomial (Bernaulli) 3. Distribusi Multinomial 4. Distribusi Normal (Gauss)

Jenis Distribusi. 1. Distribusi Probabilitas 2. Distribusi Binomial (Bernaulli) 3. Distribusi Multinomial 4. Distribusi Normal (Gauss) Ir Tito Adi Dewanto Jenis Distribusi 1. Distribusi Probabilitas 2. Distribusi Binomial (Bernaulli) 3. Distribusi Multinomial 4. Distribusi Normal (Gauss) Pengantar Kunci aplikasi probabilitas dalam statistik

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

DISTRIBUSI PROBABILITAS NORMAL

DISTRIBUSI PROBABILITAS NORMAL DISTRIBUSI PROBABILITAS NORMAL 1 KARAKTERISTIK DISTRIBUSI KURVA NORMAL 1. Kurva berbentuk genta ( = Md= Mo) 2. Kurva berbentuk simetris 3. Kurva normal berbentuk asimptotis 4. Kurva mencapai puncak pada

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci

STATISTIK PERTEMUAN V

STATISTIK PERTEMUAN V STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia

Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia VARIABEL ACAK VARIABEL ACAK : suatu fungsi yang nilainya berupa bilangan nyata yang ditentukan oleh setiap unsur dalam ruang

Lebih terperinci

DISTRIBUSI PELUANG TEORITIS

DISTRIBUSI PELUANG TEORITIS Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu xiv BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA 1 LUVY S. ZANTHY KAPSEL SMA 2 LUVY S. ZANTHY KAPSEL SMA 3 Distribusi Binomial O Dalam suatu percobaan statistik sering dijumpai pengulangan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

DISTRIBUSI PELUANG.

DISTRIBUSI PELUANG. DISTRIBUSI PELUANG readonee@yahoo.com Distribusi? Peluang? Distribusi Peluang? Distribusi = sebaran, pencaran, susunan data Peluang : Ukuran/derajat ketidakpastian suatu peristiwa Distribusi Peluang adalah

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

D I S T R I B U S I P R O B A B I L I T A S

D I S T R I B U S I P R O B A B I L I T A S D I S T R I B U S I P R O B A B I L I T A S Amiyella Endista Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Distribusi Probabilitas Kunci aplikasi probabilitas dalam statistik

Lebih terperinci

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan

Lebih terperinci

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak Konsep Peubah Acak Metode Statistika (STK11) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan

Lebih terperinci

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak STK511 Analisis Statistika Pertemuan 3 Sebaran Peluang Peubah Acak Beberapa Konsep Dasar Percobaan statistika: kegiatan yang hasil akhir keluarannya tidak diketahui di awal, tetapi kemungkinan-kemungkinannya

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRET Distribusi Binomial. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016

DISTRIBUSI PROBABILITAS DISKRET Distribusi Binomial. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 DISTRIBUSI PROBABILITAS DISKRET Distribusi Binomial Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 Distribusi Binomial Perhatikan kembali setiap hasil percobaan statistik pada pembahasan sebelumnya, dari

Lebih terperinci

BAB 8 DISTRIBUSI PELUANG DISKRIT

BAB 8 DISTRIBUSI PELUANG DISKRIT BAB 8 DISTRIBUSI PELUANG DISKRIT A. Peluang Peluang atau yang sering disebut sebagai probabilitas dapat dipandang sebagai cara untuk mengungkapkan ukuran ketidakpastian/ ketidakyakinan/ kemungkinan suatu

Lebih terperinci

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah fungsi) ke ruang bilangan

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

I. PENDAHULUAN II. TINJAUAN PUSTAKA

I. PENDAHULUAN II. TINJAUAN PUSTAKA I. PENDAHULUAN 1.1 Latar Belakang Pada kehidupan sehari-hari, distribusi probabilitas dapat diterapkan dalam banyak hal yang memberikan keuntungan serta manfaat dalam pengaplikasiannya. Misalnya, pada

Lebih terperinci

I. PENDAHULUAN II. TINJAUAN PUSTAKA

I. PENDAHULUAN II. TINJAUAN PUSTAKA I. PENDAHULUAN 1.1 Latar Belakang Pada kehidupan sehari-hari, distribusi probabilitas dapat ditemukan dalam banyak hal yang dapat memberikan manfaat dalam penerapannya. Distribusi probabilitas merupakan

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Probabilitas & Distribusi Probabilitas

Probabilitas & Distribusi Probabilitas Probabilitas & Distribusi Probabilitas Probabilitas Definisi peluang untuk terjadi atau tidak terjadi Probabilitas untuk keluarnya mata satu dalam pelemparan satu kali sebuah dadu? Berapakah peluang seorang

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Peluang terjadinya nilai variabel random X yang meliputi semua nilai ditentukan melalui distribusi peluang. Distribusi peluang suatu variabel random X adalah

Lebih terperinci

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson DISTRIBUSI POISSON Pendahuluan Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai

Lebih terperinci

MATERI KULIAH STATISTIKA

MATERI KULIAH STATISTIKA MATERI KULIAH STATISTIKA III. TEORI PROBABILITAS 1. Operasi himpunan a. Gabungan atau union b. Interseksi atau irisan Contoh soal 1 : Dalam sebuah eksperimen pelemparan 1 buah dadu, terdapat kejadian :

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

Distribusi Probabilitas Diskrit. Dadan Dasari

Distribusi Probabilitas Diskrit. Dadan Dasari Distribusi Probabilitas Diskrit Dadan Dasari Daftar Isi DIstribusi Uniform Distribusi Binomial DIstribusi Multinomial Distribusi Hipergeometrik Distribusi Poisson Distribusi Probabilitas Uniform Diskrit

Lebih terperinci

DISTRIBUSI BINOMIAL berhasil gagal berhasil gagal berhasil gagal ya tidak success failed sukses atau berhasil gagal. sukses atau berhasil.

DISTRIBUSI BINOMIAL berhasil gagal berhasil gagal berhasil gagal ya tidak success failed sukses atau berhasil gagal. sukses atau berhasil. DISTRIBUSI BINOMIAL Pendahuluan Distribusi binomial merupakan suatu proses distribusi probabilitas yang dapat digunakan apabila suatu proses sampling dapat diasumsikan sesuai dengan proses Bernoulli. Proses

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 4. Variabel Acak dan Distribusi Probabilitas Prima Kristalina April 2015 1 Outline 1. Definisi

Lebih terperinci

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA

PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Distribusi Normal. 1-Sep-14 Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Distribusi Normal 1-Sep-14 http://istiarto.staff.ugm.ac.id 1 Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari

Lebih terperinci

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Distribusi Peluang Diskrit 1. Hitunglah P( < 10) dengan distribusi binomial untuk n = 15, p = 0,4!

Lebih terperinci

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif 6 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Variabel Acak Diskrit Distribusi

Lebih terperinci

MATERI STATISTIK II. Genrawan Hoendarto

MATERI STATISTIK II. Genrawan Hoendarto MATERI STATISTIK II Teori Probabilitas Variabel Acak dan Nilai Harapan Distribusi Teoritis Distribusi Sampling Pengujian Hipotesis Regresi dan Korelasi Linear Sederhana Statistik Nonparametrik Daftar Pustaka

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Metode Statistika Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Konsep Peubah Acak Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah

Lebih terperinci

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP STATISTICS WEEK 6 Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL Pengantar: Dalam pokok bahasan disini memuat beberapa distribusi kontinyu yang sangat penting di bidang statistika. diantaranya distribusi normal.

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran Kurikulum 20 matematika K e l a s XI DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami perbedaan

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita lebih tertarik bukan pada titik sampelnya, tetapi gambaran numerik dari hasil. Misalkan pada pelemparan sebuah

Lebih terperinci

VARIABEL RANDOM DAN DISTRIBUSI PELUANG

VARIABEL RANDOM DAN DISTRIBUSI PELUANG 1 VARIABEL RANDOM DAN DISTRIBUSI PELUANG Dr. Vita Ratnasari, M.Si Definisi Variabel Random 2 Variabel random ialah Suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur dalam ruang sampel.

Lebih terperinci

Pembuatan Distribusi Peluang (Teoritis) dengan Excel (Bagian 2)

Pembuatan Distribusi Peluang (Teoritis) dengan Excel (Bagian 2) Pembuatan Distribusi Peluang (Teoritis) dengan Excel (Bagian 2) Pada bagian pertama telah dicantumkan cara pembuatan tabel Distribusi Binomial, Poisson dan Normal. Pada bagian ini disajikan cara pembuatan

Lebih terperinci

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak STK 511 Analisis statistika Materi 3 Sebaran Peubah Acak 1 Konsep Peluang 2 Peluang Peluang dapat diartikan sebagai ukuran kemungkinan terjadinya suatu kejadian Untuk memahami peluang diperlukan pemahaman

Lebih terperinci

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata dan Statistika dan Fungsi Peluang Adam Hendra Brata acak adalah sebuah fungsi yang memetakan hasil kejadian yang ada di alam (seperti : buka dan tutup; terang, redup dan gelap; merah, kuning dan hijau;

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

DISTRIBUSI PROBABILITAS VARIABEL RANDOM

DISTRIBUSI PROBABILITAS VARIABEL RANDOM Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan DISTRIBUSI PROBABILITAS VARIABEL RANDOM Statistika dan Probabilitas 2 Distribusi probabilitas variabel random diskrit Distribusi

Lebih terperinci

SEJARAH DISTRIBUSI POISSON

SEJARAH DISTRIBUSI POISSON SEJARAH DISTRIBUSI POISSON Distribusi poisson disebut juga distribusi peristiwa yang jarang terjadi, ditemukanolehs.d. Poisson (1781 1841), 1841), seorang ahli matematika berkebangsaan Perancis. Distribusi

Lebih terperinci

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi

Lebih terperinci

Peubah Acak (Lanjutan)

Peubah Acak (Lanjutan) Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 6. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Variansi dan kovariansi. HARAPAN MATEMATIK Keragaman suatu peubah acak X diperoleh dengan mengambil g(x) = (X µ). Rataan

Lebih terperinci

Nilai Harapan / Nilai Ekspektasi

Nilai Harapan / Nilai Ekspektasi EKSPEKTASI Misalkan sebuah eksperimen menghasilkan k peristiwa, dan peluang masing-masing peristiwa P 1, P, P k dan untuk tiap peristiwa terdapat satuan (bobot d 1, d d k ) maka ekspektasi eksperimen itu

Lebih terperinci

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Zaman modern (>1940), dgn cara membentuk bilangan acak secara numerik/aritmatik (menggunakan komputer), disebut Pseudo Random

Lebih terperinci

Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Peubah Acak Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita

Lebih terperinci

Distribusi Peluang Teoritis

Distribusi Peluang Teoritis Distribusi Peluang Teoritis 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

Beberapa Distribusi Peluang Diskrit

Beberapa Distribusi Peluang Diskrit Beberapa Distribusi Peluang Diskrit Departemen Teknik Informatika Institut Teknologi Bandung Page 1 Isi : Distribusi Seragam Distribusi Binomial Distribusi Multinomial Page 2 Distribusi

Lebih terperinci

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar 3 OUT LINE Pengertian Distribusi Probabilitas Normal Distribusi Probabilitas Normal Distribusi Probabilitas Normal Standar Penerapan Distribusi Probabilitas Normal Standar Pendekatan Normal Terhadap Binomial

Lebih terperinci

Metode Statistika (STK211)

Metode Statistika (STK211) Metode Statistika (STK211) Peubah Acak dan Sebaran Peluang (Random Variable and Probability Distribution) Dr. Ir. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 1 Konsep Peubah Acak (Random Variable) Peubah

Lebih terperinci

Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Variansi dan Kovariansi Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Variansi Kita sudah memahami bahwa nilai harapan peubah acak X seringkali

Lebih terperinci