(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

Ukuran: px
Mulai penontonan dengan halaman:

Download "(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar"

Transkripsi

1 1 EKSPEKTASI (HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 0 September 01 Utriweni Mukhaiyar

2 Ekspektasi Suatu Peubah Acak Misalkan X peubah acak Ekspektasi dari X EX [ ] xp( X x), jika X peubah acak diskrit semua x xf ( x) dx, jika X peubah acak kontinu dimana : x P(X=x) : nilai-nilai pada X : peluang untuk setiap nilai x

3 Ekspektasi Suatu Fungsi dari Peubah Acak Misalkan peubah acak Y = g(x), yang merupakan fungsi dari peubah acak X. Ekspektasi g(x) didefinisikan sebagai: Egx [ ( )] gxpx ( ) ( x), jika Xpeubah acak diskrit semua x g ( x ) f ( x ) dx, jika X peubah acak kkontinu

4 Sifat-sifat Ekspektasi 4 Apabila a konstan, maka E[a]=a Untuk peubah acak X dan Y, maka E(X+Y) ) = E(X) ( ) + E(Y) ( ) Bila Y = ax + b, a dan b tetapan, maka E(Y) = ae(x)+b

5 Beberapa Ekspektasi Khusus Rataan Variansi xp ( X x ), jika X peubah acak diskrit [ ] semua x EX xf ( x) dx, jika X peubah acak kontinu VarX ( ) E[( X) ] EX [ ] ( EX [ ]) Fungsi Pembangkit Momen tx Mt () Ee [ ] untuk suatu bilangan riil t. Kasus khusus : M '(0) E [ X ] M ''(0) EX [ ]

6 Sifat Variansi 6 Bila Y = ax + b, a dan b tetapan, maka Var(Y) = Y= a Var(X) = a X Bila X suatu peubah acak dan g suatu fungsi bernilai riil, maka: Var(g(x)) = = E g x [( ( ) ) ] ( g ( x ) ) P ( X x ), jika X peubah acak diskrit semua x ( gx ( ) ) f( x) dx, jika Xpeubah acak kontinu Variansi disebut juga sebagai momen ke-dua disekitar

7 Beberapa Sifat Lainnya Misalkan g(x) dan h(x) masing-masing adalah fungsi dari peubah acak X, maka E[g(X) h(x)] = E[g(X)] E[h(X)] Jika peubah acak X dan Y dengan fungsi peluang gabungan g f(x,y) maka, E[X Y] = E[X] E[Y] ax+by = a X + b Y + ab X Y Jika peubah acak X dan Y saling bebas, maka ax+by = a X + b Y axby = a X + b Y

8 Contoh 3 8 Misal X adalah kesalahan dalam pengukuran nilai curah hujan (dalam mm). Jika ditetapkan fungsi peluang sebagai berikut: x, 1 x f ( x) 3 0, x yang lain Tentukan: a. Rataan dan variansi dari kesalahan pengukuran di atas. b. Jika dibangun Y = 4X + 3, tentukan rataan dan variansi i dari Y ini. i

9 Jawab: 9 a. Rataan dari X Variansi dari X E x X 5 x dx 3 Var X E X x 5 x 3 4 x dx

10 10 b. Y X Var Y X 4EX 3 E4X 5 E E 4 3 x 4 x dx x E x 5 x 3 dx

11 Soal Latihan Jika peubah acak T mempunyai fungsi peluang sebagai berikut : f ( t) 3 4 (1 t 0, ), untuk -1 t untuk t 1 lainnya Cari E[ T ], E[ T-1], E[T<0.5].. Jika 1/3, x 1,,3 PX ( x) 0, x yang lain maka nilai F(1, 99) =...

12 1 3. Banyaknya kejadian hujan beserta angin badai secara bersamaan setiap minggunya pada musim hujan di suatu daerah AA merupakan suatu peubah acak (misal H) dengan distribusi peluang berikut. h P(H = h) Tentukan: a. Harapan (matematika) dan variansi banyak kejadian hujan beserta badai setiap minggunya di wilayah tersebut b. Fungsi distribusi ib i F(h) dan gambarkan c. Jika banyak kejadian serupa di daerah lain, AB adalah dua kali banyak kejadian di AA ditambah satu, hitung harapan banyak kejadian hujan beserta badai setiap minggunya di wilayah AB.

13 KASUS DUA PEUBAH ACAK

14 Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ditawarkan dengan kategori-kategori yang berbeda. Misalkan diperhatikan komponen-komponen yang dimiliki suatu bangunan. Kekuatan bangunan Tinggi i bangunan Banyak lantai Banyak lift Luas bangunan Luas taman/daerah hijau bangunan Banyak pintu/tangga darurat Banyak ruangan KONTINU DISKRIT Misal peubah acak X menyatakan kekuatan bangunan, dan peubah acak Y menyatakan tinggi bangunan. Distribusi peluang dari kejadian serentak kedua peubah acak tersebut dinyatakan oleh f(x, y), yang disebut sebagai fungsi peluang gabungan X dan Y. f( < <b) b k di t ib i l d i k k t b b il i k il d i f(x<a, y<b) bermakna distribusi peluang dari kekuatan bangunan bernilai kecil dari a satuan kekuatan dan tinggi bangunan bernilai kecil dari b satuan tinggi.

15 Ilustrasi Misalkan peubah acak X 1 menyatakan banyak lantai gedung, peubah acak X menyatakan banyak lift, peubah acak X 3 menyatakan banyak ruangan. f(x 1, x, x 3 ) = P(X 1 =x 1, X =x, X 3 =x 3 ) menyatakan distribusi peluang dari kejadian bersama /serentak dari ketiga peubah acak tersebut atau fungsi peluang gabungan dari X 1, X, dan X 3. f(10, 15, 50) menyatakan peluang bahwa pada gedung terdapat 5 lantai, 15 lift dan 50 ruangan.

16 Fungsi Peluang Gabungan D I S K R I T K O N T I N U 1. P(X=x, Y=y) 0 untuk semua (x, y). x y P( X x, Y y) 1 3. Utk Untuk sebarang daerah hadl dalam daerah hdfiii definisi xy berlaku, P[( XY, ) A] f( xy, ) 1. f(x, y) 0 untuk semua (x, y). f ( x, y ) dxdy 1 A 3. Untuk sebarang daerah A dalam daerah definisi xy berlaku, P[( X, Y ) A] f ( x, y) dxdy A

17 Contoh 1 Dalam sebuah kotak buah terdapat 3 buah jeruk, apel dan 3 pisang, diambil secara acak 4 buah. Jika X adalah banyaknya buah jeruk dan Y adalah banyaknya buah apel yang terambil, hitung: a. Fungsi peluang gabungan f(x,y) b. P[(X,Y)A], ) ] dimana A adalah daerah {(x,y) x + y } Jawab: a. Pasangan nilai (x,y) yang mungkin dari kasus di atas adalah; (0,1), (0,), (1,0), (1,1), (1,), (,0), (,1), (,), (3,0), (3,1). f(3,0) artinya peluang terambil 3 jeruk dan 1 pisang. Banyak cara yang mungkin, pengambilan 4 sampel dari 8 adalah : 8C 4 = 70. Banyak cara yang mungkin terambilnya 3 jeruk dan 1 pisang adalah Banyak cara yang mungkin, terambilnya 3 jeruk dan 1 pisang adalah : 3C 3. 3 C 1 =1.3=3. Sehingga f(3,0)=3/70.

18 Solusi 1 Distribusi fungsi peluangnya: x y f(x,y) h(y) 0 0 3/70 9/70 3/70 15/70 1 /70 18/70 18/70 /70 40/70 3/70 9/70 3/ /70 g(x) 5/70 30/70 30/70 5/ C x Cy 3C4xy 4 (, ) xy x y f x y, x0,1,,3, y 0,1, 8 8C4 4 P X Y A P X Y ) b. [(, ) ] ( PX ( 0, Y1) PX ( 0, Y) PX ( 1, Y0) PX ( 1, Y1) PX (, Y0) f (0,1) f(0, ) f(1, 0) f (1,1) 1) f (, 0)

19 Contoh Suatu restoran cepat saji menyediakan fasilitas pemesanan untuk dibawa pulang melalui drive in dan walk in. Pada suatu hari yang dipilih secara acak, diperhatikan waktu yang dibutuhkan untuk menyiapkan pemesanan (dalam satuan waktu pelayanan) masingmasing untuk drive in dan walk in, yang berturut-turut dinotasikan sebagai peubah acak X dan Y. Misalkan fungsi kepadatan peluang gabungan dari kedua peubah acak tersebut adalah: ( x y ), 0 x 1,0 y 1 f( x, y) 3 0, xy, lainnya a. Selidiki apakah f(x,y) adalah fungsi peluang. b. Hitung peluang bahwa pada suatu hari ditemukan waktu pelayanan pada fasilitas drive in dan walk in masing-masing kurang dari setengah.

20 Solusi a f ( x, y) dxdy ( x y) dxdy ( x 4 yx) dy (14 y) dy ( y y ) (1) f(x,y) adalah fungsi peluang. b. 1/ 1/ 1/ 1/ 1 PX ( 0.5, Y 0.5) ( x ydxdy ) ( x 4 yx) dy / 1/ y dy y y

21 Fungsi Marjinal Misalkan peubah acak X dan Y memiliki fungsi peluang gabungan f(x,y). Notasikan fungsi peluang marjinal untuk X adalah g(x) dan fungsi peluang marjinal untuk Y adalah h(y). Untuk X dan Y diskrit. gx ( ) f( xy, ) PX ( xy, y) y hy ( ) f( xy, ) PX ( xy, y) x y Untuk X dan Y kontinu. x gx ( ) f( xydy, ) dan h( y) f( x, y) dx

22 Contoh 3 Perhatikan Contoh 1. Tunjukkan bahwa total jumlah kolom dan baris dari distribusi peluang f(x,y) masing-masing adalah distribusi peluang marjinal dari X dan Y. Jawab : g (0) f(0,0) f (0,1) f (0,) g(1) () f (1, 0) f(1,1) f (1, ) g() f(,0) f(,1) f(, ) g(3) f(3, 0) f(3,1) f(3, )

23 Solusi 3 Distribusi peluang peubah acak X adalah : x g(x) = P(X=x) 1/14 6/14 6/14 1/14 Dengan cara yang sama diperoleh distribusi peluang peubah acak Y adalah : y 0 1 h(y) = P(Y=y) 3/14 8/14 3/14

24 Contoh 4 Perhatikan Contoh. Tentukan, a. fungsi peluang marjinal untuk X b. fungsi peluang marjinal untuk Y c. peluang bahwa fasilitas drive in membutuhkan waktu kurang dari satu setengah satuan waktu pelayanan. Jawab : a. Misalkan fungsi peluang marjinal X adalah g(x) 1 1 gx ( ) f( xydy, ) ( x ydy ) ( xy y) ( x1) ( 1), x x 0 0

25 Solusi 4 b. Misalkan fungsi peluang marjinal Y adalah h(y) hy ( ) f( xydx, ) ( x ydx ) x yx y 0 1 4, y y c. Misalkan peluang bahwa fasilitas drive in membutuhkan waktu kurang dari satu setengah satuan waktu pelayanan adalah P(X<1,5) PX ( 1.5) gxdx ( ) ( x1) dx x x (1)

26 Peluang Bersyarat Misalkan X dan Y adalah peubah acak, diskrit atau kontinu. Peluang bersyarat dari peubah acak Y jika diberikan X=x adalah: f ( x, y ) f ( y x ), g ( x ) 0 gx ( ) Peluang bersyarat dari peubah acak X jika diberikan Y=y adalah: f ( xy, ) f( x y), h( y) 0 hy ( )

27 Bebas Statistik Misalkan peubah acak X dan Y mempunyai fungsi kepadatan peluang gabungan f(x,y) dengan fungsi peluang marjinal masing-masingnya gy adalah g(x) ) dan h(y). Peubah acak X dan Y dikatakan saling bebas jika dan f ( hanya xy, ) jika, gxhy ( ) ( ) untuk semua (x, y) di dalam daerah definisinya.

28 Contoh 5 Perhatikan Contoh 1. Tentukan distribusi peluang bersyarat dari X jika diberikan Y = 1. Hitung P(X=0 Y=1) Jawab : f( x, y) f( x,1) f( x y), h( y) 0 yaitu f( x 1) hy ( ) 814 f (0,1) 70 1 f (1,1) f(0 1), f(1 1) f(,1) f(3,1) 70 1 f ( 1), f(3 1) Distribusi peluang bersyarat : P(X=0 Y=1) x f(x 1) 1/0 9/0 9/0 1/0

29 Contoh 6 Perhatikan Contoh. Apakah peubah acak X dan Y saling bebas? Karena, 1 gxhy ( ) ( ) ( x1) (14 y) (4xy4yx1) ( ) (, ) 3 x y f x y Maka X dan Y tidak saling bebas secara statistik.

30 Kovariansi Dua Peubah Acak Misalkan X dan Y adalah peubah acak dengan fungsi peluang gabungan f(x,y) Kovariansi dari X dan Y adalah: dengan, Cov( X, Y ) E[( X X)( Y Y)] EXY [ ] EXEY [ ] [ ] Cov(X, X) = Var(X) Cov(Y, Y) = Var(Y) Variansi adalah xyf x y dydx kovariansi terhadap diri sendiri E[ XY ] (, ) EX [ ] xf ( xydydx, ) dd dan EY [ ] yf ( xydxdy, ) dd

31 Korelasi Dua Peubah Acak Misalkan X dan Y adalah peubah acak dengan fungsi peluang gabungan f(x,y) Korelasi dari X dan Y adalah: Corr( X, Y ) Cov ( X, Y ) XY Var( X ) Var( Y ) X Y

32

33 Referensi 33 Devore, J.L. JL and Peck, R., Statistics ti ti The Exploration and Analysis of Data, USA: Duxbury Press, Walpole, Ronald E. dan Myers, Raymond H., Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan, Edisi 4, Bandung: Penerbit ITB, Walpole, Ronald E., et.al, Statistitic for Scientist and Engineering, 8th Ed., 007. Pasaribu, U.S., 007, Catatan Kuliah Biostatistika.

BI5106 Analisis Biostatistik 18 September 2012 Utriweni Mukhaiyar

BI5106 Analisis Biostatistik 18 September 2012 Utriweni Mukhaiyar FUNGSI PELUANG GABUNGAN BI5106 Analisis Biostatistik 18 September 2012 Utriweni Mukhaiyar Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ditawarkan dengan kategori-kategori yang

Lebih terperinci

MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR 24 FEBRUARI 2011

MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR 24 FEBRUARI 2011 Fungsi Peluang Gabungan MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR 24 FEBRUARI 2011 Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ditawarkan dengan kategori-kategori yang berbeda.

Lebih terperinci

Fungsi Peluang Gabungan

Fungsi Peluang Gabungan Fungsi Peluang Gabungan MA3181 Teori Peluang 15 September 2014 Utriweni Mukhaiyar Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ingin diasuransikan dengan kategori-kategori yang

Lebih terperinci

FUNGSI PELUANG GABUNGAN M A P E N G A N T A R S T A T I S T I K A 14 F E B R U A R I 2013 U T R I W E N I M U K H A I Y A R

FUNGSI PELUANG GABUNGAN M A P E N G A N T A R S T A T I S T I K A 14 F E B R U A R I 2013 U T R I W E N I M U K H A I Y A R FUNGSI PELUANG GABUNGAN M A 4 0 8 5 P E N G A N T A R S T A T I S T I K A 14 F E B R U A R I 2013 U T R I W E N I M U K H A I Y A R ILUSTRASI Suatu perusahaan properti memiliki banyak gedung/bangunan yang

Lebih terperinci

MA 2081 Statistika Dasar Utriweni Mukhaiyar. 11 September 2012

MA 2081 Statistika Dasar Utriweni Mukhaiyar. 11 September 2012 1 PEUBAH ACAK DAN DISTRIBUSINYA MA 2081 Statistika Dasar Utriweni Mukhaiyar 11 September 2012 2 Pemetaan (Fungsi) Suatu pemetaan / fungsi Kategori fungsi: 1. Fungsi titik 2. Fungsi himpunan A A B B 3 Peubah

Lebih terperinci

PEUBAH ACAK DAN DISTRIBUSINYA. MA 2081 Statistika Dasar Utriweni Mukhaiyar

PEUBAH ACAK DAN DISTRIBUSINYA. MA 2081 Statistika Dasar Utriweni Mukhaiyar PEUBAH ACAK DAN DISTRIBUSINYA MA 208 Statistika Dasar Utriweni Mukhaiyar 0 Februari 20 Pemetaan (Fungsi) Suatu pemetaan / fungsi Kategori fungsi:. Fungsi titik 2. Fungsi himpunan 2 A A B B Peubah Acak

Lebih terperinci

PEUBAH ACAK DAN. MA 2181 Analisis Data Utriweni Mukhaiyar. 22 Agustus 2011

PEUBAH ACAK DAN. MA 2181 Analisis Data Utriweni Mukhaiyar. 22 Agustus 2011 1 PEUBAH ACAK DAN DISTRIBUSINYA MA 2181 Analisis Data Utriweni Mukhaiyar 22 Agustus 2011 Pemetaan (Fungsi) 2 Suatu pemetaan / fungsi Kategori fungsi: 1. Fungsi titik 2. Fungsi himpunan A A B B Peubah Acak

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

MA2181 Analisis Data - U. Mukhaiyar 1

MA2181 Analisis Data - U. Mukhaiyar 1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:

Lebih terperinci

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan

Lebih terperinci

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X)

Lebih terperinci

Sebaran Peubah Acak Bersama

Sebaran Peubah Acak Bersama Bab 6 Sebaran Peubah Acak Bersama 6. Peubah Acak Ganda Misalnya terdapat suatu tindakan pelemparan sekeping mata uang seimbang sebanyak 3 kali, dan X adalah peubah acak banyaknya sisi muka yang muncul

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E

Lebih terperinci

Sebaran Peubah Acak Bersama

Sebaran Peubah Acak Bersama Bab 6 Sebaran Peubah Acak Bersama 6. Peubah Acak Ganda Misalnya terdapat suatu tindakan pelemparan sekeping mata uang seimbang sebanyak 3 kali, dan X adalah peubah acak banyaknya sisi muka yang muncul

Lebih terperinci

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah : Statistika Matematika Pertemuan Ke : 5 Pokok Bahasan : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua

Lebih terperinci

PEUBAH ACAK DAN DISTRIBUSINYA

PEUBAH ACAK DAN DISTRIBUSINYA PEUBAH ACAK DAN DISTRIBUSINYA MA3181 Teori Peluang 8 September 2014 Utriweni Mukhaiyar 1 Pemetaan (Fungsi) O Suatu pemetaan / fungsi O Kategori fungsi: 1. Fungsi titik 2. Fungsi himpunan A A B B 2 Peubah

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS Uniform U (seragam) MultinomialM l i i l Bernoulli Hipergeometrik Binomial Geometrik Poisson Binomial Negatif MA 2081 Statistika Dasar Utriweni Mukhaiyar 27 September 2012 2 Distribusi

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Joint Distribution Function

Joint Distribution Function DISTRIBUSI PROBABILITAS MARGINAL & BERSYARAT TI2131 TEORI PROBABILITAS MINGGU KE-6 1 Joint Distribution Function Distribusi peluang gabungan dari dua variabel random X dan Y merupakan distribusi peluang

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS Uniform Bernoulli Binomial Poisson Distribusi Lainnya: Multinomial Hipergeometrik Geometrik Binomial Negatif BI5106 Analisis Biostatistika 27 September 2012 Distribusi uniform

Lebih terperinci

Peluang & Aturan Bayes. MA 2081 STATISTIKA DASAR 5 Februari 2014 Utriweni Mukhaiyar

Peluang & Aturan Bayes. MA 2081 STATISTIKA DASAR 5 Februari 2014 Utriweni Mukhaiyar 1 Peluang & Aturan Bayes MA 2081 STATISTIKA DASAR 5 Februari 2014 Utriweni Mukhaiyar 2 Eksperimen Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi

Lebih terperinci

Peluang & Aturan Bayes. MA 2081 STATISTIKA DASAR, 6 FEBRUARI 2012 Utriweni Mukhaiyar

Peluang & Aturan Bayes. MA 2081 STATISTIKA DASAR, 6 FEBRUARI 2012 Utriweni Mukhaiyar Peluang & Aturan Bayes MA 2081 STATISTIKA DASAR, 6 FEBRUARI 2012 Utriweni Mukhaiyar 1 Eksperimen Ciri-ciri i i i eksperimen acak (Statistik): ti tik) Dapat dulangi baik oleh si pengamat sendiri maupun

Lebih terperinci

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar DISTRIBUSI DISKRIT Uniform (seragam) Bernoulli Binomial Poisson Beberapa distribusi lainnya : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 081 Statistika Dasar Utriweni Mukhaiyar 5 Maret

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab Peubah Acak. Konsep Dasar Peubah Acak Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh peubah acak: Jika X adalah peubah acak banyaknya sisi muka yang muncul pada

Lebih terperinci

PELUANG & ATURAN BAYES BI5106 ANALISIS BIOSTATISTIK

PELUANG & ATURAN BAYES BI5106 ANALISIS BIOSTATISTIK 1 PELUANG & ATURAN BAYES BI5106 ANALISIS BIOSTATISTIK UTRIWENI MUKHAIYAR Eksperimen 2 Ciri-ciri i ii eksperimen acak (Statistik): ti tik) Dapat dulangi baik oleh si pengamat sendiri maupun orang lain.

Lebih terperinci

PELUANG 8/18/2010 EKSPERIMEN RUANG SAMPEL. Ruang sampel S, yaitu himpunan dari semua kemungkinanki hasil dari suatu percobaan acak (statistik).

PELUANG 8/18/2010 EKSPERIMEN RUANG SAMPEL. Ruang sampel S, yaitu himpunan dari semua kemungkinanki hasil dari suatu percobaan acak (statistik). PELUANG 1 MA 2181 ANALISIS DATA, 18 AGUSTUS 2010 UTRIWENI MUKHAIYAR EKSPERIMEN Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi keberhasilan

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

MA 4085 Pengantar Statistika 5 Februari 2013 Utriweni Mukhaiyar

MA 4085 Pengantar Statistika 5 Februari 2013 Utriweni Mukhaiyar MA 4085 Pengantar Statistika 5 Februari 2013 Utriweni Mukhaiyar 1 Ciri-ciri eksperimen acak (Statistik): *Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. *Proporsi keberhasilan dapat diketahui

Lebih terperinci

dan Korelasi 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 6.

dan Korelasi 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 6. Regresi Linear Sederhana dan Korelasi 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar.

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar. DISTRIBUSI DISKRIT UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 2081 Statistika Dasar Utriweni Mukhaiyar 7 Maret

Lebih terperinci

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Harapan Matematik Bahan Kuliah II09 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Harapan Matematik Satu konsep yang penting di dalam teori peluang

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal)

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal) Percobaan Bernoulli 5 Percobaan terdiri dari 1 usaha Sukses Usaha Gagal Peluang sukses p Peluang gagal 1-p Misalkan 1, jika terjadi sukses X 0, jika terjadi tidak sukses (gagal) Distribusi Bernoulli 6

Lebih terperinci

Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi keberhasilan dapat diketahui dari

Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi keberhasilan dapat diketahui dari (C) by UM, last edited Feb 2011 1 Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi keberhasilan dapat diketahui dari hasil-hasil sebelumnya.

Lebih terperinci

Peubah Acak dan Distribusi Kontinu

Peubah Acak dan Distribusi Kontinu BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi

Lebih terperinci

1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4.

1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. * 1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. Kecocokan Model Regresi 5. Korelasi Utriweni Mukhaiyar MA 2081 Statistika

Lebih terperinci

PELUANG & ATURAN BAYES MA 2181 ANALISIS DATA, 15 AGUSTUS 2011 UTRIWENI MUKHAIYAR

PELUANG & ATURAN BAYES MA 2181 ANALISIS DATA, 15 AGUSTUS 2011 UTRIWENI MUKHAIYAR 1 PELUANG & ATURAN BAYES MA 2181 ANALISIS DATA, 15 AGUSTUS 2011 UTRIWENI MUKHAIYAR Eksperimen 2 Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi

Lebih terperinci

Minggu 3 Peluang Bersyarat (Teorema Bayes) Minggu 4 Peubah Acak, Fungsi Peluang, Fungsi Distribusi. Minggu 6 Distribusi Peubah Acak Diskrit (PAD)

Minggu 3 Peluang Bersyarat (Teorema Bayes) Minggu 4 Peubah Acak, Fungsi Peluang, Fungsi Distribusi. Minggu 6 Distribusi Peubah Acak Diskrit (PAD) MUGE Statistika Dosen: Aniq A Rohmawati, M.Si [Kelas Statistika] CS-8-0 [Jadwal] Rabu 1.0-14.0 R.KU.05.14; Jumat 16.0-18.0 R.KU.05.15 [Materi Statistika] Minggu 1 Statistika deskriptif Minggu Tipe kejadian

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.

Lebih terperinci

Regresi Linear Sederhana

Regresi Linear Sederhana Regresi Linear Sederhana dan Korelasi 1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. Kecocokan Model Regresi 5. Korelasi

Lebih terperinci

Contoh Solusi PR 2 Statistika & Probabilitas. 1. Semesta dari kejadian adalah: pemilihan 5 soal dari 10 soal. Jumlah kemungkinannya ( 10 = 252.

Contoh Solusi PR 2 Statistika & Probabilitas. 1. Semesta dari kejadian adalah: pemilihan 5 soal dari 10 soal. Jumlah kemungkinannya ( 10 = 252. Contoh Solusi PR Statistika & Probabilitas Semesta dari kejadian adalah: pemilihan soal dari soal Jumlah kemungkinannya ( ) = (a) Kemungkinannya dapat dihitung dengan memilih soal tes dari soal yang anak

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 6. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Variansi dan kovariansi. HARAPAN MATEMATIK Keragaman suatu peubah acak X diperoleh dengan mengambil g(x) = (X µ). Rataan

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 5. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Rataan peubah acak. HARAPAN MATEMATIK Misalkan dua mata uang setangkup dilantun, peubah acak X menyatakan banyaknya

Lebih terperinci

Utriweni Mukhaiyar BI5106 Analisis Biostatistik 29 November 2012

Utriweni Mukhaiyar BI5106 Analisis Biostatistik 29 November 2012 ANALISIS VARIANSI DWIFAKTOR Utriweni Mukhaiyar BI5106 Analisis Biostatistik 29 November 2012 ANOVA one-way vs two-way 2 Dalam ANOVA one-way ( satu faktor), diperhatikan hanya satu faktor saja yang berpengaruh

Lebih terperinci

Harapan Matematik (Teori Ekspektasi)

Harapan Matematik (Teori Ekspektasi) (Teori Ekspektasi) PROBABILITAS DAN STATISTIKA Semester Genap 2014/2015 LUTFI FANANI lutfi.class@gmail.com Sifat Definisi Harapan matematik atau nilai ekspektasi adalah satu konsep yang penting di dalam

Lebih terperinci

Uji Hipotesis. MA2081 STATISTIKA DASAR Utriweni Mukhaiyar

Uji Hipotesis. MA2081 STATISTIKA DASAR Utriweni Mukhaiyar Uji Hipotesis MA081 STATISTIKA DASAR Utriweni Mukhaiyar 8 Maret 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu diuji kebenarannyaa

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

2. Peubah Acak (Random Variable)

2. Peubah Acak (Random Variable) . Peubah Acak (Random Variable) EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 0. Review dari EL009 KonsepPeubahAcak Sebaran Peluang Diskrit Sebaran Peluang Kontinyu Sebaran Empiris Sebaran

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 5. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Rataan peubah acak. HARAPAN MATEMATIK Misalkan dua mata uang setangkup dilantun, peubah acak X menyatakan banyaknya

Lebih terperinci

MA2081 STATISTIKA DASAR. Utriweni Mukhaiyar 1 November 2012

MA2081 STATISTIKA DASAR. Utriweni Mukhaiyar 1 November 2012 Uji Hipotesis MA081 STATISTIKA DASAR MA081 STATISTIKA DASAR Utriweni Mukhaiyar 1 November 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA DAN KORELASI 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi

Lebih terperinci

Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Variansi dan Kovariansi Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Variansi Kita sudah memahami bahwa nilai harapan peubah acak X seringkali

Lebih terperinci

10/14/2010 UJI HIPOTESIS PENGERTIAN GALAT (ERROR) salah)

10/14/2010 UJI HIPOTESIS PENGERTIAN GALAT (ERROR) salah) /4/ UJI HIPOTESIS UJI RATAAN UJIVARIANSI MA 8 Analisis Data Utriweni Mukhaiyar Oktober PENGERTIAN Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean MA38 Teori Peluang - Khreshna Syuhada Bab 7 Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean Ilustrasi 7. Seorang peserta kuis diberi dua buah pertanyaan (P-, P-2), yang harus dijawab dengan

Lebih terperinci

4/16/2009. H 0 ditolak. H 0 tidak ditolak. ditolak. P(menolak H 0 H 0 benar) keputusan benar. = galat lttipe II = β. P(tidak menolak H 0 H 0 salah)

4/16/2009. H 0 ditolak. H 0 tidak ditolak. ditolak. P(menolak H 0 H 0 benar) keputusan benar. = galat lttipe II = β. P(tidak menolak H 0 H 0 salah) 4/6/9 Galat (error) Uji Hipotesis H ditolak H benar H salah a P(menolak H H benar) galat tipe I keputusan benar MA 8 Statistika Dasar Kamis, 6 Februari 9 H tidak ditolak keputusan benar P(tidak menolak

Lebih terperinci

UJI RATAAN UJIVARIANSI MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 2011

UJI RATAAN UJIVARIANSI MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 2011 Uji Hipotesis UJI RATAAN UJIVARIANSI MA 081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 011 Pengertian Hipotesisadalah i suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lbih lebih

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Analisis Variansi (ANOVA) Utriweni Mukhaiyar MA 2081 Statistika Dasar 13 November 2012

Analisis Variansi (ANOVA) Utriweni Mukhaiyar MA 2081 Statistika Dasar 13 November 2012 1 Analisis Variansi (ANOVA) Utriweni Mukhaiyar MA 2081 Statistika Dasar 13 November 2012 2 Analisis Variansi 1. Tujuan Analisis Variansi 2. Asumsi-asumsi s s dalam a Analisis s Variansi a 3. Hipotesis

Lebih terperinci

Statistika Variansi dan Kovariansi. Adam Hendra Brata

Statistika Variansi dan Kovariansi. Adam Hendra Brata Statistika dan Adam Hendra Brata Kita sudah memahami bahwa nilai harapan peubah acak X seringkali disebut rataan (mean) dan dilambangkan dengan μ. Tetapi, rataan tidak memberikan gambaran dispersi atau

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Var X y x E X y. g x y dx. dan varians bersyarat dari Y diberikan X = x dirumuskan sebagai berikut: Var Y x y E Y x. h y x dy

Var X y x E X y. g x y dx. dan varians bersyarat dari Y diberikan X = x dirumuskan sebagai berikut: Var Y x y E Y x. h y x dy 0 VARIANS BERSYARAT Penenuan varians bersara dari sebuah peubah acak diberikan peubah acak lainna, baik diskri maupun koninu dijelaskan dalam Definisi 7.. Definisi 7.: VARIANS BERSYARAT UMUM Jika X dan

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik A. Jadwal kuliah:

Lebih terperinci

PEUBAH ACAK DAN DISTRIBUSINYA

PEUBAH ACAK DAN DISTRIBUSINYA 4/6/009 Pemetaan (Fungsi) PEUBAH ACAK DAN DISTRIBUSINYA Suatu pemetaan / fungsi Kategori fungsi:. Fungsi titik A B MA 08 Statistika Dasar Dosen : Udjianna S. Pasaribu Utriweni Mukhaiyar Senin, 6 Februari

Lebih terperinci

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALAM STATISTIKA HARGA HARAPAN Definisi Misalkan X variabel random. Bila X variabel random kontinu dengan f.k.p. f (x) dan maka harga harapan X adalah

Lebih terperinci

MA2081 STATISTIKA DASAR SEMESTER II TAHUN 2010/2011 LATIHAN I

MA2081 STATISTIKA DASAR SEMESTER II TAHUN 2010/2011 LATIHAN I MA2081 STATISTIKA DASAR SEMESTER II TAHUN 2010/2011 LATIHAN I A. STATISTIKA DESKRIPTIF 1. Seorang teknisi suatu pabrik paku melakukan kunjungan di bagian produksi. Ia mengambil 36 sampel paku yang akan

Lebih terperinci

ANALISIS VARIANSI. Utriweni Mukhaiyar. 2 November 2011

ANALISIS VARIANSI. Utriweni Mukhaiyar. 2 November 2011 1 ANALISIS VARIANSI Utriweni Mukhaiyar MA 2181 Analisis Data 2 November 2011 Analisis Variansi 2 1. Tujuan Analisis Variansi 2. Asumsi-asumsi dalam Analisis Variansi 3. Hipotesis yang diuji dalam analisis

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK STATISTIKA NON PARAMETRIK Utriweni Mukhaiyar BI5106 Analisis Biostatistik 4 Desember 2012 Prosedur Uji Hipotesis Prosedur Uji Hipotesis Parametrik Uji Z Uji t ANOVA one way UJI MENYANGKUT RATAAN Asumsi

Lebih terperinci

Ekspektasi Satu Peubah Acak Diskrit

Ekspektasi Satu Peubah Acak Diskrit Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 8-14) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 8:MOMEN VARIABEL RANDOM Mean dan Variansi Fungsi Pembangkit Momen (MGF) 2 Minggu

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah MA3181 Teori Peluang - Khreshna Syuhada Bab 8 1 Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah Ilustrasi 8.1 Sebuah perusahaan asuransi menduga bahwa setiap orang akan mengalami dan memiliki parameter

Lebih terperinci

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kuis Selamat Datang MA5181 Proses Stokastik Precise. Prospective. Tanggal 23 Agustus 2016, Waktu: suka-suka menit 1. Mahasiswa yang datang ke ruang kuliah mengikuti suatu proses dengan laju kedatangan

Lebih terperinci

BAB IV EKSPEKTASI MATEMATIK

BAB IV EKSPEKTASI MATEMATIK BAB IV EKSPEKTASI MATEMATIK.1. Rata-rata variabel acak Bila dua koin dilemparkan sebanyak 16 kali dan X adalah jumlah depan (atas) yang muncul setiap kali pelemparan. Sehinga nilai X adalah 0,1, atau.

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

BEBERAPA TEKNIK DISTRIBUSI FUNGSI PEUBAH ACAK

BEBERAPA TEKNIK DISTRIBUSI FUNGSI PEUBAH ACAK 0 BEBERAPA TEKNIK DISTRIBUSI FUNGSI PEUBAH ACAK Dalam hal ini akan dibahas beberapa teknik yang digunakan dalam menentukan distribusi dari fungsi peubah acak, yaitu teknik fungsi distribusi, teknik transformasi

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

Minggu 3 Peluang Bersyarat (Teorema Bayes) Minggu 4 Peubah Acak, Fungsi Peluang, Fungsi Distribusi. Minggu 6 Distribusi Peubah Acak Diskrit (PAD)

Minggu 3 Peluang Bersyarat (Teorema Bayes) Minggu 4 Peubah Acak, Fungsi Peluang, Fungsi Distribusi. Minggu 6 Distribusi Peubah Acak Diskrit (PAD) MUGE3 Statistika Dosen: Aniq A Rohmawati, M.Si [Kelas Statistika] CS-38-0 [Jadwal] Rabu 1.30-14.30 R.KU3.05.14; Jumat 16.30-18.30 R.KU3.05.15 [Materi Statistika] Minggu 1 Statistika deskriptif Minggu Tipe

Lebih terperinci

Nilai Ekstrim. (Extreme Values)

Nilai Ekstrim. (Extreme Values) TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika terdapat suatu hasil pengukuran seperti pada Gambar 1, dimana pengukuran

Lebih terperinci

BAB 2 MOMEN DAN ENTROPI

BAB 2 MOMEN DAN ENTROPI BAB MOMEN DAN ENTROPI. Satu Peubah Acak (Univariat) Misalkan diketahui suatu peubah acak X. Didefinisikan ekspektasi dari peubah acak X adalah sebagai berikut E [ X ] - P X =, X diskrit = f d, X kontinu

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

Ukuran Kebergantungan Korelasi Pearson - Korelasi Spearman - Kendals Tau. MA2281 Statistika Nonparametrik 3 Maret 2016 Utriweni Mukhaiyar

Ukuran Kebergantungan Korelasi Pearson - Korelasi Spearman - Kendals Tau. MA2281 Statistika Nonparametrik 3 Maret 2016 Utriweni Mukhaiyar Ukuran Kebergantungan Korelasi Pearson - Korelasi Spearman - Kendals Tau MA2281 Statistika Nonparametrik 3 Maret 2016 Utriweni Mukhaiyar Ukuran Kebergantungan Misalkan 2 peubah acak X dan Y, masing-masing

Lebih terperinci

TEORI DASAR DERET WAKTU M A T O P I K D A L A M S T A T I S T I K A II 22 J A N U A R I 2015 U T R I W E N I M U K H A I Y A R

TEORI DASAR DERET WAKTU M A T O P I K D A L A M S T A T I S T I K A II 22 J A N U A R I 2015 U T R I W E N I M U K H A I Y A R TEORI DASAR DERET WAKTU M A 5 2 8 3 T O P I K D A L A M S T A T I S T I K A II 22 J A N U A R I 2015 U T R I W E N I M U K H A I Y A R DERET WAKTU Deret waktu sendiri tidak lain adalah himpunan pengamatan

Lebih terperinci

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen.

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen. Peluang Peluang dan Kejadian Peluang Bersyarat Peubah Acak dan Nilai Harapan Kovarian dan Korelasi 1.1 PELUANG DAN KEJADIAN Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan

Lebih terperinci

POKOK BAHASAN YANG DIAJARKAN: 1. DISTRIBUSI PEUBAH ACAK a. Distribusi Peubah Acak Tunggal b. Distribusi Peubah Acak Ganda c. Distribusi Bersyarat d.

POKOK BAHASAN YANG DIAJARKAN: 1. DISTRIBUSI PEUBAH ACAK a. Distribusi Peubah Acak Tunggal b. Distribusi Peubah Acak Ganda c. Distribusi Bersyarat d. POKOK BAHASAN YANG DIAJARKAN:. DISTRIBUSI PEUBAH ACAK a. Distribusi Peubah Acak Tunggal b. Distribusi Peubah Acak Ganda c. Distribusi Bersyarat d. Teorema Bayes. EKSPEKTASI MATEMATIK a. Ekspektasi b. Variansi

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS Dasar Statistik untuk Pemodelan dan Simulasi oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS . Probabilitas Probabilitas=Peluang, bisa diartikan

Lebih terperinci

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Daftar Isi

Lebih terperinci