Penentuan Momen ke-5 dari Distribusi Gamma

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Penentuan Momen ke-5 dari Distribusi Gamma"

Transkripsi

1 Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia Intisari: Distribusi Gamma mempunyai peranan yang sangat penting dalam teori antrian dan teori keandalan (reliabilitas). Distribusi gamma memiliki grafik yang disebut kurva tak beraturan, yang menggambarkan ketidaknormalan dalam sebarannya. Pada distribusi yang mempunyai kurva tak beraturan, sangat penting untuk diketahui besarnya koefisien Skewness dan koefisien Kurtosis, sehingga diperlukan adanya momen ketiga dan momen keempat. Sedangkan momen kelima, dapat digunakanuntuk mencari besarnya koefisien Skewness yang lebih akurat. Menurut Walpole, kegunaan yang jelas dari fungsi pembangkit momen ialah untuk menentukan momen distribusi. Jika diketahui fungi pembangkit momen suatu peubah acak, maka dapat ditentukan momen-momennya, yaitu dengan menurunkan fungsi pembangkit momen hingga n kali. Fungsi pembangkit momen distribusi gamma didefinisikan sebagai M t = ( βt ). Untuk mendapatkan momen ke-5, maka fungsi pembangkit momen tersebut diturunkan sebanyak 5 kali, sehingga mendapatkan momen pertama sampai momen ke-5 yaitu β; β ; β ; β 4 + 6β 4 dan 0 β 5 + 4β 5. Momen ke- dan ke-5 digunakan untuk mencari nilai koefisien Skewness, yaitu γ = dan γ 5 = Sedangkan momen ke-4 digunakan un- tuk mencari nilai koefisien Kurtosis, yaitu γ 4 = 6 +. Kata-kunci: distribusi gamma, momen, koefisien skewness, koefisien kurtosis Abstract: The gamma distribution has very important role in queue theory and reliability. Distribution of gamma has graphic called irreguler curve, shows the abnormal in yhe distribution. At distribution which has irreguler curve, it is very important to know the value of Skewness and Kurtosis coefficients, therefore the third and the fourth moments are needed. Whereas, the fifth moment, can be used to finds the value of Skewness coefficient accurately. According to Walpole, the use of the function of moment-generating of random of variabel is known, so the moments can be found, that is by differential the function of moment-generating to n times. Function of moment-generating gamma distribution defined as M t =. Therefore to gain the fifith moment, the function is differentiated five times, than the first moment to fifith moment are found, those ( βt ) are β; β ; β ; β 4 + 6β 4 and 0 β 5 + 4β 5. The third and the fifith moment are used to find Skewness coefficient value those are γ = and γ 5 = Otherwise, the fourth moment is used to find Kurtosis coefficient value, that is γ 4 = 6 +. Keywords: gamma distribution, moment, skewness coefficient, kurtosis coefficient PENDAHULUAN Penentuan momen pertama dan momen kedua sangat diperlukan dalam distribusi normal, karena distribusi normal memiliki grafik yang disebut kurva normal, yang berbentuk lonceng. Sedangkan pada distribusi gamma memiliki grafik yang disebut kurva tak beraturan, yang menggambarkan ketidaknormalan, sehingga tidak cukup hanya menentukan momen pertama dan momen kedua saja. Pada distribusi yang mempunyai kurva tak beraturan, sangat penting untuk diketahui besarnya koefisien Skewness dan koefisien Kurtosis, sehingga diperlukan adanya momen ketiga dan momen keempat. Sedangkan momen kelima, dapat digunakan untuk mencari besarnya koefisien Skewness yang lebih akurat. Untuk mencari momen suatu distribusi, sangat diperlukan adanya fungsi yang disebut fungsi pembangkit momen. Jika diketahui fungsi pembangkit momen suatu peubah acak, maka dapat ditentukan momen-momennya, yaitu dengan menurunkan fungsi pembangkit momen hingga n kali, dengan momen pertama disebut mean dan momen kedua disebut variansi. TINJAUAN PUSTAKA. Peubah Acak dan Distribusinya Peubah Acak 0 JPS MIPA UNSRI 60-46

2 Dian & Ali/Pemodelan Tingkat Kepuasan JPS Vol.6 No. (A) Januari 0 Peubah acak dilambangkan dengan huruf kapital X dan huruf kecilnya dalam hal ini x, untuk menyatakan salah satu diantara nilai-nilainya []. Definisi.: Peubah acak adalah suatu fungsi yang mengaitkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh [5]. Peubah acak diklasifikasikan menjadi macam, yaitu peubah acak diskret dan peubah acak kontinu. Distribusi Peubah Acak Distribusi peubah acak diklasifikasikan menjadi macam, yaitu distribusi peubah acak diskret dan distribusi peubah acak kontinu. a. Distribusi Peubah Acak Diskret Pada peubah acak diskret, setiap nilainya dapat dikaitkan dengan probabilitas. Himpunan pasangan yang berurutan (x, f(x) ) disebut distribusi probabilitas peubah acak X [6]. Fungsi distribusi peubah acak diskret dapat dinyatakan sebagai : F x = x X f(x) (.) dengan f(x) adalah suatu funsi probabilitas jika dan hanya jika :. f x 0 untuk semua x. x X f x = (.) b. Distribusi Peubah Acak Kontinu Distribusi probabilitas peubah acak kontinu tidak dapat dinyatakan dalam bentuk tabel, akan tetapi distribusinya dapat dinyatakan dalam persamaan yang merupakan fungsi nilai-nilai peubah acak kontinu dan dapat digambarkan dalam bentuk kurva [6]. Fungsi distribusi peubah acak kontinu dapat dinyatakan sebagai : F x = f x dx (.) dengan f(x) adalah fungsi probabilitas jika dan hanya jika [] :. f x 0 untuk semua x. f x dx =. Distribusi Gamma Definisi.: (.4) Jika suatu bilangan real sebarang dengan > 0, fungsi gamma adalah : = Definisi.: 0 x e x dx (.5) Jika X suatu peubah acak kontinu, dengan > 0 dan β > 0 maka fungsi probabilitas dari distribusi gamma diberikan oleh [5] : f x = Teorema.: ()β x e x β ; x > 0 0 ; x 0 (.6) Jika f(x) adalah fungsi probabilitas, maka fungsi pembangkit momen distribusi gamma adalah [4] : M t = (.7) ( βt). Ekspektasi dan Varians Nilai Harapan (Ekspektasi) Definisi.4: Jika X adalah suatu peubah acak diskrit dan f(x) adalah fungsi probabilitas dari X, maka nilai harapan (ekspektasi) dari peubah acak X adalah : E X = Definisi.5: x X x f(x) (.8) Jika X adalah suatu peubah acak kontinu dan f(x) adalah suatu funsi probabilitas dari X maka nilai harapan (ekspektasi) dari peubah acak X adalah [4] : E X = Definisi.6: x f x dx (.9) Misalkan X suatu peubah acak dengan fungsi probabilitas f(x) dan g(x) maka nilai harapan (ekspektasi) dari X adalah [] : E g X = E g X = Teorema.: Jika a dan b konstanta, maka [] x X g(x) f(x) ; untuk X diskret (.0) g(x) f x dx; untuk X kontinu (.) E ax + b = ae X + b (.) 60-47

3 Dian & Ali/Pemodelan Tingkat Kepuasan JPS Vol.6 No. (A) Januari 0 Variansi Variansi peubah acak X dibagi menjadi macam yaitu variansi peubah acak diskret dan variansi peubah acak kontinu. Definisi.7: Misalkan X peubah acak dengan distribusi peluang f(x) dan rataan μ, variansi X adalah : Jika X diskret σ = E X μ = Jika X kontinu σ = E X μ = Teorema.4: x X (x μ) f(x) (.) (x μ) f(x) dx (.4) Jika variansi X dilambangkan dengan Var (X), maka [] Var X = E X μ (.5) Teorema.5: [] Var ax + b = a Var X (.6).4 Momen dan Fungsi Pembangkit Momen Momen Definisi.8: Misalkan X suatu peubah acak dengan fungsi distribusi F(x). Momen tak terpusat ke n dari X adalah []. Definisi.9: μ n = E X n Misalkan X suatu peubah dengan fungsi distribusi F(x). Momen pusat ke n dari X adalah μ n = E (X μ) n []. Definisi.0: Momen tak terpusat (μ ) pertama disebut mean suatu distribusi dari X dan dinotasikan dengan μ. Definisi.: Momen pusat kedua μ = E (X μ) disebut variansi suatu distribusi dari X dan dinotasikan dengan σ []. Fungsi Pembangkit Momen Definisi.: Fungsi pembangkit momen dari suatu peubah acak X didefinisikan untuk setiap bilangan real t sebagai M t = E(e tx ) []. Teorema.6: Bila fungsi pembangkit momen M(t) dari peubah acak X ada untuk t T, untuk T > 0, maka E(X n) ada (n =,,,...) dan E(X n) =M (n) (0) = d n dt n M(t) METODOLOGI PENELITIAN Adapun langkah-langkah yang dilakukan dalam penelitian ini adalah sebagai berikut:. Membuktikan rumus momen ke-n.. Membuktikan rumus fungsi pembangkit momen distribusi gamma.. Menentukan momen ke Menentukan koefisien Skewness dan koefisien Kurtosis. 5. Membuat kesimpulan. 4 HASIL DAN PEMBAHASAN Momen-momen distribusi peubah acak kontinu dapat diperoleh dengan menggunakan rumus (.5) dan (.6) dan dengan cara menurunkan fungsi pembangkit momen dari distribusi tersebut. 4. Membuktikan Rumus Momen ke-n Berdasarkan Teorema.6 dan menggunakan deret Maclaurin e y = + y + y + serta y diganti tx maka e tx = + tx + tx + sehingga: M t = E(e tx ) = E( + tx + tx +! = E + E tx + E( tx ) +! = + t E X + t E X t n + + M t = 0 + E X + t E X + +!!! E Xn n! tn n! E(Xn ) M 0 = E X Momen ke dari peubah acak X M t = 0 + E X + t E X + M 0 = E X Momen ke dari peubah acak X M n 0 = E X n Momen ke n dari peubah acak X E X n = dn dt n M x(t) 4. Membuktikan Rumus Fungsi Pembangkit Momen Distribusi Gamma 60-48

4 Dian & Ali/Pemodelan Tingkat Kepuasan JPS Vol.6 No. (A) Januari 0 Berdasarkan teorema. dan dengan menggunakan persamaan (.6) dan definisi (.), maka dapat dibuktikan : M t = E e tx = e tx f x dx M t = e tx ()β x e x β dx = Misal : y = x( βt ) β Sehingga: M t = = ( βt ) ()β x e ; x = βy ( βt ) ; dx = 4. Menentukan Momen ke-5. Momen pertama μ = E X = d dt M(t) = d( βt) dt x β +tx dx β βt dy βt y e y dx = βt ( β) = β. 0 (+) ( β) = β Jadi, momen tak terpusat pertama adalah μ = E X = β. Momen kedua μ = E X = d dt M(t) = d ( βt ) dt = + ( βt) (+) ( β) = + ( β. 0) ( +) ( β) = + β = β + = β + β Jadi, momen tak terpusat kedua adalah μ = E X = β + β μ = E (X μ ) = E(X μ X + μ ) = E X μ E X + μ = μ μ + μ = μ μ = β + β (β) = β Jadi, momen pusat kedua adalah μ = E (X μ ) = σ = β. Momen ketiga μ = E X = d dt M t = d ( βt) dt = d dt ( + βt + ( β) ) = + ( + )( β. 0) (+) ( β) = β ( + + ) = β + β + β Jadi, momen tak terpusat ketiga adalah μ = E X = β + β + β μ = E (X μ ) = E( X μ X + μ X μ ) = E X μ X + μ X μ = E(X ) μ E(X ) + μ E(X) μ = μ μ μ + μ = β + β + β β β + β = β Jadi, momen pusat ketiga adalah μ = E (X μ ) =β 4. Momen keempat μ 4 = E X 4 = d 4 dt 4 M(t) = d4 ( βt) dt

5 Dian & Ali/Pemodelan Tingkat Kepuasan JPS Vol.6 No. (A) Januari 0 = d dt ( + ( + ) β. 0 + ( β) ) = + ( + )( a + ) βt +4 ( β) 4 = β ( + ) = 4 β β 4 + β 4 + 6β 4 Jadi, momen tak terpusat keempat adalah μ 4 = E X 4 = 4 β β 4 + β 4 + 6β 4 μ 4 = E (X μ ) 4 = E( X μ X + μ X μ (X μ ) = E(X 4 4μ X + 6μ X 4μ X + μ 4 ) = μ 4 4μ μ + 6μ μ μ 4 = 4 β β 4 + β 4 + 6β β 4 β 4 8 β β β 4 4 β 4 = β 4 + 6β 4 Jadi, momen pusat keempat adalah: μ 4 = E (X μ ) 4 = β 4 + 6β 4 5. Momen kelima μ 5 = E X 5 = d 5 dt 5 M(t) = d 5 ( βt) dt 5 = d dt ( + ( + )( a + ) βt +4 ( β) 4 ) = + + a βt +5 ( β) 5 = + + a β ( β) 5 = β = 5 β β β β 5 +4β 5 Jadi, momen tak terpusat kelima adalah: μ 5 = E X 5 = 5 β β β β 5 +4β 5 μ 5 = E (X μ ) 5 = E((X 4 4μ X + 6μ X 4μ X + μ 4 ) (X μ )) = E(X 5 5μ X 4 + 0μ X 0μ X +5μ 4 X +μ 5 ) = μ 5 5μ μ 4 + 0μ μ 0μ μ + 4μ 5 = 5 β β β β 5 +4β 5 = 0 β 5 + 4β β β 5 55 β 5 0 β β β 5 Jadi, momen pusat kelima adalah μ 5 = E (X μ ) 5 = 0 β 5 + 4β Menentukan Koefisien Skewness dan Koefisien Kurtosis Koefisien Skewness γ = μ σ γ = γ = E (X μ) σ = β β β Jika menggunakan momen pusat ke-5 maka didapat nilai koefisien Skewness yang lebih akurat. γ 5 = μ 5 σ 5 γ 5 = E (X μ)5 σ 5 = 0 β 5 + 4β 5 β β β γ 5 = Nilai koefisien Skewness digunakan untuk mengetahui jenis skewness kurva distribusi gamma dengan berdasarkan kriteria sebagai berikut: a. γ > 0 : sebaran menjulur positif atau menjulur ke kanan. b. γ = 0 : sebaran normal (simetrik). c. γ < 0 : sebaran menjulur negatif atau menjulur ke kiri. Koefisien Kurtosis γ 4 = μ 4 σ 4 γ 4 = E (X μ)4 σ 4 γ 4 = 6 + = β 4 + 6β 4 β β 60-50

6 Dian & Ali/Pemodelan Tingkat Kepuasan JPS Vol.6 No. (A) Januari 0 Nilai koefisien Kurtosis digunakan untuk mengetahui kelandaian suatu kurva dengan kriteria sebagai berikut: a. γ 4 > 0 : sebaran kurva leptokurtik, yaitu kurva yang mempunyai puncak relatif tinggi atau runcing. b. γ 4 = 0 : sebaran kurva mesokurtik, yaitu mempunyai puncak ceper atau rata-rata. c. γ 4 < 0 : sebaran kurva platikurtik, yaitu kurva yang mempunyai puncak tidak terlalu runcing. 5 KESIMPULAN DAN SARAN Kesimpulan Berdasarkan hasil dan pembahasan, dapat disimpulkan bahwa:. Momen pusat ke-5 dari distribusi gamma didapatkan dengan menurunkan fungsi pembangkit momen sebanyak lima kali, sehingga diperoleh: μ 5 = ((X μ ) 5 ) = 0 β 5 + 4β 5. Nilai koefisien Skewness digunakan untuk mengetahui jenis kemencengan suatu kurva, didapat koefisien Skewness distribusi gamma sebagai berikut : γ = dan γ 5 = Sedangkan koefisien Kurtosis digunakan untuk mengetahui jenis pemuncakan suatu kurva, didapat koefisien Kurtosis distribusi gamma sebagai berikut : γ 4 = 6 + Saran. Selain distribusi gamma, penentuan momen juga dapat dilakukan pada distribusi peubah acak kontinu lain, seperti distribusi beta dan distribusi weibull.. Secara umum peubah acak dapat dibedakan menjadi dua, yaitu peubah acak diskret dan peubah acak kontinu. Oleh karena itu, disarankan lebih lanjut tentang penentuan momen pada peubah acak diskret. REFERENSI [] [] [] [4] [5] [6] Bain, L. dan Max, E., 99, Introduction to Probability and Mathematical Statistics, PWS KENT, United States of America Dudewiez, Edward J. dan Mishra, S., 995, Statistika Matematika Modern, ITB Bandung, Bandung Freund, J. dan Richard, W, 987, Mathematical Statistics, Prentice-Hall, United States of America Hogg, R. dan Allen T, 995, Introduction to Mathematical Statistics, Prentice-Hall, United States of America Walpole, R., dan Raymond H, 995, Ilmu Peluang dan Statistika Untuk Insinyur dan Ilmuwan, ITB Bandung, Bandung Wibisono, Yusuf, 005, Metode Statistika, Gajah Mada University, Yogyakarta 60-5

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar yang akan digunakan dalam pembahasan hasil penelitian ini, antara lain : 2.1 Fungsi Gamma Fungsi gamma merupakan suatu fungsi khusus. Fungsi

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi

Lebih terperinci

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALAM STATISTIKA HARGA HARAPAN Definisi Misalkan X variabel random. Bila X variabel random kontinu dengan f.k.p. f (x) dan maka harga harapan X adalah

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian penulis. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari generalized Weibull

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

II. TINJAUAN PUSTAKA. kontinu. Bentuk kurva distribusi logistik adalah simetri dan uni-modal. Bentuk

II. TINJAUAN PUSTAKA. kontinu. Bentuk kurva distribusi logistik adalah simetri dan uni-modal. Bentuk 5 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan beberapa tinjauan pustaka yang digunakan penulis pada penelitian ini, antara lain : 2.1 Distribusi Logistik Distribusi logistik merupakan distribusi

Lebih terperinci

Penggunaan Statistik Tataan untuk Menentukan Median Contoh Acak dari Distribusi Eksponensial

Penggunaan Statistik Tataan untuk Menentukan Median Contoh Acak dari Distribusi Eksponensial Jurnal Penelitian Sains Volume 3 Nomer A) 3 Penggunaan Statistik Tataan untuk Menentukan Median Contoh Acak dari Distribusi Eksponensial Herlina Hanum Yuli Andriani dan Retno Jurusan Matematika FMIPA Universitas

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari distribusi generalized lambda

Lebih terperinci

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan 4 II. LANDASAN TEORI Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan Schmeiser (1974), yang memiliki empat parameter dari pengembangan distribusi Lambda Tukey. Keluarga distribusi

Lebih terperinci

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain

Lebih terperinci

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI GHAZALI WARDHONO 090823040 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Ekspektasi Satu Peubah Acak Diskrit

Ekspektasi Satu Peubah Acak Diskrit Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

UKURAN SAMPEL DAN DISTRIBUSI SAMPLING DARI BEBERAPA VARIABEL RANDOM KONTINU

UKURAN SAMPEL DAN DISTRIBUSI SAMPLING DARI BEBERAPA VARIABEL RANDOM KONTINU Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 3, o.1 (14), hal 1-6. UKURA SAMPEL DA DISTRIBUSI SAMPLIG DARI BEBERAPA VARIABEL RADOM KOTIU Muhammad urudin, Muhlasah ovitasari Mara, Dadan Kusnandar

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK

FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK Oleh : Entit Puspita Jurusan Pendidikan Matematika Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia ABSTRACT We can

Lebih terperinci

CIRI-CIRI DISTRIBUSI NORMAL

CIRI-CIRI DISTRIBUSI NORMAL DISTRIBUSI NORMAL CIRI-CIRI DISTRIBUSI NORMAL Berbentuk lonceng simetris terhadap x = μ distribusi normal atau kurva normal disebut juga dengan nama distribusi Gauss, karena persamaan matematisnya ditemukan

Lebih terperinci

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi.

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi. TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS Fitri Yulianti, SP. MSi. UKURAN PENYIMPANGAN Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi rendahnya perbedaan data yang diperoleh

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

Interval Kepercayaan Skewness dan Kurtosis Menggunakan Bootstrap pada Data Kekuatan Gempa Bumi

Interval Kepercayaan Skewness dan Kurtosis Menggunakan Bootstrap pada Data Kekuatan Gempa Bumi Interval Kepercayaan Skewness dan Kurtosis Menggunakan ootstrap pada Data Kekuatan Gempa umi Hardianti Hafid, Anisa, Anna Islamiyati Program Studi Statistia, FMIPA, Universitas Hasanuddin Gempa bumi yang

Lebih terperinci

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti 4 II. LANDASAN TEORI 2.1 Distribusi F Distribusi F merupakan salah satu distribusi kontinu. Dengan variabel acak X memenuhi batas X > 0, sehingga luas daerah dibawah kurva sama dengan satu, sementara grafik

Lebih terperinci

Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRACT

Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRACT PERKIRAAN SELANG KEPERCAYAAN UNTUK NILAI RATA-RATA PADA DISTRIBUSI POISSON Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat *email:

Lebih terperinci

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan.

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan. RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 306203 Nama Mata Kuliah : Probabilitas Jumlah sks : 3 sks Semester : III Alokasi Waktu

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Ekspektasi Satu Peubah Acak Kontinu

Ekspektasi Satu Peubah Acak Kontinu Chandra Novtiar 0857948015 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Topik manajemen risiko menjadi mengemuka setelah terjadi banyak kejadian tidak terantisipasi yang menyebabkan kerugian perusahaan. Depresi tajam dan cepat terhadap

Lebih terperinci

Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Variansi dan Kovariansi Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Variansi Kita sudah memahami bahwa nilai harapan peubah acak X seringkali

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG2D3 PROBABILITAS DAN STATISTIKA Disusun oleh: INDWIARTI FAKULTAS INFORMATIKA TELKOM UNIVERSITY 1 LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

Distribution. Contoh Kasus. Widya Rahmawati

Distribution. Contoh Kasus. Widya Rahmawati Distribution Widya Rahmawati Contoh Kasus Mahasiswa A sudah mendapatkan data hasil penelitian Mahasiswa A sedang mempertimbangkan angka statistik mana yang sebaiknya ditampilkan (mean atau median) analisis

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fungsi Densitas Definisi 2.1 (Walpole & Myers, 1989) Fungsi adalah fungsi kepadatan peluang peubah acak kontinu, yang biasanya disebut fungsi densitas,yang didefinisikan di atas

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL

PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 139 146 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Peluang terjadinya nilai variabel random X yang meliputi semua nilai ditentukan melalui distribusi peluang. Distribusi peluang suatu variabel random X adalah

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

BAB 9 DISTRIBUSI PELUANG KONTINU

BAB 9 DISTRIBUSI PELUANG KONTINU BAB 9 DISTRIBUSI PELUANG KONTINU A. Pengertian Distribusi Peluang Kontinu Distribusi peluang kontinu adalah peubah acak yang dapat memperoleh semua nilai pada skala kontinu. Ruang sampel kontinu adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan

Lebih terperinci

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi

Lebih terperinci

KONSEP DASAR TERKAIT METODE BAYES

KONSEP DASAR TERKAIT METODE BAYES KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA.

Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Populasi : totalitas dari semua objek/ individu yg memiliki karakteristik tertentu, jelas dan lengkap yang akan diteliti Sampel : bagian dari populasi yang

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 4 BAB II KAJIAN PUSTAKA Pada sub bab ini akan diberikan beberapa definisi dan teori yang mendukung rancangan Sequential Probability Ratio Test (SPRT) yaitu percobaan dan ruang sampel, peubah acak dan fungsi

Lebih terperinci

ANALISIS GRAFIK KENDALI np YANG DISTANDARISASI UNTUK PENGENDALIAN KUALITAS DALAM PROSES PENDEK

ANALISIS GRAFIK KENDALI np YANG DISTANDARISASI UNTUK PENGENDALIAN KUALITAS DALAM PROSES PENDEK ANALISIS GRAFIK KENDALI np YANG DISTANDARISASI UNTUK PENGENDALIAN KUALITAS DALAM PROSES PENDEK Yayuk Nurkotimah dan Fachrur Rozi Jurusan Matematika UIN Maulana Malik Ibrahim Malang e-mail: ocy_cute9@yahoo.com

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA

RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER (FILKOM) UNIVERSITAS PUTRA INDONESIA YPTK PADANG LEMBAR PENGESAHAN Rencana

Lebih terperinci

Dasar-dasar Statistika Pemodelan Sistem

Dasar-dasar Statistika Pemodelan Sistem Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016

Lebih terperinci

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar 1 EKSPEKTASI (HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 0 September 01 Utriweni Mukhaiyar Ekspektasi Suatu Peubah Acak Misalkan X peubah acak Ekspektasi dari X EX [ ] xp( X x), jika X peubah acak

Lebih terperinci

FUNGSI PEMBANGKIT MOMEN UNTUK MEMENUHI TUGAS MATAKULIAH. Statistika Matematika. Yang dibina oleh Bapak Hendro Permadi. Oleh :

FUNGSI PEMBANGKIT MOMEN UNTUK MEMENUHI TUGAS MATAKULIAH. Statistika Matematika. Yang dibina oleh Bapak Hendro Permadi. Oleh : FUNGSI PEMBANGKIT MOMEN UNTUK MEMENUHI TUGAS MATAKULIAH Statistika Matematika Yang dibina oleh Bapak Hendro Permadi Oleh : Intan Putri Natari 10311418961 Nurroh Fitri A 1031419469 Reza Taufikurachman 1031419470

Lebih terperinci

PROSES PERCABANGAN PADA DISTRIBUSI POISSON

PROSES PERCABANGAN PADA DISTRIBUSI POISSON PROSES PERCABANGAN PADA DISTRIBUSI POISSON Nur Alfiani Santoso, Respatiwulan, dan Nughthoh Arfawi Kurdhi Program Studi Matematika FMIPA UNS Abstrak. Proses percabangan merupakan suatu proses stokastik

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Hukum Iterasi Logaritma

Hukum Iterasi Logaritma Hukum Iterasi Logaritma Sorta Purnawanti 1, Helma 2, Dodi Vionanda 3 1 Mathematics Department State University of Pag, Indonesia 2,3 Lecturers of Mathematics Department State University of Pag, Indonesia

Lebih terperinci

BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI

BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI 3.1 Pendahuluan Pada bab sebelumnya telah dibahas mengenai pertidaksamaan Chernoff dengan terlebih dahulu diberi pemaparan mengenai dua pertidaksamaan

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Medan, Juli Penulis

Medan, Juli Penulis 9. Seluruh teman-teman seperjuangan di Ekstensi Matematika Statistika, dan semua pihak yang turut membantu menyelesaikan skripsi ini. Sepenuhnya penulis menyadari bahwa dalam penulisan skripsi ini masih

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL

PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL Jainal, Nur Salam, Dewi Sri Susanti Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY PENGANTAR PROBABILITAS GANGGA ANURAGA POKOK BAHASAN Konsep dasar probabilitas Teori himpunan Permutasi Kombinasi Koefisien binomial Koefisien multinomial Probabilitas Aksioma probabilitas Probabilitas

Lebih terperinci

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM.

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. HUKUM ITERASI LOGARITMA TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. 00290 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 2: Sifat-Sifat Estimator Statistika FMIPA Universitas Islam Indonesia Statistik Cukup Dalam kondisi real, kita tidak mengetahui parameter dari populasi data yang akan kita teliti Informasi dalam sampel

Lebih terperinci

MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA DESSY ROFICA WULANDARI SUHENDRA PRADESA

MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA DESSY ROFICA WULANDARI SUHENDRA PRADESA MAKALAH DISTRIBUSI GAMMA DI SUSUN OLEH AWAN ARGA SAPUTRA 12611006 DESSY ROFICA WULANDARI 12611018 SUHENDRA PRADESA - 12611089 SRI SISKA WIRDANIYATI 12611125 UNIB SEDYA PAMUJI - 12611150 JURUSAN STATISTIKA

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Continuous Probability Distributions.

Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA. Continuous Probability Distributions. Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada STATISTIKA Continuous Probability Distributions 1 Continuous Probability Distributions Normal Distribution Uniform Distribution Exponential Distribution

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL Ro fah Nur Rachmawati Jurusan Matematika, Fakultas Sains dan Teknologi, Binus University Jl.

Lebih terperinci

DASAR-DASAR TEORI PELUANG

DASAR-DASAR TEORI PELUANG DASAR-DASAR TEORI PELUANG Herry P. Suryawan 1 Ruang Peluang Definisi 1.1 Diberikan himpunan tak kosong Ω. Aljabar-σ (σ-algebra pada Ω adalah koleksi subhimpunan A dari Ω dengan sifat (i, Ω A (ii jika A

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II - Estimator Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia April 17, 2017 atinaahdika.com Dalam kondisi real, kita tidak mengetahui parameter dari populasi

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KURTOSIS PADA SAMPLING ACAK SEDERHANA Erpan Gusnawan 1, Arisman Adnan 2, Haposan Sirait 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik penduga distribusi generalized gamma dengan metode generalized moment ini, penulis menggunakan definisi, teorema dan konsep dasar

Lebih terperinci

PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL

PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL Statistika, Vol., No., Mei PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL Moh. Yamin Darsyah, Dwi Haryo Ismunarti Program Studi S Statistika Universitas Muhammadiyah Semarang, Jl. Kedung

Lebih terperinci

PERTEMUAN 2 STATISTIKA DASAR MAT 130

PERTEMUAN 2 STATISTIKA DASAR MAT 130 PERTEMUAN 2 STATISTIKA DASAR MAT 130 Data 1. Besaran Statistika berbicara tentang data dalam bentuk besaran (dimensi) Besaran adalah sesuatu yang dapat dipaparkan secara jelas dan pada prinsipnya dapat

Lebih terperinci

PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 23 28 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENDUGAAN PARAMETER DISTRIBUSI BETA DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD FEBY RIDIANI Program

Lebih terperinci

Fungsi Peluang Gabungan

Fungsi Peluang Gabungan Fungsi Peluang Gabungan MA3181 Teori Peluang 15 September 2014 Utriweni Mukhaiyar Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ingin diasuransikan dengan kategori-kategori yang

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci