Metode Statistika STK211/ 3(2-3)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Metode Statistika STK211/ 3(2-3)"

Transkripsi

1 Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1

2 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan dari suatu percobaan, serta menghitung peluang seberapa besar kemungkinan tersebut terjadi Sehingga, bagaimana jika setiap kemungkinan yang dapat terjadi pada suatu kejadian ingin diketahui peluangnya terjadinya? Perlu adanya pemetaan dari ruang kejadian tersebut ke ruang bilangan real PEUBAH ACAK RANDOM VARIABLE Septian Rahardiantoro - STK IPB 2

3 Peubah Acak Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah fungsi) ke ruang bilangan riil (wilayah fungsi). Fungsi peubah acak merupakan suatu langkah dalam statistika untuk mengkuantifikasikan kejadian-kejadian alam. Pendefinisian fungsi peubah acak harus mampu memetakan SETIAP KEJADIAN DALAM RUANG CONTOH dengan TEPAT ke SATU BILANGAN bilangan riil. Septian Rahardiantoro - STK IPB 3

4 Ilustrasi 1 Percobaan: Pelemparan 2 koin setimbang yang saling bebas Ruang Contoh: S = { AA, AG, GA, GG} Kejadian A: Munculnya sisi Gambar Ruang Kejadian: A = {AG, GA, GG} Misalkan X = munculnya sisi gambar Kemungkinan dari X = {0, 1} Peubah Acak Misalkan Y = banyak munculnya sisi gambar Kemungkinan dari Y = {0, 1, 2} Pemetaan fungsi X AA AG GA GG 0 1 Pemetaan fungsi Y AA AG GA GG Septian Rahardiantoro - STK IPB

5 Tipe Peubah Acak Peubah Acak Diskret Segugus nilai dari suatu peubah acak yang dapat dicacah (countable) Misalkan X = banyaknya tendangan penalti yang berhasil dilakukan oleh pemain A Peubah Acak Kontinu Nilai-nilai dari peubah acak tersebut tidak dapat dicacah (uncountable) Nilai dalam peubah acak tersebut berupa selang interval Misalkan X = tinggi badan (cm) Septian Rahardiantoro - STK IPB 5

6 Karakteristik Peubah Acak Nilai Harapan Nilai harapan dari peubah acak pemusatan dari nilai peubah acak jika percobaannya dilakukan secara berulang-ulang sampai tak berhingga kali (dalam jangka waktu yang panjang). E(X) = x x xp x ; x diskret xf x ; x kontinu Sifat E(X): 1. E c = c ; c = konstanta 2. E cx = ce X 3. E X ± Y = E(X) ± E(Y) Ragam Ragam dari peubah acak X, didefinisikan sebagai: Var X = E X E(X) 2 = E X 2 [E(X)] 2 Sifat Var(X): 1. Var c = 0 ; c = konstanta 2. Var cx = c 2 Var X 3. Var X ± Y = Var X + Var Y ± Cov X, Y Dengan Cov X, Y = E X E(X) E Y E(Y) Jika p.a X dan Y saling bebas, maka Cov X, Y = 0 Var X ± Y = Var X + Var Y Septian Rahardiantoro - STK IPB 6

7 Peubah Acak Diskret Misalkan X adalah suatu peubah acak diskret Fungsi peluang dari peubah acak diskret menampilkan nilai dan peluang dari peubah acak tersebut Jumlah total nilai peluang dari semua kemungkinan nilai peubah acak tersebut sama dengan 1 Peluang dari sembarang kejadian dapat dibentuk dengan menambahkan peluang dari kejadian-kejadian yang membentuk sembarang kejadian tersebut Sebaran Peluang Peubah Acak X tergantung dari sebaran peluang kejadiannya. Septian Rahardiantoro - STK IPB 7

8 Ilustrasi 2 Berdasarkan ilustrasi 1 Misalkan X = munculnya sisi gambar Kemungkinan dari X = {0, 1} Sebaran peluang dari peubah acak X Kemungkinan AA GA AG GG x Peluang 1/4 1/4 1/4 1/4 X P(x) 0 P(X=0) = P(AA) = 1/4 1 P(X=1) = P(GA)+P(AG)+P(GG) = 3/4 Sehingga, sebaran peluang peubah acak X x P(x) 0 1/4 1 3/4 Misalkan Y = banyak munculnya sisi gambar Kemungkinan dari Y = {0, 1, 2} Sebaran peluang dari peubah acak Y Kemungkinan AA GA AG GG y Peluang 1/4 1/4 1/4 1/4 Y P(y) 0 P(Y=0) = P(AA) = 1/4 1 P(Y=1) = P(GA)+P(AG) = 2/4 2 P(Y=2) = P(GG) = 1/4 Sehingga, sebaran peluang peubah acak Y Septian Rahardiantoro - STK IPB 8 y P(Y) 0 1/4 1 2/4 2 1/4

9 Latihan 1 Pada suatu perusahaan produksi pulpen, diketahui dari 10 pulpen yang diproduksi terdapat 2 pulpen yang tidak memenuhi standar. Jika diambil secara acak sebanyak 2 pulpen dari proses produksi, dan peubah acak X menyatakan banyaknya pulpen baik yang terambil, tentukan sebaran peubah acak X X = banyaknya pulpen baik yang terambil X = {0, 1, 2} x P(x) 0 P(X=0) = P(TT) = 1 P(X=1) = P(TB) = 2 P(X=2) = P(BB) = = 1 45 = = Septian Rahardiantoro - STK IPB 9

10 Latihan 2 Diketahui dalam suatu kotak terdapat 2 bola kuning dan 4 bola hijau. Jika diambil 3 bola secara acak, dan peubah acak X didefinisikan sebagai banyaknya bola kuning yang terambil, tentukan sebaran peluang peubah acak X Untuk latihan mandiri Septian Rahardiantoro - STK IPB 10

11 Karakteristik Peubah Acak Diskret Nilai Harapan Misalkan X p.a diskret, maka E(X) E X = xp(x) x Ragam Misalkan X p.a diskret, maka Var(X) Var X = E X 2 [E(X)] 2 Dengan E X 2 = x 2 p(x) x Contoh Misalkan diketahui p.a diskret X dengan sebaran peluang x P(X) 0 1/8 2 4/8 4 3/8 E X = xp(x) x = /8 = 5/2 E X 2 = x 2 p(x) x = = 8 Var X = E X 2 [E(X)] 2 = 8 25/4 = 7/4 E 2X 1 = 2E X 1 = 4 Var 2X 1 = 4Var X = 7 Septian Rahardiantoro - STK IPB 11

12 Latihan 3 Pada Latihan 1 dan Latihan 2, tentukanlah: a. E(X) dan Var(X) b. Jika Y = 2X + 6, tentukan E(Y) dan Var(Y) Untuk latihan mandiri Septian Rahardiantoro - STK IPB 12

13 Beberapa Sebaran Peluang Diskret Sebaran Peluang Bernoulli Kejadian yang diamati merupakan kejadian biner yaitu sukses atau gagal Peubah acaknya (X) bernilai 1 jika kejadian sukses dan 0 jika kejadian gagal Misal, p = P(sukses), maka fungsi peluang p.a X ~ Bernoulli(p) P X = x = p x 1 p 1 x ; x = 0,1 E X = p Var X = p(1 p) Akan melakukan lemparan bebas. Jika peluang bola tersebut masuk ring sebesar 80% maka peluang bola tidak masuk ring adalah 20% Akan melakukan tendangan pinalti. Jika peluang bola masuk sebesar 95% maka peluang bola tidak masuk sebesar 5%. Septian Rahardiantoro - STK IPB 13

14 Sebaran Peluang Binomial Terdiri dari n kejadian Bernoulli yang saling bebas Peubah acak Binomial merupakan jumlah dari kejadian sukses, X=0,1,2,.,n Misal, p=p(sukses), maka fungsi peluang p.a X ~ Binomial(n, p) n P X = x = x px 1 p n x ; x = 0,1,2, E X = np Var X = np(1 p) X = banyaknya lemparan bebas yang sukses dari 3 lemparan S S S x = 3 P(X = 3) = 3 3 p3 1 p 3 3 G S S S G S S S G G G S G S G S G G x = 2 P(X = 2) = 3 2 p2 1 p 3 2 x = 1 P(X = 1) = 3 1 p1 1 p 3 1 G G G x = 0 P(X = 0) = 3 0 p0 1 p 3 0 Rata-rata sukses melakukan lemparan E(X) = np = 3p Septian Rahardiantoro - STK IPB 14

15 Sebaran Peluang Poisson Peubah acak yang menyatakan banyaknya kejadian yang terjadi pada suatu interval waktu tertentu atau di suatu daerah tertentu Peubah acak X disebut menyebar poisson dengan parameter μ jika X ~ Poisson( μ ) dengan P X = x = e μ μ x ; x = 0,1,2, x! E X = μ Var X = μ Contoh: Banyaknya kecelakaan lalulintas yang terjadi di persimpangan jalan dalam waktu satu minggu Banyaknya gempa bumi di Jawa Barat yang terjadi dalam waktu satu tahun Banyaknya orang yang terserang flu burung di suatu tempat pada jangka waktu satu tahun Septian Rahardiantoro - STK IPB 15

16 Latihan 4 Peluang turun hujan per hari diketahui p = 0,6. Jika pengamatan dilakukan dalam satu minggu, hitunglah: a. Berapa peluang tidak turun hujan dalam satu minggu? b. Berapa peluang paling sedikit turun hujan satu hari dalam satu minggu? Misalkan p.a X = banyaknya hari turun hujan dalam seminggu X ~ binomial(n = 7, p = 0.6) 7 a. P(X = 0) = = b. P(X 1) = 1 P(X < 1) = 1 P(X = 0) = Septian Rahardiantoro - STK IPB 16

17 Peubah Acak Kontinu Misalkan X adalah suatu peubah acak kontinu Fungsi peluang dari peubah acak kontinu merupakan fungsi kepekatan peluang Integral fungsi kepekatan peluang dari semua kemungkinan nilai sama dengan 1 Peluang dari suatu selang nilai dapat dibentuk dengan mengintegralkan fungsi kepekatan peluang dalam selang nilai tersebut Beberapa Sebaran Peluang Kontinu Seragam Normal Weibull Gamma Beta Septian Rahardiantoro - STK IPB 17

18 Sebaran Seragam Peubah acak yang mempunyai peluang yang sama di titik-titik tertentu pada suatu selang [a, b] Peubah acak X disebut menyebar seragam pada interval [a, b]; b > a jika X ~ Seragam(a, b) dengan E X f x = 1 ; a x b b a a + b = Var X = 2 (b a)2 Contoh: Kejadian kedatangan seseorang secara acak di stasiun untuk naik kereta pada waktu tertentu Kejadian kedatangan seseorang pada satu jam sebelum kuliah dimulai 12 Septian Rahardiantoro - STK IPB 18

19 Sebaran Normal Bentuk sebaran simetri, sehingga mean = median = modus Merupakan sebaran dasar dalam pengembangan alat analisis statistika (dengan mengasumsikan data menyebar normal) Peubah acak X disebut menyebar normal dengan nilai harapan μ dan ragam σ 2 jika X ~ N(μ, σ 2 ) dengan Contoh: Tinggi badan Berat badan f x = 1 1 x μ 2 2πσ e 2 σ ; x E X = μ Var X = σ 2 Septian Rahardiantoro - STK IPB 19

20 Karakteristik Peubah Acak Kontinu Nilai Harapan Misalkan X p.a kontinu, maka E(X) E X = xf(x) x Ragam Misalkan X p.a kontinu, maka Var(X) Var X = E X 2 [E(X)] 2 Dengan E X 2 = x 2 f(x) x Septian Rahardiantoro - STK IPB 20

21 Spesial: Sebaran Normal Setiap peubah acak normal memiliki karakteristik yang berbedabeda(tergantung dari nilai μ dan σ 2 perhitungan peluang akan sulit Lakukan transformasi dari X ~ N(, 2 ) menjadi peubah acak normal baku Z~N(0,1) dengan menggunakan fungsi transformasi Z = X μ σ Distribusi peluang dari peubah acak normal baku Z N(0,1) sudah tersedia dalam bentuk tabel peluang normal baku z 0 Septian Rahardiantoro - STK IPB 21

22 Cara Penggunaan Tabel Normal Baku Nilai z, disajikan pada kolom pertama (nilai z sampai desimal pertama) dan baris pertama (nilai z desimal kedua) Nilai peluang didalam tabel normal baku adalah peluang peubah acak Z kurang dari nilai z P(Z < z). P(Z < -0.52) = P(Z < -3.11) = Septian Rahardiantoro - STK IPB 22

23 Latihan 5 Untuk membantu korban bencana sebuah lembaga sosial berinisiatif mengumpulkan dana dari para donatur. Jumlah sumbangan setiap donatur diketahui menyebar normal dengan rata-rata 120 ribu dan simpangan baku 80 ribu. 1. Berapa persen sumbangan 150 ribu sampai 200 ribu rupiah 2. Jika pemerintah berencana memberikan penghargaan kepada para donatur dengan sumbangan 5% tertinggi, berapa minimum sumbangan yang mendapatkan penghargaan Misalkan p.a X = besarnya sumbangan setiap donatur (dalam ribuan) X ~ N(μ = 120, σ = 80) 1. P(150 X 200) = P(3/8< Z < 1) = P(Z < 1) P(Z < 3/8) = = P(Z > z) = 0.05 P(Z < z) = 0.95 z = Sehingga X = μ + σz = (1.645) = Septian Rahardiantoro - STK IPB 23

24 Latihan 6 Curah hujan dikota Bogor diketahui menyebar normal dengan rata-rata tingkat curah hujan 25 mm dan ragam 25 mm 2. Hitunglah, 1. Curah hujan di kota Bogor kurang dari 15 mm? 2. Curah hujan di kota Bogor antara 10 mm sampai 20 mm? 3. Curah hujan di kota Bogor di atas 40 mm? 4. Jika dikatakan Bogor mempunyai peluang 10% curah hujan tertinggi, berapa batas curah hujan tersebut! Untuk latihan mandiri Septian Rahardiantoro - STK IPB 24

25 Thank you, see you next week Septian Rahardiantoro - STK IPB 25

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah fungsi) ke ruang bilangan

Lebih terperinci

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak Konsep Peubah Acak Metode Statistika (STK11) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

Metode Statistika (STK211)

Metode Statistika (STK211) Metode Statistika (STK211) Peubah Acak dan Sebaran Peluang (Random Variable and Probability Distribution) Dr. Ir. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 1 Konsep Peubah Acak (Random Variable) Peubah

Lebih terperinci

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh PEUBAH ACAK Materi 4 - STK211 Metode Statistika October 2, 2017 Okt, 2017 1 Pendahuluan Pernahkah bertanya, mengapa dalam soal ujian penerimaan mahasiswa baru, jika jawaban benar diberi nilai 4, salah

Lebih terperinci

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak STK 511 Analisis statistika Materi 3 Sebaran Peubah Acak 1 Konsep Peluang 2 Peluang Peluang dapat diartikan sebagai ukuran kemungkinan terjadinya suatu kejadian Untuk memahami peluang diperlukan pemahaman

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

PELUANG DAN PEUBAH ACAK

PELUANG DAN PEUBAH ACAK PELUANG DAN PEUBAH ACAK Materi 3 - STK511 Analisis Statistika October 3, 2017 Okt, 2017 1 Konsep Peluang 2 Pendahuluan Kejadian di dunia: pasti (deterministik) atau tidak pasti (probabilistik) Contoh kejadian

Lebih terperinci

Tipe Peubah Acak. Diskret. Kontinu

Tipe Peubah Acak. Diskret. Kontinu 2 N i 1 x i N 2 Tipe Peubah Acak Diskret Segugus nilai dari suatu peubah acak yang dapat dicacah (countable) Misalkan X = banyaknya tendangan penalti yang berhasil dilakukan oleh pemain A Kontinu Nilai-nilai

Lebih terperinci

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Metode Statistika Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Konsep Peubah Acak Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak

STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak STK511 Analisis Statistika Pertemuan 3 Sebaran Peluang Peubah Acak Beberapa Konsep Dasar Percobaan statistika: kegiatan yang hasil akhir keluarannya tidak diketahui di awal, tetapi kemungkinan-kemungkinannya

Lebih terperinci

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi

Lebih terperinci

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso. Beberapa 27 April 2014 Beberapa Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat memahami dan menghitung

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan IV Konsep Peluang Septian Rahardiantoro - STK IPB 1 Populasi Pengambilan contoh dari populasi untuk pendugaan parameter Contoh1 Parameter μ Statistik x Setara

Lebih terperinci

Peubah Acak (Lanjutan)

Peubah Acak (Lanjutan) Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I II. PEUBAH ACAK DISKRET II. Peubah Acak Diskret 1 PEUBAH ACAK DISKRET Definisi 2.1. (Peubah Acak) : Peubah Acak Y adalah suatu fungsi yang memetakan seluruh anggota ruang contoh

Lebih terperinci

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran Kurikulum 20 matematika K e l a s XI DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami perbedaan

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab Peubah Acak. Konsep Dasar Peubah Acak Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh peubah acak: Jika X adalah peubah acak banyaknya sisi muka yang muncul pada

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Peluang terjadinya nilai variabel random X yang meliputi semua nilai ditentukan melalui distribusi peluang. Distribusi peluang suatu variabel random X adalah

Lebih terperinci

Dasar-dasar Statistika Pemodelan Sistem

Dasar-dasar Statistika Pemodelan Sistem Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

DISTRIBUSI PELUANG TEORITIS

DISTRIBUSI PELUANG TEORITIS Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I III. PEUBAH ACAK KONTINU III. Peubah Acak Kontinu 1 PEUBAH ACAK KONTINU Ingat definisi peubah acak! Definisi : Peubah acak Y adalah suatu fungsi yang memetakan seluruh anggota

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I V. SEBARAN FUNGSI PEUBAH ACAK V. Sebaran Fungsi Peubah Acak 1 Sebaran Fungsi Peubah Acak Dalam banyak kasus untuk melakukan inferensi terhadap suatu parameter kita lebih banyak

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal)

Lebih terperinci

HANDOUT PERKULIAHAN. Pertemuan Ke : 3 : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak

HANDOUT PERKULIAHAN. Pertemuan Ke : 3 : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak HANDOUT PERKULIAHAN Pertemuan Ke : 3 Pokok Bahasan : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak URAIAN POKOK PERKULIAHAN A. Peubah Acak Definisi 1 : Peubah Acak Misalkan E adalah suatu

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Peubah Acak Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

Teori Peluang Diskrit

Teori Peluang Diskrit Teori Peluang Diskrit Peluang Diskrit Apa yang terjadi jika keluaran dari suatu eksperimen tidak memiliki peluang yang sama? Dalam kasus ini, peluang p(s) dipadankan dengan setiap keluaran s S, di mana

Lebih terperinci

Harapan Matematik (Teori Ekspektasi)

Harapan Matematik (Teori Ekspektasi) (Teori Ekspektasi) PROBABILITAS DAN STATISTIKA Semester Genap 2014/2015 LUTFI FANANI lutfi.class@gmail.com Sifat Definisi Harapan matematik atau nilai ekspektasi adalah satu konsep yang penting di dalam

Lebih terperinci

Nilai Harapan / Nilai Ekspektasi

Nilai Harapan / Nilai Ekspektasi EKSPEKTASI Misalkan sebuah eksperimen menghasilkan k peristiwa, dan peluang masing-masing peristiwa P 1, P, P k dan untuk tiap peristiwa terdapat satuan (bobot d 1, d d k ) maka ekspektasi eksperimen itu

Lebih terperinci

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata dan Statistika dan Fungsi Peluang Adam Hendra Brata acak adalah sebuah fungsi yang memetakan hasil kejadian yang ada di alam (seperti : buka dan tutup; terang, redup dan gelap; merah, kuning dan hijau;

Lebih terperinci

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Harapan Matematik Bahan Kuliah II09 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Harapan Matematik Satu konsep yang penting di dalam teori peluang

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan III Statistika Deskripsi dan Eksplorasi (2) Septian Rahardiantoro - STK IPB 1 Misalkan diketahui data sebagai berikut Data 1 No Jenis Kelamin Tinggi Berat Agama

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu

Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Pembahsan Tugas 9 Probabilitas dan Statistika Distribusi Peluang Diskrit dan Distribusi Peluang Kontinyu Distribusi Peluang Diskrit 1. Hitunglah P( < 10) dengan distribusi binomial untuk n = 15, p = 0,4!

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1 DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita lebih tertarik bukan pada titik sampelnya, tetapi gambaran numerik dari hasil. Misalkan pada pelemparan sebuah

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

MA2181 Analisis Data - U. Mukhaiyar 1

MA2181 Analisis Data - U. Mukhaiyar 1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:

Lebih terperinci

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP STATISTICS WEEK 6 Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL Pengantar: Dalam pokok bahasan disini memuat beberapa distribusi kontinyu yang sangat penting di bidang statistika. diantaranya distribusi normal.

Lebih terperinci

Peubah Acak dan Distribusi

Peubah Acak dan Distribusi BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

Distribusi Peubah Acak

Distribusi Peubah Acak Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG 4 April 2017 Garis Besar Pembahasan FUNGSI

Lebih terperinci

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Zaman modern (>1940), dgn cara membentuk bilangan acak secara numerik/aritmatik (menggunakan komputer), disebut Pseudo Random

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan II Statistika Deskripsi dan Eksplorasi Septian Rahardiantoro - STK IPB 1 Misalkan diketahui data sebagai berikut Data 1 No Jenis Kelamin Tinggi Berat Agama 1

Lebih terperinci

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALAM STATISTIKA HARGA HARAPAN Definisi Misalkan X variabel random. Bila X variabel random kontinu dengan f.k.p. f (x) dan maka harga harapan X adalah

Lebih terperinci

Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai

Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai analisis statistika. Distribusi normal baku adalah distribusi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E

Lebih terperinci

Distribusi Peluang. Maka peubah acak X dinyatakan dengan banyaknya kemunculan angka. angka sama sekali. angka.

Distribusi Peluang. Maka peubah acak X dinyatakan dengan banyaknya kemunculan angka. angka sama sekali. angka. Distribusi Peluang Definisi peubah acak: Misalkan E adalah sebuah percobaan dengan ruang sampel T. Sebuah fungsi X yang memetakan setiap anggota t T dengan sebuah bilangan real X(t) dinamakan peubah acak.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan II Statistika Deskripsi dan Eksplorasi Septian Rahardiantoro - STK IPB 1 Misalkan diketahui data sebagai berikut Data 1 No Jenis Kelamin Tinggi Berat Agama 1

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

DISTRIBUSI PROBABILITAS VARIABEL RANDOM

DISTRIBUSI PROBABILITAS VARIABEL RANDOM Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan DISTRIBUSI PROBABILITAS VARIABEL RANDOM Statistika dan Probabilitas 2 Distribusi probabilitas variabel random diskrit Distribusi

Lebih terperinci

Distribusi Peluang Teoritis

Distribusi Peluang Teoritis Distribusi Peluang Teoritis 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

Learning Outcomes Peubah Acak Fungsi Sebaran Secaran Diskret Nilai Harapan. Peubah Acak. Julio Adisantoso. 13 Maret 2014

Learning Outcomes Peubah Acak Fungsi Sebaran Secaran Diskret Nilai Harapan. Peubah Acak. Julio Adisantoso. 13 Maret 2014 13 Maret 2014 Learning Outcome Mahasiswa dapat memahami dan menentukan peubah acak dari suatu kejadian Mahasiswa dapat memahami fungsi sebaran Mahasiswa dapat mengerti dan menentukan peubah acak diskret

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS Uniform U (seragam) MultinomialM l i i l Bernoulli Hipergeometrik Binomial Geometrik Poisson Binomial Negatif MA 2081 Statistika Dasar Utriweni Mukhaiyar 27 September 2012 2 Distribusi

Lebih terperinci

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan

Lebih terperinci

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Distribusi Sampling Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Populasi dan Sampel Unit adalah entitas (wujud) tunggal, biasanya orang atau suatu obyek, yang diinginkan

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang

Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang rahmaanisa@apps.ipb.ac.id Outline Peubah acak Bernoulli Peubah acak binom Peubah acak geometrik Latihan dan Diskusi Review Peubah Acak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar 1 EKSPEKTASI (HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 0 September 01 Utriweni Mukhaiyar Ekspektasi Suatu Peubah Acak Misalkan X peubah acak Ekspektasi dari X EX [ ] xp( X x), jika X peubah acak

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Ukuran Statistik Bagi Data

Ukuran Statistik Bagi Data Ukuran Statistik Bagi Data 1.1 Parameter dan Statistik Dalam statistika dikenal istilah populasi. Populasi merupakan kumpulan objek yang merupakan objek pengamatan kita. Deskripsi dari populasi tersebut

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia

Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia VARIABEL ACAK VARIABEL ACAK : suatu fungsi yang nilainya berupa bilangan nyata yang ditentukan oleh setiap unsur dalam ruang

Lebih terperinci

STATISTIK PERTEMUAN V

STATISTIK PERTEMUAN V STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel

Lebih terperinci

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar DISTRIBUSI DISKRIT Uniform (seragam) Bernoulli Binomial Poisson Beberapa distribusi lainnya : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 081 Statistika Dasar Utriweni Mukhaiyar 5 Maret

Lebih terperinci