Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD."

Transkripsi

1 Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015

2 Tentang MA4181 (Pengantar) Proses Stokastik A. Jadwal kuliah: Selasa; 11-; R.9138 Kamis; 9-; R.9024 B. Silabus: Peubah acak dan distribusi Peluang bersyarat dan ekspektasi bersyarat Rantai Markov Distribusi eksponensial dan proses Poisson Topik khusus: Model AR, ARCH, dan INAR C. Buku teks: Sheldon Ross, 2010, Introduction to Probability Models, 10th ed. Karlin dan Taylor, 1998, An Introduction to Stochastic Modelling, 3rd ed. D. Penilaian: Ujian 1,2,3: 1 Oktober 2015 (30%) 29 Oktober 2015 (30%) 3 Desember 2015 (30%) Kuis (10%) MA4181 Pros.Stok. i K. Syuhada, PhD.

3 Daftar Isi 1 Peubah Acak dan Distribusi Pendahuluan Ruang Sampel dan Peluang Peubah Acak dan Fungsi Distribusi Distribusi Diskrit Distribusi Kontinu ii

4 BAB 1 Peubah Acak dan Distribusi Silabus: Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi (cumulative ddistribution function), distribusi diskrit (binomial, Poisson, geometrik), distribusi kontinu (normal, seragam/uniform, eksponensial). Tujuan: 1. Memahami definisi dan menentukan peubah acak (p.a) 2. Menghitung fungsi peluang (f.p) dan fungsi distribusi (f.d); f.p ke f.d; f.d ke f.p 3. Menghitung peluang suatu p.a dari distribusi diskrit atau kontinu 1.1 Pendahuluan Apa Proses Stokastik? Proses? Stokastik? Proses = runtunan perubahan (peristiwa) dl perkembangan sesuatu, rangkaian tindakan, pembuatan, atau pengolahan yg menghasilkan produk (KBBI, 2008) Stokastik = mempunyai unsur peluang atau kebolehjadian (KBBI, 2008) Definisi: Proses stokastik {Y t } adalah koleksi peubah acak dengan t menyatakan indeks waktu 1

5 (Contoh 1) Di perusahaan asuransi digunakan sistem Bonus Malus untuk menentukan besar premi. Setiap pemegang polis berada dalam suatu keadaan (state) dan premi tahunan merupakan fungsi dari keadaan ini. Keadaan pemegang polis berubah dari tahun ke tahun dengan memperhatikan banyak klaim yang telah dilakukan. Pemegang polis biasanya akan menurunkan status keadaan jika dia tidak memiliki klaim pada tahun sebelumnya dan akan menaikkan status keadaan jika memiliki setidaknya satu klaim. Untuk sistem Bonus Malus, misalkan s i (k) menyatakan keadaan pemegang polis berikut dari sebelumnya berada di keadaan i dan telah mengajukan k klaim. Jika banyak klaim yang dibuat adalah peubah acak berdistribusi Poisson dengan parameter θ, maka keadaan pemegang polis akan membentuk Rantai Markov dengan peluang transisi P ij. Berikut adalah contoh Sistem Bonus Malus dengan 4 keadaan: Keadaan apabila... Keadaan 0 klaim 1 klaim 2 klaim 3 klaim (Contoh 2) Dua orang pasien, A dan B, membutuhkan ginjal. Jika dia tidak mendapatkan ginjal baru, maka A akan meninggal setelah suatu waktu yang berdistribusi exponensial dengan parameter µ A. Begitu juga dengan B, akan meninggal setelah suatu waktu yang berdistribusi eksponensial dengan parameter µ B. Ginjal akan tersedia menurut proses Poisson dengan parameter λ. Telah ditentukan bahwa ginjal pertama yang datang diberikan ke pasien A (atau ke pasien B jika B masih hidup dan A meninggal saat itu) lalu ke pasien B (jika masih hidup). Berapa peluang B mendapat ginjal baru? (Contoh 3a) Model Autoregressive atau AR orde satu: Y t = α Y t 1 + ε t dimana ε t diasumsikan saling bebas dan berdistribusi identik. Model AR(1) dapat digunakan untuk memodelkan jumlah produksi, harga aset dsb. Perhatikan bahwa memprediksi Y n+1 merupakan salah satu bagian penting dari pemodelan stokastik/deret waktu. Prediksi terbaik untuk Y n+1 adalah E(Y n+1 Y n, α) MA4181 Pros.Stok. 2 K. Syuhada, PhD.

6 (Contoh 3b) Model Autoregressive Conditional Heteroscedastic atau ARCH dan Model Stochacti Volatility atau SV: dimana atau Y t = σ t + ε t σ t = α 0 + α 1 Y 2 t 1, ln σ t = γ + δ ln σ t 1 + η t, Model ARCH dan/atau SV sangat tepat untuk memodelkan imbal hasil (return) saham. (Contoh 4) Model Integer-Valued Autoregressive atau INAR orde satu: dimana Y t = α Y t 1 + ε t, α Y t 1 = W W Yt 1, dengan W i Bin(1, α), dan ε t P OI(λ). Model INAR(1) menggambarkan bahwa banyaknya pasien yang berada di IGD pada waktu t merupakan jumlah dari banyaknya pasien yang bertahan hidup dengan peluang α ditambah banyaknya pasien yang datang pada waktu (t 1, t] 1.2 Ruang Sampel dan Peluang Ilustrasi 1. Seorang agen asuransi menawarkan asuransi kesehatan kepada calon nasabah. Nasabah dapat memilih tepat 2 jenis asuransi dari pilihan A, B, C atau tidak memilih sama sekali. Proporsi nasabah memilih jenis asuransi A, B dan C, berturut-turut, adalah 1/4, 1/3 dan 5/12. Hitung peluang seorang nasabah memilih untuk tidak memilih jenis asuransi. 2. Catatan dalam perusahaan asuransi otomotif memberikan informasi bahwa (i) setiap pelanggan mengasuransikan setidaknya satu mobil (ii) 70% pelanggan mengasuransikan lebih dari satu mobil, dan (iii) 20% mengasuransikan jenis sports car. Dari pelanggan yang mengasuransikan lebih dari satu mobil, 15% mengasuransikan sports car. Hitung peluang bahwa MA4181 Pros.Stok. 3 K. Syuhada, PhD.

7 seorang pelanggan yang terpilih secara acak mengasuransikan tepat satu mobil dan ini bukan sports car. Ruang sampel dan Kejadian Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Ruang sampel S adalah himpunan dari semua hasil yang mungkin dari suatu percobaan. Anggota dari S disebut kejadian elementer. Kejadian adalah himpunan bagian dari ruang sampel atau koleksi dari kejadian-kejadian elementer. Peluang Peluang kejadian A adalah P (A) = lim n n(a) n Misalkan S adalah ruang sampel, A adalah kejadian. Peluang kejadian A adalah P (A) = n(a) n(s) Peluang atau ukuran peluang P pada lap-σ A adalah suatu pemetaan dari A terhadap selang [0, 1] yang memenuhi tiga aksioma berikut: 1. 0 P (A) 1, untuk setiap A A 2. P (S) = 1 3. Untuk himpunan terhitung kejadian-kejadian saling asing A 1, A 2,..., ( P i=1 A i ) = P (A i ) i=1 Teorema 1. P (A c ) = 1 P (A) 2. Jika A B maka P (A) P (B) 3. P (A B) = P (A) + P (B) P (A B) MA4181 Pros.Stok. 4 K. Syuhada, PhD.

8 1.3 Peubah Acak dan Fungsi Distribusi Ilustrasi 1. Maskapai penerbangan Serigala Air mengetahui bahwa lima persen pemesan tiket tidak akan datang untuk membeli tiketnya. Dengan alasan ini, maskapai tidak ragu untuk menjual 52 tiket penerbangan pada pesawat dengan kapasitas duduk 50 orang. Berapa peluang akan ada kursi yang tersedia untuk setiap pemesan tiket yang datang? 2. Misalkan X peubah acak berdistribusi Poisson dengan mean λ. Parameter λ berdistribusi eksponensial dengan mean 1. Tunjukkan bahwa P (X = n) = (1/2) n+1 Peubah Acak Peubah acak tidaklah acak dan bukanlah peubah Peubah acak adalah fungsi yang memetakan anggota S ke bilangan real R Peubah Acak Diskrit Peubah acak X dikatakan diskrit jika terdapat barisan terhitung dari bilangan {a i, i = 1, 2,... } sedemikian hingga P ( {X = a i } ) = P (X = a i ) = 1 i i Catatan: Sebuah peubah acak diskrit tidak selalu berasal ruang sampel diskrit. F X disebut fungsi distribusi (diskrit) dari X jika terdapat barisan terhitung {a i, i = 1, 2,... } dari bilangan real dan barisan {p i, i = 1, 2,... } dari bilangan positif yang bersesuaian sedemikian hingga p i = 1 dan i F X (x) = a i x p i MA4181 Pros.Stok. 5 K. Syuhada, PhD.

9 Jika diberikan himpunan terhitung {a i, i = 1, 2,... } dan bilangan positif {p i, i = 1, 2,... } sdh i p i = 1, fungsi peluang p X (x) adalah p X (x) = p i = P (X = a i ), dengan x = a i Fungsi distribusi (kumulatif): Sifat-sifat: F (x) = P (X x) (a) F fungsi tidak turun (b) lim x F (x) = 1 (c) lim x F (x) = 0 (d) F fungsi kontinu kanan Catatan: P (a < X b) = F (b) F (a) P (X b) P (X < b) P (X < b) = P ( { 1 }) lim X b n n = lim P ( X b 1 ) n n = lim F ( b 1 ) n n Peubah Acak Kontinu Misalkan X peubah acak dan fungsi distribusinya F X dapat diturunkan. Fungsi peluang f X adalah turunan dari fungsi distribusi, f X (x) = d dx F X(x) atau dengan kata lain F X (x) = x f X (t) dt Definisi: Jika X adalah peubah acak sedemikian hingga fungsi peluangnya ada (turunan dari fungsi distribusi) maka X dikatakan sebagai peubah acak MA4181 Pros.Stok. 6 K. Syuhada, PhD.

10 kontinu. Catatan: 1 = F X ( ) = P (a X b) = F X (b) F X (a) = P (X = a) = a a f X (t) dt = 0 f X (t) dt b a f X (t) dt Latihan: 1. Tentukan fungsi peluang dari fungsi distribusi berikut: 0, x < 3.1 3/5, 3.1 x < 0 F (x) = 7/10, 0 x < 1 1, 1 x 2. Tentukan fungsi peluang dari fungsi distribusi berikut: 0, x < x, 0 x < F (x) =, 1 x < , 2 x < 3 1, x 3 3. Diketahui fungsi peluang sebagai berikut: p, x = , x = , x = 20p f(x) = p, x = 3 4p, x = 4 0, yang lain Hitung P ( 1.9 X 3), F (2), F (F (3.1)) 1.4 Distribusi Diskrit (Ilustrasi B-1) Untuk menghadapi gempa yang sering terjadi, sebuah perusahaan asuransi menentukan premi atas gempa dengan menggunakan asumsiasumsi berikut: (i) setiap bulan paling banyak terjadi satu kali gempa (ii) peluang terjadi gempa adalah 0.05 (iii) banyak gempa di suatu bulan saling MA4181 Pros.Stok. 7 K. Syuhada, PhD.

11 bebas dengan banyak gempa di bulan yang lain. Tentukan peluang ada kurang dari tiga gempa dalam setahun. (Ilustrasi B-2) Sebuah studi dilakukan untuk memonitor kesehatan dua kelompok yang independen (berisi masing-masing 10 pemegang polis) selama periode waktu satu tahun. Setiap individu atau partisipan akan keluar (mengundurkan diri) dari studi tersebut dengan peluang 0.2, saling bebas antar individu. Hitung peluang bahwa setidaknya 9 partisipan, pada satu kelompok dan bukan kedua kelompok, ikut dalam studi tersebut hingga akhir. Distribusi Binomial Misalkan S = {sukses, gagal} adalah ruang sampel yang menotasikan sukses atau gagal dari suatu percobaan. Definisikan X(sukses) = 1 dan X(gagal) = 0 dan p X (1) = P (X = 1) = p p X (0) = P (X = 0) = 1 p dimana 0 p 1 adalah peluang diperoleh sukses. X dikatakan peubah acak Bernoulli dengan parameter p. Jika dilakukan n percobaan independen dan jika X menyatakan banyaknya sukses yang diperoleh maka X dikatakan sebagai peubah acak Binomial dengan parameter (n, p), dimana p X (k) = B(k; n, p) = C n k p k (1 p) n k (Ilustrasi P-1) Banyak klaim untuk setiap risiko dalam suatu kelompok risiko mengikuti distribusi Poisson. Banyak risiko (yang diharapkan) di kelompok risiko tersebut yang tidak mengajukan klaim adalah 96. Banyak risiko (yang diharapkan) di kelompok risiko tersebut yang mengajukan dua klaim adalah 3. Tentukan banyaknya risiko di kelompok tersebut yang memiliki 4 klaim. (Ilustrasi P-2) Misalkan N P OI(2). Dapatkah anda menghitung E(N N > 1)? Distribusi Poisson Misalkan X peubah acak dengan fungsi peluang λ λi p X (i) = e i! untuk i = 0, 1, 2,... dan λ > 0. parameter λ. X disebut peubah acak Poisson dengan MA4181 Pros.Stok. 8 K. Syuhada, PhD.

12 (Ilustrasi G-1) Diketahui N Geo(0.2). Hitung P (N = 1 N 1). (Ilustrasi G-2) Banyaknya kecelakaan adalah peubah acak geometrik dengan θ = 0.7; banyaknya klaim setiap kecelakaan berdistribusi Poisson dengan mean 3.1. Tentukan fpp untuk total banyaknya klaim (Ilustrasi G-3) Ini kisah masa lalu Nurul yang sempat diceritakan sesaat sebelum Nurul menikah. Katanya Ayahku meninggal waktu usiaku tiga tahun. Lalu Ibu kawin lagi. Dengan ayah tiriku, Ibu mendapat dua orang anak tiri dan melahirkan tiga orang anak. Ketika usiaku lima belas tahun, Ibu pun meninggal. Ayah tiriku kawin lagi dengan seorang janda yang sudah beranak dua. Ia melahirkan dua orang anak pula dengan ayah tiriku. Pertanyaan yang mungkin adalah... Distribusi Geometrik Misalkan percobaan-percobaan dilakukan hingga diperoleh sukses yang pertama. Percobaan-percobaan tersebut saling bebas dan memiliki peluang sukses p. Misalkan X menyatakan banyaknya percobaan yang dilakukan untuk mendapatkan sukses pertama tersebut, maka X dikatakan peubah acak Geometrik dengan parameter p. Fungsi peluangnya adalah p(n) = P (X = n) = (1 p) n 1 p, untuk n = 1, 2,... dan p > Distribusi Kontinu Distribusi Uniform Distribusi Eksponensial MA4181 Pros.Stok. 9 K. Syuhada, PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

Peubah Acak dan Distribusi

Peubah Acak dan Distribusi BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik A. Jadwal kuliah:

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kuis Selamat Datang MA5181 Proses Stokastik Precise. Prospective. Tanggal 23 Agustus 2016, Waktu: suka-suka menit 1. Mahasiswa yang datang ke ruang kuliah mengikuti suatu proses dengan laju kedatangan

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK

MA4081 PENGANTAR PROSES STOKASTIK Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik : Dasar-dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Diskusi 1. Misalkan sebuah koin yang mempunyai peluang muncul muka sebesar.7, dilantunkan tiga kali. Misalkan X menyatakan banyaknya

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

/ /16 =

/ /16 = Kuis Selamat Datang MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Tanggal 22 Agustus 2017, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. 1. Widya (akan) memenangkan

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK

MA4081 PENGANTAR PROSES STOKASTIK Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Diskusi 1: Dasar-dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 215 Latihan 1 Dasar-dasar Probabilitas Latihan 1 1. Diketahui Tentukan: a. P ( ) X > 1 4 b. Tentukan F (x) 2. Diketahui

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting Catatan Kuliah MA6281 PREDIKSI DERET WAKTU DAN COPULA Forger The Past(?), Do Forecasting disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik : Dasar-dasar Probabilitas, Peluang dan Ekspektasi Bersyarat Statistika FMIPA Universitas Islam Indonesia April 13, 2017 1. Misalkan sebuah koin yang mempunyai peluang muncul muka sebesar 0.7, dilantunkan

Lebih terperinci

MA4181 MODEL RISIKO Enjoy the Risks

MA4181 MODEL RISIKO Enjoy the Risks Catatan Kuliah MA48 MODEL RISIKO Enjoy the Risks disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2 Tentang MA48 Model Risiko A. Jadwal kuliah:

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang AK5161 Matematika

Lebih terperinci

Minggu 1 Review Peubah Acak dan Fungsi Distribusi. Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting

Minggu 1 Review Peubah Acak dan Fungsi Distribusi. Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting IKG4Q3 Ekonometrik Dosen: Aniq A Rohmawati, M.Si [Kelas Ekonometrik] CS-36-02 [Jadwal] Senin 10.30-12.30 R.A208A; Selasa 10.30-12.30 R.E302 [Materi Ekonometrik] Kuliah Pemodelan dan Simulasi berisi tentang

Lebih terperinci

Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR)

Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR) CNH4S3 Analisis Time Series [Dosen] Aniq A Rohmawati, M.Si [Jadwal] Need to reschedule? [About] The purpose of time series analysis is generally twofold: to understand or model the stochastic mechanism

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK

MA4081 PENGANTAR PROSES STOKASTIK Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Poisson: Suatu Pengantar Orang Pintar Belajar Stokastik Tentang Kuliah Proses Stokastik Bab 1 : Tentang Peluang Bab 2 : Peluang dan Ekspektasi Bersyarat*

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK (not just) Always Listening, Always Understanding disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Rantai Markov Waktu Kontinu Pendahuluan Pada bab ini, kita akan belajar mengenai

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika Catatan Kuliah MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA2082

Lebih terperinci

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3 Kuis Selamat Datang MA4183 Model Risiko Tanggal 22 Agustus 2015, Waktu: suka-suka menit Misalkan X peubah acak dengan fungsi distribusi berikut: 0, x < 0 1 + x, 0 x < 1 3 5 F (x = 3, 1 x < 2 5 9, 2 x

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 017 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. Analisis Data. Orang Cerdas Belajar Statistika. disusun oleh. Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. Analisis Data. Orang Cerdas Belajar Statistika. disusun oleh. Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah Analisis Data Orang Cerdas Belajar Statistika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang Analisis Data A.

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

CATATAN KULIAH PENGANTAR PROSES STOKASTIK

CATATAN KULIAH PENGANTAR PROSES STOKASTIK CATATAN KULIAH PENGANTAR PROSES STOKASTIK Oleh Atina Ahdika, S.Si, M.Si PROGRAM STUDI STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 2016 Daftar Isi Daftar Isi iv

Lebih terperinci

AK6083 Manajemen Risiko Kuantitatif. Referensi: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools.

AK6083 Manajemen Risiko Kuantitatif. Referensi: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools. AK6083 Manajemen Risiko Kuantitatif Referensi: Silabus: McNeil, Frey, Embrechts (2005), Quantitative Risk Management: Concepts, Techniques and Tools Seputar risiko dan volatilitas Peubah acak dan fungsi

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika Catatan Kuliah MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA2082

Lebih terperinci

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 5: Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Waktu Antar Kedatangan Waktu Antar Kedatangan Misalkan T 1 menyatakan waktu dari kejadian/kedatangan pertama. Misalkan

Lebih terperinci

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC Pengantar Seperti sudah disampaikan sebelumnya, analog

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 3: Rantai Markov Diskrit Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Rantai Markov Rantai Markov Rantai Markov Misalkan sebuah proses stokastik {X t } dengan t = 0, 1, 2,....

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK

MA4081 PENGANTAR PROSES STOKASTIK Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik : Peluang dan Ekspektasi Bersyarat Statistika FMIPA Universitas Islam Indonesia Peluang dan Ekspektasi Bersyarat 1. Catatan dalam perusahaan asuransi otomotif memberikan informasi bahwa (i) setiap pelanggan

Lebih terperinci

MA2081 Statistika Dasar

MA2081 Statistika Dasar Catatan Kuliah MA2081 Statistika Dasar Orang Cerdas Belajar Statistika Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MAK6281 Topik

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

Peubah Acak dan Distribusi Kontinu

Peubah Acak dan Distribusi Kontinu BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi

Lebih terperinci

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016 REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS Utriweni Mukhaiyar MA81 Statistika Nonparametrik Kamis, 1 Januari 016 PEUBAH ACAK Peubah acak, yaitu pemetaan X: S R Ruang Sampel, S X x Himpunan Bil.Riil,

Lebih terperinci

Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Daftar

Lebih terperinci

BAB III PROSES POISSON MAJEMUK

BAB III PROSES POISSON MAJEMUK BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko

Lebih terperinci

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah MA3181 Teori Peluang - Khreshna Syuhada Bab 8 1 Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah Ilustrasi 8.1 Sebuah perusahaan asuransi menduga bahwa setiap orang akan mengalami dan memiliki parameter

Lebih terperinci

PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK

PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK PROSES POISSON MAJEMUK DAN PENERAPANNYA PADA PENENTUAN EKSPEKTASI JUMLAH PENJUALAN SAHAM PT SRI REJEKI ISMAN TBK Ririn Dwi Utami, Respatiwulan, dan Siswanto Program Studi Matematika FMIPA UNS Abstrak.

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MA2081 Statistika Dasar

MA2081 Statistika Dasar Catatan Kuliah MA2081 Statistika Dasar Orang Cerdas Belajar Statistika Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MAK6281 Topik

Lebih terperinci

Uji Hipotesis dan Aturan Keputusan

Uji Hipotesis dan Aturan Keputusan Uji Hipotesis dan Aturan Keputusan oleh: Khreshna Syuhada, PhD. 1. Pendahuluan Pada perkuliahan tingkat 2, telah dikenalkan masalah uji hipotesis sebagai berikut: Seorang peneliti memberikan klaim bahwa

Lebih terperinci