STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak"

Transkripsi

1 STK511 Analisis Statistika Pertemuan 3 Sebaran Peluang Peubah Acak

2 Beberapa Konsep Dasar Percobaan statistika: kegiatan yang hasil akhir keluarannya tidak diketahui di awal, tetapi kemungkinan-kemungkinannya diketahui Ruang contoh: himpunan semua kemungkinan dari sebuah percobaan statistika. Umumnya dinotasikan S (sample space). Banyaknya semua kemungkinan, dinotasikan N(S). Ruang contoh dari percobaan pelemparan dadu bersisi enam adalah S = {1,, 3, 4, 5, 6}, N(S) = 6. Ruang contoh dari percobaan melempar sekeping uang logam dua kali adalah S = {MM, MB, BM, BB}, N(S) = 4. Catatan: M=sisi muka, B=sisi belakang.

3 Beberapa Konsep Dasar Kejadian (event): sembarang himpunan bagian dari ruang contoh. Umumnya dinotasikan dengan huruf kapital. Jika E adalah suatu kejadian, N(E) adalah banyaknya kemungkinan dari kejadian tersebut. Misalkan dari suatu percobaan pelemparan dadu bersisi enam, E = {, 4, 6} adalah kejadian munculnya sisi bermata genap. N(E) = 3. Misalkan dari suatu percobaan pelemparan dua kali sekeping uang logam, E = {MM} adalah kejadian tidak munculnya sisi belakang. N(E) = 1. Himpunan kosong,, juga merupakan kejadian yang sering disebut sebagai kejadian mustahil. N() = 0.

4 Peluang Ukuran kemungkinan terjadinya suatu kejadian. Dalam jangka panjang (percobaan berulang), peluang terjadinya kejadian E, dinotasikan P(E), adalah rasio antara terjadinya E dengan banyaknya percobaan yang dilakukan. Misalkan dari 1000 kali melempar sekeping uang logam, muncul sisi muka sebanyak 650 kali, maka P(M) = 0.65 Jika E adalah sebuah kejadian dari suatu percobaan dengan ruang contoh yang terhingga dan setiap kemungkinan memiliki peluang yang sama, maka P(E) = N(E) / N(S)

5 Aksioma Peluang Jika E adalah suatu kejadian, berlaku 0 P(E) 1 P(S) = 1 Jika E1, E, adalah kejadian-kejadian yang saling lepas (mutually exclusive, irisannya adalah himpunan kosong) maka P(E1E ) = P(E1) + P(E) +

6 Ilustrasi Percobaan: melempar dua dadu bersisi enam setimbang S = {11, 1, 13, 14, 15, 16, 1,, 3, 4, 5, 6, 31, 3, 33, 34, 35, 36, 41, 4, 43, 44, 45, 46, 51, 5, 53, 54, 55, 56, 61, 6, 63, 64, 65, 66} N(S) = 36 E adalah kejadian muncul sisi kembar, E = {11,, 33, 44, 55, 66}, N(E) = 6, P(E) = 6/36 F adalah kejadian muncul sisi berjumlah 9, F = {45, 54, 36, 63}, N(F) = 4, P(F) = 4/36 G adalah kejadian muncul sisi kembar atau berjumlah 9, G = E F dan EF=, maka P(G) = P(E) + P(F) = 10/36

7 Peubah Acak Random variable. Peubah acak merupakan kuantifikasi dari kejadian-kejadian di ruang contoh. Dari satu percobaan, bisa didefinisikan lebih dari satu peubah acak.

8 Ilustrasi Percobaan: melempar dua dadu bersisi enam setimbang S = {11, 1, 13, 14, 15, 16, 1,, 3, 4, 5, 6, 31, 3, 33, 34, 35, 36, 41, 4, 43, 44, 45, 46, 51, 5, 53, 54, 55, 56, 61, 6, 63, 64, 65, 66} N(S) = 36 X adalah peubah acak yang melambangkan jumlah kedua sisi dadu. X = {, 3,, 1} Y adalah peubah acak yang melambangkan nilai maksimum dari kedua sisi dadu, Y = {1,, 3, 4, 5, 6}

9 Fungsi Peluang Setiap nilai peubah acak, berpadanan dengan satu atau lebih kemungkinan kejadian. Setiap nilai peubah acak bisa ditentukan nilai peluangnya. Fungsi yang menyatakan peluang dari setiap nilai peubah acak disebut fungsi peluang. Total nilai dari fungsi ini adalah 1.

10 Ilustrasi Percobaan: melempar dua dadu bersisi enam setimbang S = {11, 1, 13, 14, 15, 16, 1,, 3, 4, 5, 6, 31, 3, 33, 34, 35, 36, 41, 4, 43, 44, 45, 46, 51, 5, 53, 54, 55, 56, 61, 6, 63, 64, 65, 66} Y adalah peubah acak yang melambangkan nilai maksimum dari kedua sisi dadu, Y = {1,, 3, 4, 5, 6} Fungsi peluang: P(Y = 1) = 1/36 P(Y = 4) = 7/36 P(Y = ) = 3/36 P(Y = 5) = 9/36 P(Y = 3) = 5/36 P(Y = 6) = 11/36 P(Y=y) = (y-1)/36

11 Fungsi Peluang Peubah Acak Diskret Fungsi Massa Peluang p(x) 0 p(x) = 1 Kontinu Fungsi Kepekatan Peluang f(x) = 0 f(x)dx = 1

12 Nilai Harapan Peubah Acak Nilai harapan peubah acak X dinotasikan E(X) dan didefinisikan sebagai untuk X diskret untuk X kontinu E ( X ) x p( x) x E ( X ) xf ( x) dx

13 Ilustrasi Percobaan: melempar dua dadu bersisi enam setimbang S = {11, 1, 13, 14, 15, 16, 1,, 3, 4, 5, 6, 31, 3, 33, 34, 35, 36, 41, 4, 43, 44, 45, 46, 51, 5, 53, 54, 55, 56, 61, 6, 63, 64, 65, 66} Y adalah peubah acak yang melambangkan nilai maksimum dari kedua sisi dadu, Fungsi peluang: Y = {1,, 3, 4, 5, 6} P(Y = 1) = 1/36 P(Y = 4) = 7/36 P(Y = ) = 3/36 P(Y = 5) = 9/36 P(Y = 3) = 5/36 P(Y = 6) = 11/36 P(Y=y) = (y-1)/36 E(Y) = 1 (1/36) + (3/36) + 3 (5/36) + 4 (7/36) + 5 (9/36) + 6 (11/36) = 161/36 = 4.47

14 Ilustrasi Waktu yang diperlukan oleh seorang petugas (dalam menit) dalam melayani seorang pelanggan di sebuah pompa bensin menyebar mengikuti fungsi kepekatan peluang berikut f ( x) 3 x 9 x untuk 0 x 3 Nilai harapan dari lamanya waktu pelayanan per pelanggan adalah

15 ) ( ) ( x x dx x x dx x x x dx x xf x E Ilustrasi 1. Sebaran Peluang

16 Sifat-sifat Nilai Harapan X adalah peubah acak dengan nilai harapan E(X) Jika a adalah sebuah konstanta, E(X+a) = E(X) + a Jika a adalah sebuah konstanta, E(aX) = a E(X)

17 Ilustrasi Percobaan: melempar dua dadu bersisi enam setimbang S = {11, 1, 13, 14, 15, 16, 1,, 3, 4, 5, 6, 31, 3, 33, 34, 35, 36, 41, 4, 43, 44, 45, 46, 51, 5, 53, 54, 55, 56, 61, 6, 63, 64, 65, 66} Y adalah peubah acak yang melambangkan nilai maksimum dari kedua sisi dadu, Fungsi peluang: Y = {1,, 3, 4, 5, 6} P(Y = 1) = 1/36 P(Y = ) = 3/36 P(Y = 3) = 5/36 P(Y = 4) = 7/36 P(Y = 5) = 9/36 P(Y = 6) = 11/36 P(Y=y) = (y-1)/36 E(y) = 1 (1/36) + (3/36) + 3 (5/36) + 4 (7/36) + 5 (9/36) + 6 (11/36) = 161/36 = 4.47 Jika peubah acak Z didefinisikan sebagai dua kali nilai maksimum dari kedua sisi dadu, maka Z = Y. Sehingga E(Z) = E(Y) = E(Y) = * 4.47 = 8.944

18 Ilustrasi Waktu yang diperlukan oleh seorang petugas (dalam menit) dalam melayani seorang pelanggan di sebuah pompa bensin menyebar mengikuti fungsi kepekatan peluang berikut f ( x) 3 x 9 x untuk 0 x 3 Nilai harapan dari lamanya waktu pelayanan per pelanggan adalah E(X) = 1.5 Jika setiap pelanggan menghabiskan menit untuk menunggu dan Y adalah total waktu yang dibutuhkan pelanggan untuk menunggu dan dilayani, maka Y = + X, dan E(Y) = E( + X) = + E(X) = * 1.5 = 3

19 Ragam Peubah Acak Ragam dari suatu peubah acak X dinotasikan Var(X), dan didefinisikan sebagai berikut Var ( X ) E( X E( X )) E( X ) ( E( X Jika X adalah peubah acak diskret dengan fungsi massa peluang p(x), maka Var ( X ) x p( x) ( E( X x Jika X adalah peubah acak kontinu dengan fungsi massa peluang f(x), maka Var ( X ) x f ( x) dx ( E( X )) )) ))

20 Ilustrasi Percobaan: melempar dua dadu bersisi enam setimbang S = {11, 1, 13, 14, 15, 16, 1,, 3, 4, 5, 6, 31, 3, 33, 34, 35, 36, 41, 4, 43, 44, 45, 46, 51, 5, 53, 54, 55, 56, 61, 6, 63, 64, 65, 66} Y adalah peubah acak yang melambangkan nilai maksimum dari kedua sisi dadu, Y = {1,, 3, 4, 5, 6} Fungsi peluang: P(Y = 1) = 1/36 P(Y = ) = 3/36 P(Y = 3) = 5/36 P(Y = 4) = 7/36 P(Y = 5) = 9/36 P(Y = 6) = 11/36 P(Y=y) = (y-1)/36 E(Y) = 161/36 = 4.47 E(Y ) = 1 (1/36) + (3/36) + 3 (5/36) + 4 (7/36) + 5 (9/36) + 6 (11/36) = 4459/136 = Var(Y) = E(Y ) (E(Y)) = (4.47) =

21 Ilustrasi Waktu yang diperlukan oleh seorang petugas (dalam menit) dalam melayani seorang pelanggan di sebuah pompa bensin menyebar mengikuti fungsi kepekatan peluang berikut f ( x) x x untuk 0 x Nilai harapan dari lamanya waktu pelayanan per pelanggan adalah E(X) = 1.5 Var(X) = E(X ) (E(X)) E( X 1 =.7 (1.5) = 0.45 x ) x 45 3 x x dx x x 3 9 x 4 dx

22 Sifat-sifat Ragam X adalah peubah acak dengan ragam Var(X) Jika a adalah sebuah konstanta, Var(X+a) = Var(X) Jika a adalah sebuah konstanta, Var(aX) = a Var(X)

23 Beberapa Contoh Sebaran Peubah Acak Diskret Bernoulli Binomial Geometrik Poisson Kontinu Normal Eksponensial

24 Peubah Acak Bernoulli Setiap percobaan menghasilkan dua kemungkinan, X = {0, 1} Peluang terjadinya 1 adalah p, sehingga fungsi massa peluangnya adalah P(X = 0) = 1 p P(X = 1) = p Atau dituliskan P(X = x) = p x (1-p) 1-x untuk x = 0 dan 1 E(X) = p Var(X) = p(1-p)

25 Peubah Acak Binomial Terdapat n kali percobaan yang saling bebas, dan setiap percobaan menghasilkan dua kemungkinan (ya/tidak) dengan peluang terjadinya ya untuk setiap percobaan adalah tetap sebesar p X adalah banyaknya kejadian ya dari n kali percobaan. X = {0, 1,,, n} Fungsi massa peluang dari X adalah E(X) = np Var(X) = np(1-p) P( X n x n x x nx x) p (1 p) n! ( n x)! x!

26 Peubah Acak Geometrik Terdapat percobaan yang menghasilkan dua kemungkinan (ya/tidak) dengan peluang terjadinya ya untuk setiap percobaan adalah tetap sebesar p, percobaan diulang terus sampai diperoleh ya yang pertama X adalah peubah acak yang menyatakan banyaknya pengulangan percobaan Fungsi massa peluang X adalah P(X=x) = (1-p) x-1 p E(X) = 1/p Var(X) = (1-p)/p

27 Peubah Acak Poisson Fungsi massa peluang P( X x) x e x! Sering digunakan sebagai fungsi peluang peubah acak yang menyatakan banyaknya suatu kejadian jarang dalam rentang waktu tertentu. Misal banyaknya kecelakaan dalam satu bulan di sebuah ruas jalan, frekuensi listrik padam dalam satu bulan, banyaknya karyawan yang bolos dalam satu hari. E(X) = Var(X)=

28 Peubah Acak Normal Fungsi kepekatan peluangnya: Merupakan peubah acak yang paling banyak digunakan dalam analisis statistika E(X) = µ Var(X) =

29 Sifat Peubah Acak Normal

30 Sifat Peubah Acak Normal Simetrik Jika X N(µ, ) maka (X-µ)/ N(0, 1) N(0, 1) sebaran normal baku, sering dinotasikan dengan Z Memanfaatkan tabel Z untuk menentukan peluang nilai peubah acak normal

31 Sifat Peubah Acak Normal P(Z < 1.36)

32 Sifat Peubah Acak Normal P(Z < 1.36)=0.913

33 Sifat Peubah Acak Normal P(0.70<Z < 1.36)=0.155

34 Sifat Peubah Acak Normal P(Z > 1.36)=0.087

35 Ilustrasi Nilai ujian tulis CPNS Kabupaten Bogor diketahui menyebar normal dengan rata-rata 56 dan ragam 9. Jika ditemui satu orang peserta ujian secara acak, berapa peluang peserta yang ditemui tersebut adalah peserta dengan nilai kurang dari 50? Jika syarat untuk lolos ke tahap selanjutnya adalah nilai ujian yang lebih dari 61, berapa persen peserta yang lolos?

36 Ilustrasi P(nilai < 50) Nilai N(=56, =9), = 3 P(nilai < 50) = P ( Z < (50 56)/3) = P(Z < -.00) =.075

37 Ilustrasi P(lolos) = P(nilai > 61) P(nilai > 61) = 1 P(nilai < 61) = 1 - P(Z < (61 56)/3) = 1 P(Z < 1.67) = = 4.75%

38 Bersambung. Tugas 1 Dikumpulkan pada saat praktikum.

39 Tugas 1 No 1 Tentukan fungsi massa peluang dari peubah-peubah acak berikut ini : a. Percobaan: melempar satu keping uang logam setimbang tiga kali, X adalah peubah acak banyaknya sisi gambar yang muncul b. Percobaan: melempar dua dadu sisi enam setimbang sebanyak dua kali, Y adalah peubah acak jumlah dari sisi dadu yang muncul

40 Tugas 1 No Terdapat dua buah wadah, A dan B. Masing-masing wadah berisi 4 bola dan diberi nomor 1,, 3, 4. Dari setiap wadah diambil secara acak masing-masing 1 bola. Didefinisikan : X = minimum nomor bola terpilih Y = maksimum nomor bola terpilih R = Y X Sebagai contoh, jika terambil bola dengan nomor dan 3, maka X =, Y = 3, R = 1. Tentukan fungsi peluang dari R, buat sketsa fungsi yang diperoleh. Tentukan E(R)

41 Tugas 1 No 3 Diberikan : a. P(X=x) = x/10 untuk x = 1,, 3, 4 b. f(x) = 3/15 x, untuk 0 < x < 5 Tunjukkan bahwa fungsi-fungsi dari peubah acak tersebut memenuhi sifat sebagai fungsi massa peluang (jika diskret) atau fungsi kepekatan peluang (jika kontinu) Hitung nilai harapan dari setiap peubah acak tersebut Hitung ragam dari setiap peubah acak tersebut

42 Tugas 1 No 4 Jarak tempuh seseorang dalam berjalan kaki selama jam dianggap memiliki sebaran normal dengan rata-rata 13 km dan simpangan baku 1.4 km. a. Berapa persen orang yang mampu menempuh lebih dari 15 km dalam dua jam? b. Berapa persen orang yang dalam dua jam bisa menempuh jarak antara 1 hingga 14 km? c. Berapa persen orang yang dalam satu jam bisa menempuh jarak kurang dari 5.5 km?

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak STK 511 Analisis statistika Materi 3 Sebaran Peubah Acak 1 Konsep Peluang 2 Peluang Peluang dapat diartikan sebagai ukuran kemungkinan terjadinya suatu kejadian Untuk memahami peluang diperlukan pemahaman

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah fungsi) ke ruang bilangan

Lebih terperinci

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak Konsep Peubah Acak Metode Statistika (STK11) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan

Lebih terperinci

Peubah Acak (Lanjutan)

Peubah Acak (Lanjutan) Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I II. PEUBAH ACAK DISKRET II. Peubah Acak Diskret 1 PEUBAH ACAK DISKRET Definisi 2.1. (Peubah Acak) : Peubah Acak Y adalah suatu fungsi yang memetakan seluruh anggota ruang contoh

Lebih terperinci

Metode Statistika (STK211)

Metode Statistika (STK211) Metode Statistika (STK211) Peubah Acak dan Sebaran Peluang (Random Variable and Probability Distribution) Dr. Ir. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 1 Konsep Peubah Acak (Random Variable) Peubah

Lebih terperinci

PELUANG DAN PEUBAH ACAK

PELUANG DAN PEUBAH ACAK PELUANG DAN PEUBAH ACAK Materi 3 - STK511 Analisis Statistika October 3, 2017 Okt, 2017 1 Konsep Peluang 2 Pendahuluan Kejadian di dunia: pasti (deterministik) atau tidak pasti (probabilistik) Contoh kejadian

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Peluang terjadinya nilai variabel random X yang meliputi semua nilai ditentukan melalui distribusi peluang. Distribusi peluang suatu variabel random X adalah

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan

Lebih terperinci

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso. Beberapa 27 April 2014 Beberapa Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat memahami dan menghitung

Lebih terperinci

Learning Outcomes Ruang Contoh Kejadian Aksioma Peluang Latihan. Aksioma Peluang. Julio Adisantoso. 16 Pebruari 2014

Learning Outcomes Ruang Contoh Kejadian Aksioma Peluang Latihan. Aksioma Peluang. Julio Adisantoso. 16 Pebruari 2014 16 Pebruari 2014 Learning Outcome Mahasiswa dapat memahami ruang contoh, kejadian, dan koleksi Mahasiswa dapat melakukan operasi himpunan kejadian Mahasiswa dapat memahami aksioma peluang Mahasiswa dapat

Lebih terperinci

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran Kurikulum 20 matematika K e l a s XI DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami perbedaan

Lebih terperinci

Tipe Peubah Acak. Diskret. Kontinu

Tipe Peubah Acak. Diskret. Kontinu 2 N i 1 x i N 2 Tipe Peubah Acak Diskret Segugus nilai dari suatu peubah acak yang dapat dicacah (countable) Misalkan X = banyaknya tendangan penalti yang berhasil dilakukan oleh pemain A Kontinu Nilai-nilai

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan

Lebih terperinci

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Metode Statistika Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Konsep Peubah Acak Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah

Lebih terperinci

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab Peubah Acak. Konsep Dasar Peubah Acak Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh peubah acak: Jika X adalah peubah acak banyaknya sisi muka yang muncul pada

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

Teori Peluang Diskrit

Teori Peluang Diskrit Teori Peluang Diskrit Peluang Diskrit Apa yang terjadi jika keluaran dari suatu eksperimen tidak memiliki peluang yang sama? Dalam kasus ini, peluang p(s) dipadankan dengan setiap keluaran s S, di mana

Lebih terperinci

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen.

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen. Peluang Peluang dan Kejadian Peluang Bersyarat Peubah Acak dan Nilai Harapan Kovarian dan Korelasi 1.1 PELUANG DAN KEJADIAN Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan IV Konsep Peluang Septian Rahardiantoro - STK IPB 1 Populasi Pengambilan contoh dari populasi untuk pendugaan parameter Contoh1 Parameter μ Statistik x Setara

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

Nilai Harapan / Nilai Ekspektasi

Nilai Harapan / Nilai Ekspektasi EKSPEKTASI Misalkan sebuah eksperimen menghasilkan k peristiwa, dan peluang masing-masing peristiwa P 1, P, P k dan untuk tiap peristiwa terdapat satuan (bobot d 1, d d k ) maka ekspektasi eksperimen itu

Lebih terperinci

Harapan Matematik (Teori Ekspektasi)

Harapan Matematik (Teori Ekspektasi) (Teori Ekspektasi) PROBABILITAS DAN STATISTIKA Semester Genap 2014/2015 LUTFI FANANI lutfi.class@gmail.com Sifat Definisi Harapan matematik atau nilai ekspektasi adalah satu konsep yang penting di dalam

Lebih terperinci

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung PERMUTASI, KOMBINASI DAN PELUANG A. KAIDAH PENCACAHAN Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung berapa banyaknya cara yang mungkjin terjadi dalam suatu percobaan. Kaidah pencacahan

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Harapan Matematik Bahan Kuliah II09 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Harapan Matematik Satu konsep yang penting di dalam teori peluang

Lebih terperinci

DISTRIBUSI PELUANG TEORITIS

DISTRIBUSI PELUANG TEORITIS Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan

Lebih terperinci

Model dan Simulasi Universitas Indo Global Mandiri

Model dan Simulasi Universitas Indo Global Mandiri Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan

Lebih terperinci

Bab 3 Pengantar teori Peluang

Bab 3 Pengantar teori Peluang Bab 3 Pengantar teori Peluang Istilah peluang atau kemungkinan, sering kali diucapkan atau didengar. Sebagai contoh ketika manajer dari sebuah klub sepak bola ditanya wartawan tentang hasil pertandingan

Lebih terperinci

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia HUKUM PROBABILITAS Pertemuan ke ke--4 Didin Astriani Prasetyowati, M.Stat Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) +

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRET Distribusi Binomial. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016

DISTRIBUSI PROBABILITAS DISKRET Distribusi Binomial. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 DISTRIBUSI PROBABILITAS DISKRET Distribusi Binomial Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 Distribusi Binomial Perhatikan kembali setiap hasil percobaan statistik pada pembahasan sebelumnya, dari

Lebih terperinci

Aksioma Peluang. Bab Ruang Contoh

Aksioma Peluang. Bab Ruang Contoh Bab 2 Aksioma Peluang 2.1 Ruang Contoh Dalam suatu percobaan, kita tidak tahu dengan pasti apa hasil yang akan terjadi. Misalnya pada percobaan membeli lampu pijar, kita tidak tahu dengan pasti, apakah

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

STATISTIKA LINGKUNGAN

STATISTIKA LINGKUNGAN STATISTIKA LINGKUNGAN TEORI PROBABILITAS Probabilitas -pendahuluan Statistika deskriptif : menggambarkan data Statistik inferensi kesimpulan valid dan perkiraan akurat ttg populasi dengan mengobservasi

Lebih terperinci

Distribusi Peluang Teoritis

Distribusi Peluang Teoritis Distribusi Peluang Teoritis 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

Pertemuan 2. Hukum Probabilitas

Pertemuan 2. Hukum Probabilitas Pertemuan 2 Hukum Probabilitas Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a B) = n(a) + n(b) n(a B) Kejadian majemuk adalah gabungan atau

Lebih terperinci

STK 211 Metode statistika. Materi 3 Konsep Dasar Peluang

STK 211 Metode statistika. Materi 3 Konsep Dasar Peluang STK 211 Metode statistika Materi 3 Konsep Dasar Peluang 1 Pendahuluan Banyak kejadian-kejadian di dunia ini yang tidak pasti Misal: Akankah hujan sore hari ini? Akankah PSSI menang? dll Nilai Kejadian

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

By : Refqi Kemal Habib

By : Refqi Kemal Habib BAB I PENDAHULUAN A. Dasar Teori Peluang atau kebolehjadian atau dikenal juga sebagai probabilitas adalah cara untuk mengungkapkan pengetahuan atau kepercayaan bahwa suatu kejadian akan berlaku atau telah

Lebih terperinci

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

MA2181 Analisis Data - U. Mukhaiyar 1

MA2181 Analisis Data - U. Mukhaiyar 1 DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:

Lebih terperinci

Sebaran Peubah Acak Bersama

Sebaran Peubah Acak Bersama Bab 6 Sebaran Peubah Acak Bersama 6. Peubah Acak Ganda Misalnya terdapat suatu tindakan pelemparan sekeping mata uang seimbang sebanyak 3 kali, dan X adalah peubah acak banyaknya sisi muka yang muncul

Lebih terperinci

Konsep Peluang. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Konsep Peluang. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Konsep Peluang Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 1 THE ROLE OF PROBABILITY IN STATISTICS Probability and statistics are related in an important way. Probability is used as a tool; it allows

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

Pertemuan 1 KONSEP DASAR PROBABILITAS

Pertemuan 1 KONSEP DASAR PROBABILITAS Pertemuan 1 KONSEP DASAR PROBABILITAS Pengantar Banyak kejadian dalam kehidupan sehari-hari yang sulit diketahui dengan pasti, terutama kejadian yang akan datang. Meskipun kejadian-kejadian tersebut tidak

Lebih terperinci

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual Materi dan Jadual Statistika(MMS 2401) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Tatap Muka Pokok Bahasan 1. Statistika Deskriptif 2. Statistika Deskriptif

Lebih terperinci

Sebaran Peubah Acak Bersama

Sebaran Peubah Acak Bersama Bab 6 Sebaran Peubah Acak Bersama 6. Peubah Acak Ganda Misalnya terdapat suatu tindakan pelemparan sekeping mata uang seimbang sebanyak 3 kali, dan X adalah peubah acak banyaknya sisi muka yang muncul

Lebih terperinci

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan.

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan. RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 306203 Nama Mata Kuliah : Probabilitas Jumlah sks : 3 sks Semester : III Alokasi Waktu

Lebih terperinci

Peluang suatu kejadian

Peluang suatu kejadian Peluang suatu kejadian Percobaan: Percobaan adalah suatu tindakan atau kegiatan yang dapat memberikan beberapa kemungkinan hasil Ruang Sampel: Ruang sampel adalah himpunan semua hasil yang mungkin dari

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh

STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh STK511 Analisis Statistika Pertemuan 4 Sebaran Penarikan Contoh Konsep Dasar Suatu statistik, misalnya, adalah fungsi dari peubah acak sering kita tulis. Idea dasaranya : Karena adalah peubah acak, maka

Lebih terperinci

STATISTIK PERTEMUAN V

STATISTIK PERTEMUAN V STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel

Lebih terperinci

ADITHYA SUDIARNO, ST., MT.

ADITHYA SUDIARNO, ST., MT. STATISTIKA INDUSTRI [VAR RANDOM & DISTRIBUSI PROB.] ADITHYA SUDIARNO, ST., MT. ANALISIS PEMBELAJARAN STATISTIK DESKRIPTIF KONSEP PELUANG/ PROBABILITAS TEKNIK PENGAMBILAN SAMPLING RANDOM VARIABLE KONSEP

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 5. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Rataan peubah acak. HARAPAN MATEMATIK Misalkan dua mata uang setangkup dilantun, peubah acak X menyatakan banyaknya

Lebih terperinci

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY PENGANTAR PROBABILITAS GANGGA ANURAGA POKOK BAHASAN Konsep dasar probabilitas Teori himpunan Permutasi Kombinasi Koefisien binomial Koefisien multinomial Probabilitas Aksioma probabilitas Probabilitas

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

Bab 9. Peluang Diskrit

Bab 9. Peluang Diskrit Bab 9. Peluang Diskrit Topik Definisi Peluang Diskrit Sifat Peluang Diskrit Probabilitas terbatas Konsep Teori Himpunan pada Peluang Diskrit Probabilitas Kejadian Majemuk A B dan A B DuaKejadianSalingLepas

Lebih terperinci

Ekspektasi Satu Peubah Acak Diskrit

Ekspektasi Satu Peubah Acak Diskrit Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

5. Peluang Diskrit. Pengantar

5. Peluang Diskrit. Pengantar 5. Peluang Diskrit Pengantar Semua yang telah dipelajari di dalam teori pencacahan (counting) akan menjadi dasar dalam perhitungan peluang terjadinya suatu peristiwa. Dalam pembahasan berikut, istilah

Lebih terperinci

25/09/2013. Semua kemungkinan nilai yang muncul S={123456} S={1,2,3,4,5,6} Semua kemungkinan nilai yang muncul S={G, A}

25/09/2013. Semua kemungkinan nilai yang muncul S={123456} S={1,2,3,4,5,6} Semua kemungkinan nilai yang muncul S={G, A} Pendahuluan Metode Statistika (STK211) Konsep Peluang (Probability Concept) Suatu fenomena dikatakan acak jika hasil dari suatu percobaan bersifat tidak pasti Fenomena acak sering mengikuti suatu pola

Lebih terperinci

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA

DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA DISTRIBUSI BINOMIAL STKIP SILIWANGI BANDUNG LUVY S ZANTHY KAPSEL SMA 1 LUVY S. ZANTHY KAPSEL SMA 2 LUVY S. ZANTHY KAPSEL SMA 3 Distribusi Binomial O Dalam suatu percobaan statistik sering dijumpai pengulangan

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 5. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Rataan peubah acak. HARAPAN MATEMATIK Misalkan dua mata uang setangkup dilantun, peubah acak X menyatakan banyaknya

Lebih terperinci

KONSEP DASAR PROBABILITAS

KONSEP DASAR PROBABILITAS KONSEP DASAR PROBABILITAS PERTEMUAN VIII EvanRamdan PROBABILITAS Dalam menentukan banyaknya anggota kejadian, kadangkala kita tidak selalu dapat mendaftar semua titik sampel dalam percobaan tersebut. Untuk

Lebih terperinci

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan

Lebih terperinci

Learning Outcomes Peubah Acak Fungsi Sebaran Secaran Diskret Nilai Harapan. Peubah Acak. Julio Adisantoso. 13 Maret 2014

Learning Outcomes Peubah Acak Fungsi Sebaran Secaran Diskret Nilai Harapan. Peubah Acak. Julio Adisantoso. 13 Maret 2014 13 Maret 2014 Learning Outcome Mahasiswa dapat memahami dan menentukan peubah acak dari suatu kejadian Mahasiswa dapat memahami fungsi sebaran Mahasiswa dapat mengerti dan menentukan peubah acak diskret

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Eksperimen. Ruang Sampel Diskrit. Ruang Sampel. Ruang sampel S, yaitu himpunan dari semua kemungkinan hasil dari suatu percobaan acak (statistik).

Eksperimen. Ruang Sampel Diskrit. Ruang Sampel. Ruang sampel S, yaitu himpunan dari semua kemungkinan hasil dari suatu percobaan acak (statistik). Eksperimen MA 2081 Statistika Dasar Dosen : Udjianna S. Pasaribu Utriweni Mukhaiyar Kamis, 12 Februari 2009 Ciri ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 6. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Variansi dan kovariansi. HARAPAN MATEMATIK Keragaman suatu peubah acak X diperoleh dengan mengambil g(x) = (X µ). Rataan

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I V. SEBARAN FUNGSI PEUBAH ACAK V. Sebaran Fungsi Peubah Acak 1 Sebaran Fungsi Peubah Acak Dalam banyak kasus untuk melakukan inferensi terhadap suatu parameter kita lebih banyak

Lebih terperinci

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar.

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar. DISTRIBUSI DISKRIT UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 2081 Statistika Dasar Utriweni Mukhaiyar 7 Maret

Lebih terperinci

STATISTIKA MATEMATIKA

STATISTIKA MATEMATIKA STATISTIKA MATEMATIKA Muhammad Subianto STATISTIKA MATEMATIKA Muhammad Subianto The work in this book/modul was partially supported by Jurusan Matematika FMIPA Universitas Syiah Kuala. Printed by... ISBN-10:

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

Ruang Contoh dan Kejadian

Ruang Contoh dan Kejadian 2 N i 1 x i N 2 Ruang Contoh dan Kejadian Suatu fenomena dikatakan acak jika hasil dari suatu percobaan bersifat tidak pasti Fenomena acak sering mengikuti suatu pola tertentu Keteraturan acak dalam jangka

Lebih terperinci

STATISTIKA MATEMATIKA I I. Hazmira Yozza Izzati Rahmi HG Jur. Matematika FMIPA Unand

STATISTIKA MATEMATIKA I I. Hazmira Yozza Izzati Rahmi HG Jur. Matematika FMIPA Unand STATISTIKA MATEMATIKA I I Peubah Diskret Khusus Hazmira Yozza Izzati Rahmi HG Jur. Matematika FMIPA Unand KOMPETENSI LOGO a. Mengidentifikasikan peubah-peubah acak diskret khusus : Seragam diskret, bernoulli,

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I III. PEUBAH ACAK KONTINU III. Peubah Acak Kontinu 1 PEUBAH ACAK KONTINU Ingat definisi peubah acak! Definisi : Peubah acak Y adalah suatu fungsi yang memetakan seluruh anggota

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi dengan tepat tetapi kita

Lebih terperinci

TINJAUAN PUSTAKA Asuransi Kelompok Penyakit Lanjut Usia (Lansia) di Indonesia

TINJAUAN PUSTAKA Asuransi Kelompok Penyakit Lanjut Usia (Lansia) di Indonesia 3 TINJAUAN PUSTAKA Asuransi Asuransi berasal dari kata assurance atau insurance, yang berarti jaminan atau pertanggungan. Asuransi dalam Undang-Undang No.2 Th 1992 tentang usaha perasuransian adalah perjanjian

Lebih terperinci