FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK"

Transkripsi

1 FPM PADA KELUARGA EKSPONENSIAL BENTUK KONONIK Oleh : Entit Puspita Jurusan Pendidikan Matematika Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia ABSTRACT We can determine the distribution of the random variable by considering its moment generating function (MGF). Unfortunately there are some distribution which have no MGF. This kind of the problem cann t occur on an eponential family, because the comunic form of the family always can be determined its MGF. Kata kunci : Bentuk kanonik, keluarga eksponensial, fungsi pembangkitan momen. Pendahuluan Pada makalah ini akan dibahas Fungsi Pembangkit Momen (FPM) secara umum, dimana dengan melihat FPM dari sebarang variabel random kita bisa mengenali bentuk distribusi variabel random tersebut. Mean dan variasi tersebut dapat pula di turunkan dari FPM-nya. Selanjutnya akan dibahas pula FPM dari keluarga eksponensial yang telah di parameterisasi kembali mengingat tidak setiap distribusi mempunyai FPM. Materi Prasyarat Definisi 1 Keluarga densitas disebut keluarga ekponensial satu parameter, bila dapat dinyatakan sebagai f (, ) = ep t () c() + d() + s() (1) Jurnal Pengajaran MIPA, Vol. 3 No. 1 Juni 00 63

2 Dengan : : parameter c(), d() : Fungsi berharga real dari t (), s() : Fungsi berharga real dari Sering kali untuk keperluan tertentu, diperlukan reparameter sehingga dengan mengambil = c() berbentuk (1) dapat ditulis dalam bentuk kanonik : f (, ) = ep t() + do () + s() () Bentuk () adalah tidak tunggal, sebagai contoh gandakan dengan c dan pada saat yang sama kita dapat mengganti t() dengan t(). Himpunan H : do () < disebut ruang parameter alami dari keluatga eksponensial. Contoh 1 Misal adalah variabel random dari distribusi normal dengan mean dan variasi ² diketahui, maka pdf dari adalah : F(, ) = 1/. ep 1/ - = ep - In. ² ² ² dengan mengambil = / ², maka bentuk kanonik dari distribusi N (, ²) adalah f ( 1 ) = ep -² ² - ² - In. (3) ² Definisi Fungsi Pembangkit Momen (FPM) dari sebuah variabel random untuk setiap bilangan real s didefinisikan sebagai : (s) = E (e s ) = e s f() d jika Kontinu e s f() jika diskrit 64 Jurnal Pengajaran MIPA, Vol. 3 No. 1 Juni 00

3 Definisi 3 FPM dari sebarang variabel random terdefinisi jika E ( e s ) ada. Teorema 1 Jika FPM (s) dari sebarang random ada untuk S S (untuk suatu S > 0 ), maka E( n ) ada dan E( n ) = n (0) = d n (s) S = 0 ds n Bukti : Berdasarkan definisi. (s) = E ( e s ). Dengan epansi Taylor terhadap e s dieroleh : (s) = E ( e s ) = E (1 + s + (s) + (s) 3 +..)! 3! Akibatnya : = E(1 + s + s + 3 s 3 + )! 3! = 1 + s E ( ) + s E +.+ s n E ( n ) +.! n! 1 (s) s=0 = 0 +E() + SE ( ) +.+ s n E ( n ) +. S=0 (n )! = E ( ) dan seterusnya dapat dilakukan dengan cara yang sama sehingga diperoleh bentuk umum E ( n ) = n (0) Berikut ini di sajikan tabel beberapa distribusi dengan pdf, FPM, mean dan variasinya. Jurnal Pengajaran MIPA, Vol. 3 No. 1 Juni 00 65

4 e t Tabel 1 Nama dan Pdf FPM Mean Variasi Bernoulli + (1 - ) (1 - ) (1- ) 1- Poission e (e t 1) ( e - )! Gamma (1 - t) - ( e - / ) / () Uniform e t - e t ½( + ) 1/1 ( - ) ( - ) -1 ( - ) Normal ( ) -1/ ep -1/ (-) dll e t +1/ t FPM mean digunakan untuk menentukan mean dan variasi dari variabel random, FPM dapat pula digunakan untuk mengenali jenis distribusi dari variabel random tersebut. Hal ini terungkap pada teorema berikut : Teorema (Teorema Ketunggalan FPM) (i) Jika dua buah variabel random mempunyai FPM yang sama maka mereka mempunyai fungsi distribusi yang sama. (ii) Jika dua buah variabel random mempunyai fungsi distribusi yang sama maka mereka mempunyai FPM yang sama. Teorema teorema memperlihatkan bahwa terdapat korespondensi satu-satu antara fungsi distribusi dengan FPM, artinya jika kita mempunyai sebuah FPM maka kita bisa mengenali fungsi distribusi nya ataupun sebaliknya. Sayangnya teknis ini tidak selalu dapat digunakan mengingat tidak setiap distribusi mempunyai FPM, seperti diperlihatkan pada contoh berikut : Contoh Misalkan adalah variabel random dari distribusi Pareto dengan pdf : F ( 1 1 ) = Jika 0 X +1 0 Jika yang lain FPM dari distribusi tersebut adalah : 66 Jurnal Pengajaran MIPA, Vol. 3 No. 1 Juni 00

5 (s) = E (e s ) = e s d X +1 = e s d +1 Karena untuk, e s lebih cepat bergerak di banding +1 akibatnya e s. Ini berarti +1 E(e s ) tidak ada, atau dengan kata lain distribusi Pareto tidak memiliki FPM Kegagalan sebuah distribusi mempunyai FPM tidak akan terjadi pada distribusi yang termasuk ke dalam keluarga eksponensial seperti akan di uraikan pada bagian berikut : FPM pada Keluarga Eksponensial Teorema 3 Misalkan adalah variabel random dari distribusi eksponensial dengan pdf () maka FPM dari t() Ada dan sama dengan : t() (s) = ep do () do ( + s) Bukti : a. Untuk kasus kotinu FPM dari t() adalah : t() (s) = E (t t() ) = e s t() ep t () + do () + s () d = ep (s + )t () + do () + do ( + s ) do ( + s ) + s () d = ep do () - do ( + s) ep (s + ) t() + do( + s) + s () d = ep do () - do ( + s) b. Untuk kasus diskrit t() (s) = e t() s ep t() + do () + s() Jurnal Pengajaran MIPA, Vol. 3 No. 1 Juni 00 67

6 = ep (s + ) t() + do() + do( + s) do( + s) + s() = ep do() - do( + s) ep (s + ) t() + do( + s) + s() = ep do() - do( + s) Catatan : ep (s + )t () + do( + s) + s () d = ep (s + ) t() + do( + s) + s() = 1 Karena ep (s + )t() + do( + s) + s() adalah pdf dari keluarga eksponensial dengan parameter baru (s + ). Teorema 4 Misal adalah variabel random dengan pdf () maka : E (t()) = - do 1 () dan varians (t()) = do 11 () Bukti : Karena Variabel random dengan pdf (), artinya termasuk kedalam keluarga ekponensial sehingga berdasarkan teorema 3 FPM dari t() dijamin ada. Dengan teorema 1, ditunjukan bahwa E (X n n/s ) = s = 0 Dalam hal ini dengan mengambil t() sebagai variabel baru diperoleh E ( t() ) n = n t () (s) s = 0 Akibatnya : E (t() ) = 1 t () (s) s = 0 = ep do() - do( + s). - do 1 ( + s) s = 0 = - do 1 () E (t() )² = 11 t () (s) s = 0 = ep do() - do( + s) - do 1 ( + s) ² - do 11 ( + s). ep do() - do( + s) s = 0 = do 1 ()² - do 11 () Sehingga : Varians (t() ) = E (t() )² - E(t() ) ² = - do 11 () Contoh 3 Misal adalah variabel random dari distribusi Normal dengan mean dan variansi ² (diketahui). 68 Jurnal Pengajaran MIPA, Vol. 3 No. 1 Juni 00

7 Dari contoh 1 ditunjukan bahwa bentuk kanonik dari distribusi N(, ² ) dengan = / ² adalah F (, ) = ep { - ² ² - ² - In. ² Dalam hal ini : t () = do () = - ² ² s() = -² - In. ² Berdasarkan teotema 3 FPM dari t () = adalah (s) = t () (s) = ep do() - do( + s) = ep { - ² ² + ( + s) ² ² Dari FPM tersebut dapat diturunkan pula mean distribusi tersebut, yaitu : E() = E (t() ) = 1 () (s) s = 0 = - do 1 () = ² = ² Jika diperhatikan FPM dan mean dari distribusi ini terlihat berbeda dengan FPM dan mean yang sudah kita kenal (lihat tabel), tetapi dengan mensubtitusikan = / ² diperoleh (s) = ep { - ² ² + ( + s) ² = ep { s ² ² + s ² = ep { s + ½ ² s ² dan E () = ² =. ² = ² Seperti nilai-nilai yang sudah kita kenal Kesimpulan FPM dari sebuah variabel random keberadaannya dijamin pada keluarga eksponensial satu parameter, dengan terlebih dahuku mengubah bentuk pdf keluarga ekponensial kedalam bentuk kanonik, untuk selanjutnya mean dan variansi dari variabel random diturunkan dari FPM yang ada Jurnal Pengajaran MIPA, Vol. 3 No. 1 Juni 00 69

8 Daftar Pustaka Dudewicz, E.J. Modern Mathematical Statistic. John Wiley and Son s. New York (1988) Lehmann, E.L. Theory Of Point Estimation. John Wiley and Son s. New York (1983) Roussas, G. Linier Statistical Inference and Its Aplications. John Wiley and Son s. New York (1973) 70 Jurnal Pengajaran MIPA, Vol. 3 No. 1 Juni 00

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Distribusi eksponensial tergenaralisir (Generalized Eponential Distribution) pertama kali diperkenalkan oleh Gupta dan Kundu pada tahun 1999. Distribusi ini diambil

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT. Oleh : Entit Puspita. Dosen Jurusan pendidikan Matematika

KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT. Oleh : Entit Puspita. Dosen Jurusan pendidikan Matematika KARAKTERISTIK DISTRIBUSI KELUARGA TRANSFORMASI KHI-KUADRAT Oleh : Entit Puspita Dosen Jurusan pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia Abstrak Dalam Keluarga eksponensial satu parameter

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan 4 II. LANDASAN TEORI Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan Schmeiser (1974), yang memiliki empat parameter dari pengembangan distribusi Lambda Tukey. Keluarga distribusi

Lebih terperinci

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI GHAZALI WARDHONO 090823040 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

SILABUS. 5. Evaluasi a. Kehadiran = 10% b. Tugas = 20% c. UTS = 30% d. UAS = 40%

SILABUS. 5. Evaluasi a. Kehadiran = 10% b. Tugas = 20% c. UTS = 30% d. UAS = 40% 0 SILABUS 1. Identitas Mata Kuliah Nama Mata Kuliah : Statistika Matematik 1 Kode Mata Kuliah : MT 404 Jumlah SKS : 3 Semester : 6 Kelompok Mata Kuliah : Mata Kuliah Keahlian (MKK) Program Studi Jurusan/Program

Lebih terperinci

PENAKSIRAN PARAMETER REGRESI LINIER DENGAN METODE BOOTSTRAP MENGGUNAKAN DATA BERDISTRIBUSI NORMAL DAN UNIFORM

PENAKSIRAN PARAMETER REGRESI LINIER DENGAN METODE BOOTSTRAP MENGGUNAKAN DATA BERDISTRIBUSI NORMAL DAN UNIFORM BIAStatistics (2015) Vol. 9, 2, hal. 28-32 PENAKSIRAN PARAMETER REGRESI LINIER DENGAN METODE BOOTSTRAP MENGGUNAKAN DATA BERDISTRIBUSI NORMAL DAN UNIFORM Munawar Jurusan Matematika FMIPA Universitas Syiah

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian penulis. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari generalized Weibull

Lebih terperinci

KARAKTERISASI SEBARAN BINOMIAL NEGATIF

KARAKTERISASI SEBARAN BINOMIAL NEGATIF Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 65 70 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KARAKTERISASI SEBARAN BINOMIAL NEGATIF DEBY HANDAYANI Program Studi Magister Matematika, Fakultas Matematika

Lebih terperinci

Medan, Juli Penulis

Medan, Juli Penulis 9. Seluruh teman-teman seperjuangan di Ekstensi Matematika Statistika, dan semua pihak yang turut membantu menyelesaikan skripsi ini. Sepenuhnya penulis menyadari bahwa dalam penulisan skripsi ini masih

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

SILABUS MATA KULIAH. : Dapat menyelesaikan permasalahan probabilitas dan mampu mengaplikasikan dalam kehidupan

SILABUS MATA KULIAH. : Dapat menyelesaikan permasalahan probabilitas dan mampu mengaplikasikan dalam kehidupan SILABUS MATA KULIAH Program Studi : Pendidikan Matematika Kode Mata Kuliah : 306203 Mata kuliah : Probabilitas Bobot : 3 SKS Semester : III Mata Kuliah Prasyarat : - Deskripsi Mata Kuliah : Mata kuliah

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

FUNGSI PEMBANGKIT MOMEN UNTUK MEMENUHI TUGAS MATAKULIAH. Statistika Matematika. Yang dibina oleh Bapak Hendro Permadi. Oleh :

FUNGSI PEMBANGKIT MOMEN UNTUK MEMENUHI TUGAS MATAKULIAH. Statistika Matematika. Yang dibina oleh Bapak Hendro Permadi. Oleh : FUNGSI PEMBANGKIT MOMEN UNTUK MEMENUHI TUGAS MATAKULIAH Statistika Matematika Yang dibina oleh Bapak Hendro Permadi Oleh : Intan Putri Natari 10311418961 Nurroh Fitri A 1031419469 Reza Taufikurachman 1031419470

Lebih terperinci

Kekontraktifan Pemetaan pada Ruang Metrik Kerucut

Kekontraktifan Pemetaan pada Ruang Metrik Kerucut Jurnal Matematika Integratif ISSN 1412-6184 Vol 9 No 2, Oktober 2013 pp 53-57 Kekontraktifan Pemetaan pada Ruang Metrik Kerucut Badrulfalah dan Iin Irianingsih Jurusan Matematika, Fakultas MIPA, Universitas

Lebih terperinci

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan.

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan. RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 306203 Nama Mata Kuliah : Probabilitas Jumlah sks : 3 sks Semester : III Alokasi Waktu

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY

PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY PENGANTAR PROBABILITAS GANGGA ANURAGA POKOK BAHASAN Konsep dasar probabilitas Teori himpunan Permutasi Kombinasi Koefisien binomial Koefisien multinomial Probabilitas Aksioma probabilitas Probabilitas

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari distribusi generalized lambda

Lebih terperinci

DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA

DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA digilib.uns.ac.id DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA oleh ANIS TELAS TANTI M0106003 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

II. TINJAUAN PUSTAKA. kontinu. Bentuk kurva distribusi logistik adalah simetri dan uni-modal. Bentuk

II. TINJAUAN PUSTAKA. kontinu. Bentuk kurva distribusi logistik adalah simetri dan uni-modal. Bentuk 5 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan beberapa tinjauan pustaka yang digunakan penulis pada penelitian ini, antara lain : 2.1 Distribusi Logistik Distribusi logistik merupakan distribusi

Lebih terperinci

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan.

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan. II. TINJAUAN PUSTAKA Distribusi generalized,,, adalah salah satu distribusi probabilitas kontinu. Distribusi ini pertama kali diperkenalkan McDonald dan Newey 988 untuk mengestimasi parameter regresi.

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

INFERENSI PARAMETER SIMPANGAN BAKU POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF

INFERENSI PARAMETER SIMPANGAN BAKU POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF INFERENSI PARAMETER SIMPANGAN BAKU S - POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF Adi Setiawan Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana, Jl Diponegoro

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON

PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON PENAKSIR MAKSIMUM LIKELIHOOD DENGAN METODE ITERASI NEWTON - RAPHSON Haposan Sirait 1 dan Rustam Efendi 2 1,2 Dosen Program Studi Matematika FMIPA Universitas Riau. Abstrak: Makalah ini menyajikan tentang

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 1 (1) (2012) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PENYELESAIAN KASUS BEBERAPA INTEGRAL TAK WAJAR DENGAN INTEGRAN MEMUAT FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMA

Lebih terperinci

LANDASAN TEORI. penelitian mengenai pendekatan distribusi GE ke distribusi GLL(,,

LANDASAN TEORI. penelitian mengenai pendekatan distribusi GE ke distribusi GLL(,, 4 II. LANDASAN TEORI Pada bab ini akan dijelaskan beberapa definisi yang berhubungan dengan penelitian mengenai pendekatan distribusi GE ke distribusi GLL melalui distribusi eksponensial dengan menyamakan

Lebih terperinci

KONSEP DASAR TERKAIT METODE BAYES

KONSEP DASAR TERKAIT METODE BAYES KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Kajian Generalisasi Distribusi Binomial yang Bertipe COM-Poisson dan Sifat-Sifatnya

Kajian Generalisasi Distribusi Binomial yang Bertipe COM-Poisson dan Sifat-Sifatnya JURNAL SAINS DAN SENI ITS Vol. 4, No.2, 2015 2337-3520 2301-928X Print A-67 Kajian Generalisasi Distribusi Binomial yang Bertipe COM-Poisson dan Sifat-Sifatnya Marselly Dian Saputri, Farida Agustini Widjajati,

Lebih terperinci

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION

ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION ANALISA SIFAT-SIFAT ANTRIAN M/M/1 DENGAN WORKING VACATION Oleh: Desi Nur Faizah 1209 1000 17 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I V. SEBARAN FUNGSI PEUBAH ACAK V. Sebaran Fungsi Peubah Acak 1 Sebaran Fungsi Peubah Acak Dalam banyak kasus untuk melakukan inferensi terhadap suatu parameter kita lebih banyak

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

PRODI DIII STATISTIKA-FMIPA ITS RENCANA PEMBELAJARAN KODE/ MATA KULIAH/ SKS/ SEMESTER : SS /PENGANTAR METODE STATISTIKA / (2/1/1) I

PRODI DIII STATISTIKA-FMIPA ITS RENCANA PEMBELAJARAN KODE/ MATA KULIAH/ SKS/ SEMESTER : SS /PENGANTAR METODE STATISTIKA / (2/1/1) I CAPAIAN PEMBELAJARAN (Learning outcome) : Mampu melakukan deskripsi, eksplorasi dan interpretasi data serta Mampu menganalisis data dengan metode statistika yang sesuai Penguasaan Pengetahuan 5.1 Mampu

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRACT

Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRACT PERKIRAAN SELANG KEPERCAYAAN UNTUK NILAI RATA-RATA PADA DISTRIBUSI POISSON Randy Toleka Ririhena, Nur Salam * dan Dewi Sri Susanti Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat *email:

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

LANDASAN TEORI. Dalam proses penelitian pendekatan distribusi generalized t(,,, ), ), melalui distribusi generalized beta 2

LANDASAN TEORI. Dalam proses penelitian pendekatan distribusi generalized t(,,, ), ), melalui distribusi generalized beta 2 5 II. LANDASAN TEORI Dalam proses penelitian pendekatan distribusi generalized t terhadap distribusi gamma dan melalui distribusi generalized beta 2 distribusi generalized diperlukan gamma beberapa konsep

Lebih terperinci

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang.

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang. MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL Winda Faati Kartika 1, Triastuti Wuryandari 2 1, 2) Program Studi Statistika Jurusan Matematika FMIPA Universitas Diponegoro

Lebih terperinci

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY

KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY KEKUATAN KONVERGENSI DALAM PROBABILITAS DAN KONVERGENSI ALMOST SURELY Joko Sungkono* Abstrak : Tujuan yang ingin dicapai pada tulisan ini adalah mengetahui kekuatan konvergensi dalam probabilitas dan konvergensi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Kontrak Kuliah Metode Statistika 2

Kontrak Kuliah Metode Statistika 2 Kontrak Kuliah Metode Statistika 2 Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Deskripsi Mata Kuliah Nama Mata Kuliah : Metode Statistika 2 Semester/SKS : I / 3 SKS Kompetensi

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG2D3 PROBABILITAS DAN STATISTIKA Disusun oleh: INDWIARTI FAKULTAS INFORMATIKA TELKOM UNIVERSITY 1 LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL Dalam hal ini akan dibahas beberapa distribusi yang mempunyai bentuk fungsi densitas dan nama tertentu dari peubah acak kontinu, yaitu: distribusi seragam, distribusi

Lebih terperinci

Dasar-dasar Statistika Pemodelan Sistem

Dasar-dasar Statistika Pemodelan Sistem Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016

Lebih terperinci

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Badrulfalah 1,Khafsah Joebaedi 2 1 Departemen Matematika FMIPA Universitas Padjadjaran badrulfalah@gmail.com 2 Departemen Matematika

Lebih terperinci

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

ANALISIS KEKONVERGENAN PADA BARISAN FUNGSI

ANALISIS KEKONVERGENAN PADA BARISAN FUNGSI 34 Jurnal Matematika Vol 6 No 1 Tahun 2017 ANALISIS KEKONVERGENAN PADA BARISAN FUNGSI THE CONVERGENCE ANALYZE ON THE SEQUENCE OF FUNCTION Oleh: Restu Puji Setiyawan 1), Dr. Hartono 2) Program Studi Matematika,

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA

RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER (FILKOM) UNIVERSITAS PUTRA INDONESIA YPTK PADANG LEMBAR PENGESAHAN Rencana

Lebih terperinci

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus : BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak

Lebih terperinci

PRODI. Dosen : MM No.Revisi : 00. Semester : I Hal: 1 dari 5. kelompok. Deskripsi 2 populasi. Kemampuan. Kemampuan kerja.

PRODI. Dosen : MM No.Revisi : 00. Semester : I Hal: 1 dari 5. kelompok. Deskripsi 2 populasi. Kemampuan. Kemampuan kerja. RP S1 SP 01 A. CAPAIAN PEMAN : 1. CP 11.1 : Mampu menganalisis data secara kuantitatif baik secara univariat maupun Multivariat serta menerapkannya. 2. CP 8.1 : Memformulasikan masalah ke dalam pemodelan

Lebih terperinci

RENCANA MUTU PEMBELAJARAN

RENCANA MUTU PEMBELAJARAN RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 504203 Nama Mata Kuliah : Statistika Matematika Jumlah sks : 3 sks Semester : V Alokasi

Lebih terperinci

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process Prosiding Statistika ISSN: 2460-6456 Pemodelan Data Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process 1 Novi Tri Wahyuni, 2 Sutawatir Darwis, 3 Teti Sofia Yanti 1,2,3 Prodi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA

KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA Jurnal Matematika UNAND Vol. No. 4 Hal. 9 ISSN : 33 9 c Jurusan Matematika FMIPA UNAND KONVOLUSI DISTRIBUSI EKSPONENSIAL DENGAN PARAMETER BERBEDA MARNISYAH ANAS Program Studi Magister Matematika, Fakultas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam

digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar yang akan digunakan dalam pembahasan hasil penelitian ini, antara lain : 2.1 Fungsi Gamma Fungsi gamma merupakan suatu fungsi khusus. Fungsi

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALAM STATISTIKA HARGA HARAPAN Definisi Misalkan X variabel random. Bila X variabel random kontinu dengan f.k.p. f (x) dan maka harga harapan X adalah

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

MODEL STOKASTIK PERTUMBUHAN POPULASI (PURE BIRTH PROCESS)

MODEL STOKASTIK PERTUMBUHAN POPULASI (PURE BIRTH PROCESS) Jurnal Euclid, Vol. 4, No. 1, p.675 MODEL STOKASTIK PERTUMBUHAN POPULASI (PURE BIRTH PROCESS) Surya Amami Pramuditya 1, Tonah 2 1,2 Pendidikan Matematika FKIP Universitas Swadaya Gunung Jati Cirebon amamisurya@fkip-unswagati.ac.id

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR BAB IV PEMBAHASAN 4.1 Proses Pencabangan model DTMC SIR Proses pencabangan suatu individu terinfeksi berbentuk seperti diagram pohon dan diasumsikan bahwa semua individu terinfeksi adalah saling independent

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log II. TINJAUAN PUSTAKA Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log Normal Menggunakan Metode Generalized Moment digunakan beberapa definisi, dan teorema yang berkaitan dengan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fungsi Densitas Definisi 2.1 (Walpole & Myers, 1989) Fungsi adalah fungsi kepadatan peluang peubah acak kontinu, yang biasanya disebut fungsi densitas,yang didefinisikan di atas

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN digilib.uns.ac.id BAB III METODE PENELITIAN Metode yang digunakan dalam penelitian ini adalah kajian pustaka dari buku referensi karya ilmiah. Karya ilmiah yang digunakan adalah hasil penelitian serta

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN BAB I PENDAHULUAN (kata pengantar) 1.1 Latar Belakang 1.2 Tujuan Penulisan

Lebih terperinci

MENAKSIR PARAMETER µ DARI N( µ, ) DENGAN METODE BAYES

MENAKSIR PARAMETER µ DARI N( µ, ) DENGAN METODE BAYES MENAKSIR PARAMETER µ DARI N( µ, ) DENGAN METODE BAYES Hartayuni Saini 1 1 Jurusan Matematika, FMIPA-UNTAD. e-mail: yunh3_chendist@yahoo.co.id Abstrak Untuk menaksir nilai µ dari N(µ, ) umumnya digunakan

Lebih terperinci

BAB 2 FUNGSI MEAN RESIDUAL LIFE

BAB 2 FUNGSI MEAN RESIDUAL LIFE BB 2 FUNGSI MEN RESIDUL LIFE 2. Sifat-Sifat Peluang 2.. Identitas dasar Pertama akan ditunjukkan sebuah hubungan dasar di antara fungsi survival dan momen dari distribusi. Untuk sebuah random variabel

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

RELIABILITAS ORDINAL PADA METODE TEST-RETEST

RELIABILITAS ORDINAL PADA METODE TEST-RETEST RELIABILITAS ORDINAL PADA METODE TEST-RETEST Yaqozho Tunnisa 1, Rianti Setiadi 2 Departemen Matematika, FMIPA UI, Kampus UI Depok 16424 tunnisa.yaqozho@gmail.com 1, ririnie@yahoo.com.sg 2 Abstrak Dalam

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA 516 3 SKS MINGGU 1 Pendahuluan dan - Pengertian Dasar soal-soal 2 Konsep-Konsep Dasar untuk Hidup Model Kontinu 1.

Lebih terperinci

Sampling dengan Simulasi Komputer

Sampling dengan Simulasi Komputer Modul Sampling dengan Simulasi Komputer PENDAHULUAN Sutawanir Darwis M etode statistika merupakan alat untuk menyelesaikan masalah apabila solusi analitik tidak mungkin diperoleh. Dengan metode statistika

Lebih terperinci

UJI LIKELIHOOD RASIO UNTUK PARAMETER DISTRIBUSI WEIBULL

UJI LIKELIHOOD RASIO UNTUK PARAMETER DISTRIBUSI WEIBULL UJI LIKELIHOOD RASIO UNTUK PARAMETER DISTRIBUSI WEIBULL Sartika 1) Wayan Somayasa 2) Rahmaliah Sahupala 2) 1) Mahasiswa Program Studi Matematika 2) Dosen Program Studi Matematika Jurusan Matematika F-MIPA

Lebih terperinci

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS

SATUAN ACUAN PERKULIAHAN MATA KULIAH : STATISTIK & PROBABILITAS KODE : TIK1010 / SKS : 3 SKS SATUAN ACUAN PERKULIAHAN MATA KULIAH : KODE : TIK1010 / SKS : 3 SKS SEMESTER : III / GANJIL WAKTU : 150 Menit JUMLAH PERTEMUAN : 16 x pertemuan (14 x materi kuliah, 2 x Ujian (UTS dan UAS)) 1 ANALISIS

Lebih terperinci

FUNGSI PEMBANGKIT. Ismail Sunni

FUNGSI PEMBANGKIT. Ismail Sunni FUNGSI PEMBANGKIT Ismail Sunni 3508064 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 0, Bandung If8064@students.if.itb.ac.id ismailsunni@yahoo.co.id ABSTRAK Fungsi Pembangkit

Lebih terperinci

PENENTUAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN DAN TITIK KESETIMBANGANNYA DALAM PORTOFOLIO HETEROGEN

PENENTUAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN DAN TITIK KESETIMBANGANNYA DALAM PORTOFOLIO HETEROGEN PENENTUAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN DAN TITIK KESETIMBANGANNYA DALAM PORTOFOLIO HETEROGEN (PREMIUM PRICING BASED ON DEMAND FUNCTION AND EQUILIBRIUM POINT IN HETEROGENOUS PORTOFOLIO) Usep

Lebih terperinci

EKSISTENSI SUPREMUM DAN INFIMUM DENGAN TEOREMA CANTOR DEDEKIND. Nursiya Bito. Staf Dosen Jurusan Matematika dan IPA Universitas Negeri Gorontalo

EKSISTENSI SUPREMUM DAN INFIMUM DENGAN TEOREMA CANTOR DEDEKIND. Nursiya Bito. Staf Dosen Jurusan Matematika dan IPA Universitas Negeri Gorontalo EKSISTENSI SUPREMUM DAN INFIMUM DENGAN TEOREMA CANTOR DEDEKIND Nursiya Bito Staf Dosen Jurusan Matematika dan IPA Universitas Negeri Gorontalo ABSTRACT In this paper, we will try to proof existence of

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE Rini Pratiwi 1*, Rolan Pane 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi II.TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi generalized weibull menggunakan metode generalized momen ini, penulis menggunakan definisi dan konsep dasar

Lebih terperinci

Estimasi Titik. (Point Estimation) Minggu ke 1-3. Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada

Estimasi Titik. (Point Estimation) Minggu ke 1-3. Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada Estimasi Titik (Point Estimation) Minggu ke 1-3 Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada 2014 Prof. Dr. Sri Haryatmi, M. Sc. (UGM) Daftar Isi 2014 1 / 33 DAFTAR ISI 1 Minggu 1 Pertemuan 1

Lebih terperinci