Soal Soal Latihan UKK

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Soal Soal Latihan UKK"

Transkripsi

1 Sal Sal Latihan UKK. Jika p q 6 ; p dan q bilangan bulat, maka nilai p + q A. E.. Himpunan penyelesaian dari persamaan () A. E.. Diketahui bahwa. Maka nilai... A. E Diketahui bahwa dan merupakan akar-akar dari persamaan 8 0, maka persamaan kuadrat baru yang akar-akarnya dan adalah. A E Himpunan penyelesaian pertidaksamaan A. < atau 0 E. 8 8 < < y z 6 6. Himpunan penyelesaian y z 7 9 y z maka nilai y z... A. 6 E Serang pedagang permen mempunyai lemari yang hanya cukup ditempati untuk 0 bks permen. Permen jenis A dibeli dengan harga Rp 6.000,00 setiap bks dan permen jenis B dibeli dengan harga Rp 8.000,00 setiap bks. Jika pedagang tersebut mempunyai mdal Rp ,00 untuk membeli bks permen A dan y bks permen B, maka sistem pertidaksamaan dari masalah tersebut A. y 0; y 0; 0; y 0 y 0; y 0; 0; y 0 y 0; y 0; 0; y 0 y 00; y 0; 0; y 0 E. y 00; y 0; 0; y 0 8. Persamaan kuadrat + q + (q ) = 0 mempunyai akar-akar dan. Jika + =, maka nilai q A. 6 dan dan E. dan 6 dan dan 9. Akar-akar persamaan kuadrat ( ) ( ) adalah A. dan dan E. dan dan E. dan 0. Suatu fungsi kuadrat mempunyai nilai minimum untuk = dan untuk = 0 nilai fungsi itu 6. Fungsi kuadrat itu A. f() = f() = + 6 E. f() = f() = f() = + 6

2 . Usia Ayah adalah 8 tahun lebih dari tiga kali usia Randy. Jika jarak usia mereka tahun, usia Randy adalah.tahun A. E. 6. Serang pedagang menjual buah mangga dan pisang dengan menggunakan gerbak. Pedagang tersebut membeli mangga dengan harga Rp 8.000,00/Kg dan pisang Rp 6.000,00/Kg. Mdal yang tersedia Rp ,00 dan gerbaknya hanya dapat meanpung mangga dan pisang sebanyak 80 Kg. Jika harga jual mangga Rp 9.00,00/Kg dan pisang Rp 7.000,00/Kg, maka laba maksimum yang diperleh A. Rp 0.000,00 Rp 9.000,00 E. Rp 6.000,00 Rp ,00 Rp 0.000,00. Jika, y adalah himpunan penyelesaian persamaan y y A., E. 7 dan y > > 0 maka nilai + y. Harga lima buah mangga dan enam jeruk adalah Rp.000,00. Harga sepuluh buah mangga dan delapan buah jeruk adalah Rp 0.000,00. Harga dua buah mangga dan sebuah jeruk adalah. A. Rp.600,00 Rp.00,00 E. Rp.00,00 Rp.600,00 Rp.00,00. Nilai minimum fungsi kuadrat f a a A. 6 dan 8 atau 8 E. 6 dan Nilai dari lg 7. lg lg 9 A. 6 0 E. 8 6 lg lg Nilai yang memenuhi persamaan lg 0 lg 6 A. 6 dan 6 E. 6 dan dan 6 8. Persamaan lg ( 9) lg ( ) 0 mempunyai penyelesaian dan. Nilai. A. 7 E Jika lg a,lg b, dan lg c maka lg 0 adalah. A. a b c b + c + E. abc a c abc 0. Nilai dari lg 9 lg 8 lg 6... A. E.6 6. Jika sin 6 cs, maka nilai sin. cs A. 0 0 E.. Jika a tan, maka a sama dengan.

3 A. sin csec E. ct cs sec sin cs. Nilai sederhana dari cs sin A. sec csec E. sin sin. Nilai dari A. sin 00.tan 0.sec 0 cs 0.ct.cs ec adalah E. 0. Jika y ; dany bilangan bulat, maka nilai + y A. E. lg 9 lg 6. Nilai dari lg... A. E Diketahui lg p dan lg q, maka nilai lg A. pq p pq q p q q Q p E. pq 8. Himpunan penyelesaian pertidaksamaan 0 untuk A. E. atau atau atau 6 9. Himpunan penyelesaian dari atau A. atau 6 atau E Himpunan penyelesaian dari pertidaksamaan A. 0 < atau E. 6

4 < 6 < y. Himpunan penyelesaian dari sistem persamaan : A y A.,,, 6,,, 6 E.,, 6,,, 6,,, 6. Pada suatu hari Andi, Bayu, dan Cacang panen Apel. Hasil kebun Cacang 0 Kg lebih sedikit dari hasil kebun Andi dan lebih banyak 0 Kg dari hasil kebun Bayu. Jika jumlah hasil panen dari ketiga kebun 9 Kg, maka hasil panen Andi A. 9 Kg 7 Kg E. Kg 8 Kg 6 Kg. Perbandingan umur A dengan umur B sekarang adalah : 6. Delapan tahun yang lalu, perbandingannya adalah :. Perbandingan umur mereka 8 tahun yang akan datang A. : : 6 E. 7 : 8 : 6 : 7. Daerah yang diarsir pada gambar berikut merupakan himpunan penyelesaian dari sistem pertidaksamaan...b A. 0, y, y 0 0 0, y, y 0 0, y, y 0 0, y, y 0 E. 0, y, y 0 0. Nilai maksimum dari + y yang memenuhi penyelesaian sistem pertidaksamaan + y 0; y + 0; 0 dan y 0 A E Diketahui bahwa dan merupakan akar-akar dari persamaan 0 0, maka persamaan kuadrat baru yang akar-akarnya dan adalah. A E Nilai yang memenuhi = - adalah... A. E Jumlah kebalikan akar-akar persamaan a + (a ) = 0 adalah. Nilai a yang memenuhi A. E. 9. Persamaan m 0 mempunyai akar-akar tidak real atau imajiner. Nilai m A. m atau m m E. m m atau m E. m 0. Jika salah satu akar persamaan + p + 6 = 0 adalah, maka nilai... A. p =, akar yang lain p =, akar yang lain p =, akar yang lain

5 p =, akar yang lain E. p =, akar yang lain. Akar-akar persamaan + = 0 adalah dan. Nilai A. E Jika a psitif, b dan c negatif, maka f()=a + b + c akan merupakan grafik fungsi kuadrat yang... A. terbuka ke atas dan menyinggung sumbu terbuka ke bawah dan menyinggung sumbu terbuka ke atas dan memtng sumbu terbuka ke bawah dan memtng sumbu E. terbuka ke atas dan tidak memtng sumbu. Fungsi kuadrat f() p 9 selalu psisif untuk semua nilai, maka nilai p yang memenuhi A. p 6 atau p 6 p 6 E. 6 p 6 p 6 0 p 6. Fungsi kuadrat y = + (m + ) m mempunyai nilai minimum 0 untuk nilai m =. A. 7 E Grafik fungsi kuadrat yang persamaannya y a 8 6, memtng sumbu. salah satu titik ptngnya adalah (, 0), maka nilai a A. E. 6. Diketahui fungsi kuadrat mempunyai titik puncak P(, ) dan melalui titik A(0, 6). Fungsi kuadrat itu A. f() = f() = 6 E. f() = f() = + 6 f() = Persamaan grafik fungsi berikut yang melalui puncak P(, ) dan titik A(0, ) A. y = + + y = + y = + y = + + E. y = + 8. Jika diketahui segitiga ABC dengan siku-siku di B dan sin A, maka nilai sec A A. E Jika m dan n adalah akar-akar persamaan 6 0, maka nilai dari m + n A. 6 E Sifat dari akar persamaan kuadrat 0 A. Nyata, sama, rasinal Nyata, berlainan, rasinal Nyata, sama, irasinal Tidak nyata, berlainan E. Nyata, berlainan, irasinal. Jika salah satu akar persamaan a 0 adalah, maka... A. a, akar yang lain =

6 E. a, akar yang lain = a, akar yang lain = a, akar yang lain = 0 a, akar yang lain =. Jumlah kebalikan akar-akar persamaan A. E Diketahui persamaan kuadrat (p ) ( p p ) 0. Jika kedua akarnya berlawanan, nilai p yang memenuhi A. dan E. dan. Jika α dan merupakan akar-akar persamaan 7 0, maka A. 6 ½ ½ E. ½ ½ ½. Selisih kedua akar persamaan kuadrat p adalah 9. Nilai p A. E Jika salah satu akar persamaan kuadrat ( k ) ( k ) 0 adalah dua kali akar yang lainnya, maka nilai k adalah... A. atau atau E. atau atau atau 7. Diketahui kali kuadrat suatu bilangan dan 7 kali bilangan tersebut jika ditambahkan akan bernilai 0. Bilangan yang dimaksud A. atau atau E. atau atau atau 8. Fungsi kuadrat ditentukan dengan y. Maka nilai stasiner/ekstrim dari fungsi tersebut A. E. 9. Fungsi y n akan berada di bawah sumbu apabila... A. n < 0 n < E. n > n < n < 60. Jika fungsi kuadrat f( ) p p mempunyai nilai maksimum, maka nilai 7p 9p A. E Persamaan kurva yang sesuai dengan grafik di bawah ini y (0,) (,) A. y y y y E. y 0

7 6. Grafik y ( m) akan memtng sumbu pada dua titik. Nilai m A. m < atau m > m < atau m > E. < m < m < atau m > < m < 6. Diketahui y a b mempunyai puncak di titik P(, ), maka nilai a + b =... A. 0 E. 6. Perhatikan gambar berikut. Bila f ( ) dan AB = BC, maka g() =... A B C y = f() y = g() A E Grafik y ( p ) ( p ) (p ) mempunyai titik ekstrim dengan absis p. Titik ekstrim yang dimaksud adalah... A. (, ) (, 9) E. (, ) (, ) (, 9) 66. Fungsi f ( ) k 6 k 8 mempunyai nilai ekstrim 6, maka pernyataan yang benar A. f maksimum dan k = f maksimum dan k = 9 f maksimum dan k = f minimum dan k = E. f minimum dan k = Nilai dari A. E Jika diketahui 7. Maka nilai... A. 7 E Bentuk sederhana dari b A. a b a b a b a adalah... a b a b a b E. a b a b a b a b a a a 70. Bentuk sederhana dari a a a... A. a E. a a 7. Jika p q 6 ; p dan q bilangan bulat, maka nilai p q 7 E. 0

8 7. Bentuk sederhana dari 7 7 A. 7 E lg 7. Nilai yang memenuhi persamaan lg 0 lg 6 lg 6 A. dan 6 E. 6 dan 6 dan 6 a b c 7. Nilai dari lg. lg. lg b c a A. 6 E Jika lg p, maka nilai lg 0 A. p p p 76. Diketahui sistem persamaan linear p E. p y 6 y, maka nilai y =... A. 0 E Sistem persamaan : y memiliki y A. Tepat satu pasang penyelesaian Tepat dua pasang penyelesaian Tidak ada penyelesaian Banyak penyelesaian E. Semua jawaban salah 78. Jika tiga garis lurus : a y 0 ; y 0 ; y 0 melalui sebuah titik yang sama maka nilai a sama dengan. A. 9 E. 0 y z Himpunan penyelesaian y z 7 9 y z maka nilai y z... 6 E Himpunan penyelesaian pertidaksamaan 8 6 A. < 7 < 7 E. < 7 < < < Himpunan penyelesaian pertidaksamaan a. < atau 0 E. 8 b. 8 < < 8. Nilai m agar persamaan m 0 mempunyai dua akar real berlainan A. m > m E. m = m < m < 8. Himpunan penyelesaian pertidaksamaan A. > E. = < <

9 8. Salah satu akar a a 0 adalah untuk nilai a =. a. E. b Grafik f a a 6 a menyinggung sumbu X, maka krdinaat titik balik maksimum adalah... a. (-, 0) (, 0) E. (, 0) b. (-, 0) (, 0) 86. Sebuah peluru ditembakkan dengan lintasan parabla yang berpuncak di titik,, 0 adalah y a b c. Nilai a + b + c adalah. A. 0 E. P dan melalui Pertidaksamaan dipenuhi leh... a. < atau 0 E. 8 b. < 8 < 88. Nilai yang memenuhi pertidaksamaan A. atau E. 89. Himpunan penyelesaian dari A. R atau, R, R E., R 90. Himpunan semua yang memenuhi pertidaksamaan a. b. E. c. 9. Septng besi sepanjang cm akan dibuat persegi panjang dengan ukuranpanjang sama dengan dua kali ukuran lebarnya. Jika persegi panjang yang terbentuk luasnya lebih dari kelilingnya. Maka panjang besi yang memenuhi a. > 0 cm > 0 cm b. > 8 cm E. < 0 cm c. < 0 cm 9. Himpunan penyelesaian dari sistem persamaan : y 7 7y 9 a.,,

10 b. 7, E., c., 0 y z 6 9. Himpunan penyelesaian 6 maka nilai + y + z =... y z y z A. 7 6 E. 9. Jika tiga garis lurus : a y 0 ; y 0 ; y 0 melalui sebuah titik yang sama maka nilai a sama dengan. a. b. c. 9. Nilai maksimum dari fungsi bjektif f, y 0 0y dengan syarat y 0; y 90; 0; y 0 A E Pedagang kpi mempunyai lemari yang hanya cukup ditempati untuk 0 bks kpi. Kpi A dibeli dengan harga Rp 6.000,00 setiap bks dan kpi B dibeli dengan harga Rp 8.000,00 setiap bks. Jika pedagang tersebut mempunyai mdal Rp ,00 untuk membeli bks kpi A dan y bks kpi B, maka sistem pertidaksamaan dari masalah tersebut A. y 00; y 0; 0;y 0 y 00; y 0; 0; y 0 y 0; y 0; 0; y 0 y 0; y 0; 0; y 0 E. y 0; y 0; 0; y Luas daerah parkir 76 m, luas rata-rata untuk sedan m dan bus 0 m. Daya muat maksimum hanya 0 kendaraan, biaya parkir untuk sedan Rp.000,00 per jam dan untuk bus Rp.000,00 per jam. Jika dalam satu jam tidak ada kendaraan yang datang dan pergi, maka hasil maksimum tempat parkir itu sama dengan... A. Rp.000,00 Rp 6.000,00 Rp.000,00 E. Rp 0.000,00 Rp 0.000, Nilai dari. 6 A E Jika, 7 maka nilai dari adalah. a.,6,7 b.,6 E. 6,98 c.,7 00. Nilai dari a. 0 b. 7 E.

11 c. 0. Jika lg a,lg b, dan lg c maka lg 0 adalah. a. a b c abc b. a c E. abc c. b c 0. Nilai dari lg lg 6 adalah. a. b. E. c Jika lg a dan lg b maka lg adalah. a. b. c. a ab ab a ab b a b E. b a 0. Nilai dari sin 79.cs cs 79.sin adalah. a. b. 0 E. c. 0. Segitiga PQR siku-siku di Q dan PRQ. Nilai tan QPR sama dengan. QPR a. b. E. c. 06. Sebuah puncak menara dilihat dari suatu tempat yang jaraknya 00 m dari kaki menara dengan sudut elevasi 0. Tinggi menara tersebut adalah. a. 0 m 00 m 00 b. m E. 0 m c. 00 m 07. sama dengan. sec csec a. b. E. c. 0

UJIAN NASIONAL MATEMATIKA

UJIAN NASIONAL MATEMATIKA UJIAN NASIONAL MATEMATIKA /6. Sebidang tanah berbentuk persegi panjang dengan luas 8 m. Jika perbandingan panjang dan lebarnya sama dengan :, maka panjang diagnal bidang tanah tersebut ada lah A. 9m C.

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2007

SOAL UN DAN PENYELESAIANNYA 2007 1. Bentuk sederhana dari (1 + 3 ) - (4 - ) adalah... A. -2-3 B. -2 + 5 C. 8-3 D. 8 + 3 8 + 5 (1 + 3 ) - (4 - ) = (1 + 3 ) - (4-5 ) = 1 + 3-4 + 5 = 8-3 2. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20

Lebih terperinci

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2 SISTEM PERSAMAAN LINEAR M. PRAHASTOMI M. S. 0. MD-8-8 B C G E F A D H 6 7 8 6 Jika gradien garis AB = m, gradien garis CD = m, gradien garis EF = m dan gradien garis GH = m, maka... () m = () m = 0 ()

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran : Matematika Prgram Studi : IPA PELAKSANAAN Hari/Tanggal : Selasa, April 008 Jam : 0.0.0 PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawabam Ujian Nasinal (LJUN)

Lebih terperinci

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran : Matematika Prgram Studi : IPA PELAKSANAAN Hari/Tanggal : Selasa, April 008 Jam : 0.0.0 PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawabam Ujian Nasinal (LJUN)

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

Matematika EBTANAS Tahun 2001

Matematika EBTANAS Tahun 2001 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Luas maksimum persegipanjang OABC pada gambar adalah satuan luas satuan luas C B(,y) satuan luas + y = satuan luas satuan luas O A EBT-SMA-0-0 Diketahui + Maka nilai

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

MATA PELAJARAN Mata Pelajaran Jenjang Prgram Studi : Matematika : SMA/MA : IPA Hari/Tanggal : Rabu, April 9 Jam : 8.. WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

MATA PELAJARAN Mata Pelajaran Jenjang Prgram Studi : Matematika : SMA/MA : IPA Hari/Tanggal : Rabu, April 9 Jam : 8.. WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09)

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) 1. Luas daerah yang dibatasi oleh kurva y = x + x + 5, sumbu x, dan 0 x 1... satuan luas (A) (C) (E) 5 (B) 0 (D) 5 1. Diketahui segitiga ABC, siku-siku di

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

TRY-OUT 2 XII IPA PAKET 1 (P.01)

TRY-OUT 2 XII IPA PAKET 1 (P.01) TRY-OUT XII IPA PAKET (P.0). Diketahui premis premis sebagai berikut Premis : Harga naik atau permintaan barang naik Premis : Permintaan barang turun atau angka penjualan naik Kesimpulan yang sah adalah.

Lebih terperinci

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai

Lebih terperinci

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat! I. PETUNJUK: Untuk soal nomor sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!. Persamaan ( p + ) x ( p + ) x + ( p ) = 0, p, merupakan persamaan kuadrat dalam x untuk nilai p... p c.

Lebih terperinci

SOAL ToT MATEMATIKA TEKNIK 2018

SOAL ToT MATEMATIKA TEKNIK 2018 1. Nilai dari =... A. 4 B. 6 C. 1 D. 12 E. 18 2. Bentuk sederhana dari ( ) =... A. a 5. b 8. c 4 B. a 5. b 2. c 4 C. a 6. b 8. c 4 D. a 6. b 8. c 4 E. a 6. b 2. c 4 3. Bentuk sederhana dari A. B. C. D.

Lebih terperinci

Soal Latihan Matematika

Soal Latihan Matematika Soal Latihan Matematika www.oke.or.id Soal berikut terdiri dari 6 soal Yang merupakan rangkuman dari berbagai latihan, isi dari soal berikut meliputi : Pernyerderhanaan Persamaan grafis akar kuadrat fungsi

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika. Tingkat SMK se DIY

Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika. Tingkat SMK se DIY Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika Tingkat SMK se DIY Disusun oleh : DWI LESTARI, M.Sc. Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri

Lebih terperinci

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3 . 4% uang Ani diberikan kepada adiknya dan 5% dari uang tersebut untuk membayar rekening listrik dan 5% untuk membayar rekening telpon, sisa uang Ani adalah Rp 4.,. Berapakah jumlah uang Ani a. Rp 4.,

Lebih terperinci

UN MATEMATIKA IPA PAKET

UN MATEMATIKA IPA PAKET UN MATEMATIKA IPA PAKET Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Diberikan pernyataan berikut: P: Semua pramugari berwajah cantik P: Catherine seorang pramugari

Lebih terperinci

adalah... pq = Dalam skala Richter, kekuatan R dari suatu gempa bumi dengan intensitas I dimodelkan dengan

adalah... pq = Dalam skala Richter, kekuatan R dari suatu gempa bumi dengan intensitas I dimodelkan dengan SOAL-SOAL TO KELAS XII IPA PAKET B. Nilai paling sederhana dari 9 9 9 9 9 4 6 6 4 adalah.... Diketahui p = + dan q =. Nilai 0 0. Apabila g g maka pq p q =... 4. Dalam skala Richter, kekuatan R dari suatu

Lebih terperinci

UN SMA IPA 2006 Matematika

UN SMA IPA 2006 Matematika UN SMA IPA Matematika Kode Soal P Doc. Version : - halaman. Sebidang tanah berbentuk persegi panjang dengan luas 8 m². Jika perbandingan panjang dan lebarnya sama dengan sebanding, maka panjang diagonal

Lebih terperinci

SOAL BRILLIANT COMPETITION 2013

SOAL BRILLIANT COMPETITION 2013 PILIHAN GANDA. Pada suatu segitiga ABC, titik D berada di AC sehingga AD : DC = 4 :. Titik E berada di BC sehingga BE : EC = : 3. Titik F adalah titik perpotongan antara garis BD dan garis AE. Jika luas

Lebih terperinci

SALAH SATU PAKET SOAL UN MATEMATIKA SMA/MA PROGRAM IPA TAHUN PELAJARAN 2012/2013

SALAH SATU PAKET SOAL UN MATEMATIKA SMA/MA PROGRAM IPA TAHUN PELAJARAN 2012/2013 SALAH SATU PAKET SOAL UN MATEMATIKA SMA/MA PROGRAM IPA TAHUN PELAJARAN 0/0 http://asyiknyabelajar.wrdpress.cm. Diketahui premis-premis sebagai berikut: Premis : Jika hujan turun maka jalan menjadi licin.

Lebih terperinci

Soal Ujian Nasional Tahun 2007 Bidang Matematika

Soal Ujian Nasional Tahun 2007 Bidang Matematika Soal Ujian Nasional Tahun 007 Bidang Matematika Oleh : Fendi Alfi Fauzi 6 Desember 01 1. Bentuk sederhana dari (1 + ) (4 50) adalah... A. B. + 5 C. 8 D. 8 + E. 8 + 5. Jika log = a dan log 5 = b, maka 15

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

( ) ( ) ( ) ( ) maka ( ) ( ) Dikembalikan ke bentuk pertidaksamaan kuadrat

( ) ( ) ( ) ( ) maka ( ) ( ) Dikembalikan ke bentuk pertidaksamaan kuadrat Penjabaran SKL Matematika IPA N Unit Tpik Materi Prediksi Sal. Aljabar Pangkat, akar Pangkat Lgaritma Menyederhanakan bentuk pangkat Negatif ke psitif Bulat, pecah Menghitung hasil perasi bentuk pangkat

Lebih terperinci

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada

Lebih terperinci

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014 PETUNJUK UNTUK PESERTA 1. Tuliskan nama lengkap, kelas, asal sekolah, alamat sekolah lengkap dengan nomor telepon, faximile, email sekolah dan nama guru Matematika di tempat yang telah disediakan.. Tes

Lebih terperinci

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================

Lebih terperinci

Page 1

Page 1 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 6/7. Bentuk sederhana dari ( + ) ( 5 ) adalah. A. C. 8 E. 8 + 5 B. + 5 D. 8 + ( + ) ( 5 ) ( + ) (. 5 ) ( + ) ( 5 ) + + 5 - + 8 8 - Jawabannya

Lebih terperinci

SOAL-SOAL LATIHAN TURUNAN FUNGSI SPMB

SOAL-SOAL LATIHAN TURUNAN FUNGSI SPMB SOL-SOL LTIHN TURUNN FUNGSI SPM 00-007. SPM Matematika asar Regional I 00 Kode 0 Garis singgung kurva di titik potongnya dengan sumbu yang absisnya postif y mempunyai gradien.. 9 8 7. SPM Matematika asar

Lebih terperinci

Materi Pendalaman SMAN 1 Talun tahun pelajaran 2011/2012 Mata Pelajaran Matematika Program IPA

Materi Pendalaman SMAN 1 Talun tahun pelajaran 2011/2012 Mata Pelajaran Matematika Program IPA Materi Pendalaman SMAN 1 Talun tahun pelajaran 2011/2012 Mata Pelajaran Matematika Program IPA BILANGAN BERPANGKAT 1. Bentuk sederhana dari a. b. c. d. e. adalah 2. Jika = 2 untuk setiap, maka berlaku

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2005/2006

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2005/2006 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 00/006. Sebidang tanah berbentuk persegi panjang dengan luas 80m. Jika perbandingan panjang dan lebarnya sama dengan berbanding 4, maka panjang

Lebih terperinci

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

Matematika EBTANAS Tahun 2002

Matematika EBTANAS Tahun 2002 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx =

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx = SOAL LATIHAN UAS IPA SMT GANJIL. Hasil dari. Hasil dari 7 ( ) ( ) d =.... Hasil dari d.... Hasil dari. Hasil dari 6. Hasil 6 6 9 6 d =... d =... d 9 = 7. Hasil 6 d = 8. Hasil dari cos sin d = 9. Hasil

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari Sistem Bilangan 0. UN-SMK-PERT-0-0 Bentuk sederhana dari ( ) =... 7 8 9 8 0. UN-SMK-TEK-0-0 Hasil perkalian dari (a) - (a) =... a a a a a 0. UN-SMK-PERT-0-0 Bentuk sederhana dari 0. UN-SMK-TEK-0-0 6 6.

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

2. FUNGSI KUADRAT. , D = b 2 4ac

2. FUNGSI KUADRAT. , D = b 2 4ac . FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

disesuaikan dengan soal yaitu 2 atau 3 )

disesuaikan dengan soal yaitu 2 atau 3 ) SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 6/7. Bentuk sederhana dari ( + ) ( 5 ) adalah. A. C. 8 E. 8 + 5 B. + 5 D. 8 + ( + ) ( 5 ) ( + ) (. 5 ) ( + ) ( 5 ) + + 5 - + 8 8 - Jawabannya

Lebih terperinci

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( )

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( ) Nama : Ximple Education No. Peserta : 08-6600-747. Bentuk sederhana dari 6 6 3 3 5 64 7 000 3 A. 36 B. 6 C. D. 6 E. 36 =.. Bentuk sederhana dari ( 6)(6 +3 6) 3 4 A. 3 ( 3 + 4) B. 3 ( 3 + 4) C. ( 3 + 4)

Lebih terperinci

Uji Komptensi. 2. Tentukan jumlah semua bilangan-bilangan bulat di antara 100 dan 200 yang habis dibagi 5

Uji Komptensi. 2. Tentukan jumlah semua bilangan-bilangan bulat di antara 100 dan 200 yang habis dibagi 5 Uji Komptensi Barisan dan Deret "Aljabar Linear Elementer". Diketahui barisan 84,80,77,... Suku ke-n akan menjadi 0 bila n =... Tentukan jumlah semua bilangan-bilangan bulat di antara 00 dan 00 yang habis

Lebih terperinci

tanya-tanya.com Turunan Pertama Turunan Fungsi Trigonometri Persamaan Garis Singgung Fungsi Naik Turun Turunan pertama dari suatu fungsi f(x) adalah:

tanya-tanya.com Turunan Pertama Turunan Fungsi Trigonometri Persamaan Garis Singgung Fungsi Naik Turun Turunan pertama dari suatu fungsi f(x) adalah: Turunan Pertama Turunan pertama dari suatu fungsi f(x) adalah: Jika f(x) = x n, maka f (x) = nx n-1, dengan n R Jika f(x) = ax n, maka f (x) = anx n-1, dengan a konstan dan n R Rumus turunan fungsi aljabar:

Lebih terperinci

King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat:

King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat: Nama Siswa : LEMBAR AKTIVITAS SISWA FUNGSI KUADRAT - Hubungkan titik-titik tersebut sehingga terbentuk kurva atau grafik yang mulus. Kelas : A. FUNGSI KUADRAT Bentuk umum fungsi kuadrat adalah: y = f(x)

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40. PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3 Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika

Lebih terperinci

MATEMATIKA SMP/MTs 1 C Hasil dari adalah... adalah... C. 31 D. 31 A. 21 B Hasil dari. b adalah D. 5

MATEMATIKA SMP/MTs 1 C Hasil dari adalah... adalah... C. 31 D. 31 A. 21 B Hasil dari. b adalah D. 5 C0. Hasil dari 6 6 6 6. Hasil dari 5: 5 ( ). Hasil dari 4 : 4 5 5 8 8 4 4 5 5 4. Sebuah taman berbentuk persegi panjang luasnya dengan skala : 00, maka luas taman pada gambar 800 m. Jika taman tersebut

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

SOAL-SOAL LATIHAN FUNGSI KUADRAT UJIAN NASIONAL

SOAL-SOAL LATIHAN FUNGSI KUADRAT UJIAN NASIONAL SAL-SAL LATIHAN FUNGSI KUADRAT UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik fungsi kuadrat. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA TRYOUT UN SM/M 04/0 MTMTIK IP. iketahui premis-premis berikut : Premis : Jika kita tidak menjaga kebersihan, maka kita akan terserang penyakit. Premis : Jika kita terserang penyakit, maka aktivitas kita

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

UN SMA IPA 2007 Matematika

UN SMA IPA 2007 Matematika UN SMA IPA 007 Matematika Kode Soal P Doc. Version : 0-0 halaman 0. Bentuk sederhana dari ( + ) - ( - 0 ) adalah... 8 8 8 0. Jika log a dan log b, maka log 0... a ab a( b) a b ab a(b ) ab 0. Persamaan

Lebih terperinci

UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2004/2005 MATEMATIKA (C3) ( U T A M A )

UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2004/2005 MATEMATIKA (C3) ( U T A M A ) UJIAN NASIONAL SMP/MTs Tahun Pelajaran 00/005 MATEMATIKA (C3) ( U T A M A ) P MATA PELAJARAN MATEMATIKA Hari/Tanggal : Rabu, 8 Juni 005 Jam : 08.00 0.00 PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT 2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax 2 + bx + c =, a 2) Nilai determinan persamaan kuadrat : D = b 2 4ac 3) Akar-akar persamaan kuadrat

Lebih terperinci

Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3.

Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3. Nama : No. Peserta :. Jika x =, y =, dan z = 0, maka nilai dari x y z =. x yz A. 6 B. 5 C. 6 D. 9 E.. Jika log A. ab+a+b a+ B. b+a+ a+ C. a+b+ a+ D. ab+a+ a+ E. ab+a+ a+ = a dan log 5 = b, maka log 60.

Lebih terperinci

LEMBAR SOAL National Math Olympiad 4 th PDIM UB 2015

LEMBAR SOAL National Math Olympiad 4 th PDIM UB 2015 LEMBAR SOAL National Math Olympiad 4 th PDIM UB 015 PETUNJUK UNTUK PESERTA 1. Tes terdiri dari dua bagian. Bagian pertama terdiri dari 50 soal pilihan ganda dan bagian kedua terdiri dari 5 soal uraian..

Lebih terperinci

Matematika Proyek Perintis I Tahun 1980

Matematika Proyek Perintis I Tahun 1980 Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMK KELOMPOK TEKNOLOGI, KESEHATAN, DAN PERTANIAN PAKET K1C-F02 TAHUN PELAJARAN 2013/2014

PEMBAHASAN SOAL UN MATEMATIKA SMK KELOMPOK TEKNOLOGI, KESEHATAN, DAN PERTANIAN PAKET K1C-F02 TAHUN PELAJARAN 2013/2014 www.plusind.wrdpress.cm PEMBAHASAN SOAL N MATEMATIKA SMK KELOMPOK TEKNOLOGI, KESEHATAN, DAN PERTANIAN PAKET KC-F0 TAHN PELAJARAN 0/0. ntuk menempuh perjalanan sejauh km, suatu mbil memerlukan bahan bakar

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

Hampir UNBK 2017 Matematika IPA

Hampir UNBK 2017 Matematika IPA Hampir UNBK 07 Matematika IPA 6 Agar mx x + = 0 mempunyai akar berbeda, maka Nilai m pada f( x) x m x 9 sumbu x adalah A 6 B 6 C 4 D 4 E agar grafik menyinggung A m 9/4 B m > 9/4 C m 9/4 D m = 4/9 E m

Lebih terperinci

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1 PERSIAPAN TES SKL X, MATEMATIKA 1. Pangkat, Akar dan Logaritma Menentukan hasil operasi bentuk pangkat (1 6) Menentukan hasil operasi bentuk akar (7 11) Menentukan hasil operasi bentuk logarithma (12 15)

Lebih terperinci

LEMBAR KEGIATAN SISWA 1 PERSAMAAN KUADRAT

LEMBAR KEGIATAN SISWA 1 PERSAMAAN KUADRAT 1 LEMBAR KEGIATAN SISWA 1 PERSAMAAN KUADRAT Masalah 1 : Pak Amat dan pak Aman masing-masing merahasiakan suatu bilangan real. Bilangan pak Aman lebih 11 daripada bilangan pak Amat. Dua kali bilangan pak

Lebih terperinci

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif,

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif, 000 SOAL UNTUK MATEMATIKA CEPAT TEPAT MATEMATIKA. Fungsi kuadrat y ( p ) ( p ) = + + + definit postif untuk konstanta p yang memenuhi adalah. Jika persamaan kuadrat p ( p p) + 4 = 0 mempunyai dua akar

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

D. 18 anak Kunci : C Penyelesaian : Gambarkan dalam bentuk diagram Venn seperti gambar di bawah ini :

D. 18 anak Kunci : C Penyelesaian : Gambarkan dalam bentuk diagram Venn seperti gambar di bawah ini : 1. Dalam suatu kelas terdapat 25 anak gemar melukis, 21 anak gemar menyanyi, serta 14 anak gemar melukis dan menyanyi, maka jumlah siswa dalam kelas tersebut adalah... A. 60 anak C. 32 anak B. 46 anak

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

Himpunan. 01. MD S adalah sebarang himpunan yang tidak kosong. Pernyataan-pernyataan di bawah ini yang SALAH

Himpunan. 01. MD S adalah sebarang himpunan yang tidak kosong. Pernyataan-pernyataan di bawah ini yang SALAH Himpunan 0. MD-87-9 S adalah sebarang himpunan yang tidak kosong. Pernyataan-pernyataan di bawah ini yang SALAH () S S () S S () {S} S () {S} S 0. MD-86-07 Pernyataan pernyataan berikut yang benar = {0}

Lebih terperinci

C. y = 2x - 10 D. y = 2x + 10

C. y = 2x - 10 D. y = 2x + 10 1. Diantara himpunan berikut yang merupakan himpunan kosong adalah... A. { bilangan cacah antara 19 dan 20 } B. { bilangan genap yang habis dibagi bilangan ganjil } C. { bilangan kelipatan 3 yang bukan

Lebih terperinci

Pembahasan UN Matematika Program IPA

Pembahasan UN Matematika Program IPA Pembahasan UN Matematika Program IPA. Diketahui premis - premis : () Jika hari hujan, maka udara dingin. () Jika udara dingin, maka ibu memakai baju hangat. () Ibu tidak memakai baju hangat Kesimpulan

Lebih terperinci

PREDIKSI SOAL MATEMATIKA UN 2015 ( TUGAS KELOMPOK 1 )

PREDIKSI SOAL MATEMATIKA UN 2015 ( TUGAS KELOMPOK 1 ) PREDIKSI SOAL MATEMATIKA UN 0 ( TUGAS KELOMPOK ) SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 40 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D , PEMERINTAH KABUPATEN KENDAL DINAS PENDIDIKAN PEMUDA DAN OLAH RAGA SMK NEGERI KENDAL Alamat : Jl. Boja - Limbangan KM Salamsari, Boja, Kendal Telp.(9) 88 Fax. (9) e-mail : smktelukendal@yahoo.com. Pak

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 2002

MATEMATIKA EBTANAS TAHUN 2002 MATEMATIKA EBTANAS TAHUN UAN-SMP-- Notasi pembentukan himpunan dari B = {, 4, 9} adalah A. B = { kuadrat tiga bilangan asli yang pertama} B = { bilangan tersusun yang kurang dari } C. B = { kelipatan bilangan

Lebih terperinci

1 C12. b c adalah... dengan skala 1 : 200, maka luas taman pada gambar adalah... A. C. 14 pekerja B. 13 pekerja

1 C12. b c adalah... dengan skala 1 : 200, maka luas taman pada gambar adalah... A. C. 14 pekerja B. 13 pekerja C. Hasil dari 6 8 4 4. Hasil dari 4 : 4 6 ( ) 4 4. Hasil dari : 5 4 4. Sebuah taman berbentuk persegi panjang luasnya 4 6 4 8 5 5 600 m. Jika taman tersebut digambar dengan skala : 00, maka luas taman

Lebih terperinci

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006 OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah 4. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat,

Lebih terperinci

02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E.

02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E. PILIHLAH JAWABAN YANG PALING TEPAT 0. Diketahui : Premis : Jika laut berombak besar, maka nelayan tidak berlayar Premis : Jika nelayan tidak berlayar, maka tidak ada ikan di pasar. Negasi dari kesimpulan

Lebih terperinci

UAN MATEMATIKA SMA IPA 2009 P45

UAN MATEMATIKA SMA IPA 2009 P45 1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.

Lebih terperinci

SOAL UN MATEMATIKA SMA IPS PAKET USC1105 TAHUN PELAJARAN 2015/2016

SOAL UN MATEMATIKA SMA IPS PAKET USC1105 TAHUN PELAJARAN 2015/2016 SOAL UN MATEMATIKA SMA IPS PAKET USC05 TAHUN PELAJARAN 05/06. Diketahui a 0, b 0, dan c 0. Bentuk sederhana dari A. D. 4 a b c 4 c 8 6 4a b 8 6 4a b 4 c 4a b c 4a b c 8 6 4 6 5 4. Bentuk sederhana dari

Lebih terperinci