Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( )
|
|
- Widyawati Oesman
- 3 tahun lalu
- Tontonan:
Transkripsi
1 Nama : Ximple Education No. Peserta : Bentuk sederhana dari A. 36 B. 6 C. D. 6 E. 36 =.. Bentuk sederhana dari ( 6)(6 +3 6) 3 4 A. 3 ( 3 + 4) B. 3 ( 3 + 4) C. ( 3 + 4) D. ( 3 + 4) E. 3 ( 3 4) =. 3. Nilai dari ( A. B log 3 log 343 log 0 log 64 ) log 00 log 5 =. C. D. 3 E Hasan menabung di bank dengan mendapatkan bunga 0% pertahun, ia mula-mula menabung sebesar Rp ,00 yang akan diperhitungkan secara bunga majemuk. Jika uang Hasan menjadi Rp.5.873,0 maka Hasan telah menabung selama. Tahun (log, = 0,044; log,6 = 0,376; log, = 0,079) A. 3 B. 4 C. 5 D. 6 E. 7 U-ZA-06/07
2 5. Akar-akar persamaan kuadrat x (P + )x + 4= 0 adalah α dan β. Jika α + β α β =, maka nilai p adalah. A. 5 atau 4 B. 4 atau 5 C. 3 atau 6 D. 6 atau 6 E. 3 atau 3 6. Jika m dan n adalah akar-akar persamaan kuadrat x x + = 0, maka persamaan kuadrat baru yang akar-akarnya m + n dan m + n adalah. n m A. x + 7x + 49 = 0 B. x 7x 49 = 0 C. 6x 56x + 49 = 0 D. 6x + 56x + 49 = 0 E. 6x + 56x 49 = 0 7. Nilai a yang menyebabkan grafik fungsi f(x) = (a )x + ax + a + 4 selalu berada di atas sumbu x adalah. A. a > 8 B. a > 4 C. a > D. a > E. a > 4 8. Rata-rata jumlah uang Andi dan Budi adalah Rp5.500,00. Sedangkan selisih uang Caca dan Budi adalah Rp5.000,00. Jika uang Caca dua ribu lebih besar dari uang Andi, maka jumlah uang mereka bertiga adalah. A. Rp6.000,00 B. Rp7.000,00 C. Rp8.000,00 D. Rp9.000,00 E. Rp0.000,00 9. Diketahui fungsi f(x 3) = x + 3 dan g(x) = 3x A. 5x+4 ; x x+ B. 5x 4 ; x x+ C. D. E. x 4 5 x x+4 5 x x+4 5+x ; x 5 ; x 5 ; x 5 x+ maka (fog) (x) =. U-ZA-06/07
3 3 0. Persamaan lingkaran yang berpusat di titik (,) dan menyinggung garis 3x 4y + 9 = 0 adalah. A. 5x + 5y 50x + 00y + = 0 B. 5x + 5y + 50x 00y + = 0 C. x + y x + 0y + 3 = 0 D. x + y + x 0y + 3 = 0 E. x + y x 0y + 3 = 0. Salah satu persamaan garis singgung lingkaran x + y + 0x y + = 0 dan tegak lurus dengan garis x y + 3 = 0 adalah. A. x + y + 8 = 0 B. x + y = 0 C. x + y 8 = 0 D. x + y + 5 = 0 E. x + y = 0. Jika (x 3) dan (x + ) adalah faktor linear suku banyak P(x) = x 3 + px x + q dan x, x, x 3 adalah akar-akar persamaan suku banyak P(x) = 0 dengan x > x > x 3, maka nilai dari x + 4x x 3 =. A. 5 B. 6 C. 7 D. 8 E Seorang pasien diharuskan minum dua jenis tablet setiap hari. Tablet jenis I mengandung 0 unit vitamin A dan 4 unit vitamin B. Tablet jenis II mengandung 5 unit vitamin A dan 3 unit Vitamin B. Dalam sehari pasien tersebut memerlukan setidaknya 5 unit vitamin A dan unit vitamin B. jika harga tablet jenis I sebesar Rp.000,00 per biji dan tablet jenis II sebesar Rp4.000,00 per biji, pengeluaran minimum untuk pembelian tablet per hari adalah. A. Rp4.000,00 B. Rp6.000,00 C. Rp.000,00 D. Rp4.000,00 E. Rp0.000,00 x 4. Diketahui matriks A = 3 y x y, matriks B = y z Jika A B T = C. Maka x + y + z =. A. 5 B. 6 C. 7 D. 8 E. 9 dan matriks C = U-ZA-06/07
4 4 5. Diketahui matriks A dan matriks 8 7 B. Jika persamaan matriks XA = B maka 6 4 5X =. 8 A. 6 8 B. 6 8 C D E Bayangan kurva y = x 3, karena dicerminkan terhadap sumbu x, dilanjutkan dengan dilatasi terhadap pusat O(0,0) dan faktor skala mempunyai persamaan. A. y = 6 x B. y = 3 x C. y = 3 + x D. y = 6 + x E. y = 6 + x 7. Selisih antara jumlah enam suku pertama dengan jumlah empat suku pertama suatu deret aritmetika adalah 30. Maka jumlah sepuluh suku pertama deret aritmetika tersebut adalah. A. 0 B. 30 C. 40 D. 50 E Sebuah deret geometri mempunyai suku pertama 7. Jika jumlah tak hingga deret tersebut 8, jumlah semua suku bernomor genap adalah. A. 3 5 B C D E. 8 5 U-ZA-06/07
5 5 9. Sebuah bola pimpong dijatuhkan ke lantai dari ketinggian meter. Setiap kali setelah bola itu memantul, ia mencapai ketinggian tiga perempat dari ketinggian yang dicapai sebelumnya. Panjang lintasan bola tersebut dari pantulan ke-3 sampai berhenti adalah. A. 3,38 meter B. 3,75 meter C. 4,5 meter D. 6,75 meter E. 7,75 meter 0. Nilai dari lim x x 8x 3 A. 4 B. C. D. E. 4 x =.. Nilai dari A. B. C. 0 D. E. sin x lim =. x 4 sin x cos x 4. Jika f(x) = (x + 3) x 3 + 8, maka nilai f () =. A. 6,65 B. 9,5 C. 6,5 D. 30,5 E. 33,5 3. Persamaan garis singgung kurva y = x x + 3 yang tegak lurus garis x + 3y = 0 adalah. A. 3x + y + = 0 B. 3x y = 0 C. 3x y + = 0 D. x + 3y = 0 E. x 3y + = 0 U-ZA-06/07
6 6 4. Sebuah bak air tanpa tutup berbentuk tabung dengan luas permukaannya 36 m. Maka panjang jari-jari alas bak air tersebut agar volume bak menjadi maksimum adalah. A. 3 π meter B. π meter C. π meter D. 3 π meter E. 3 π meter 5. Kubus ABCD.EFGH dengan panjang rusuk 4 cm. Titik P pada AB sehingga AP = cm. Titik Q pada FG sehingga QG = cm. Dan titik R ditengah-tengah DH. Maka jarak titik R ke garis PQ adalah... A B. 5 C D. 5 6 E Diketahui bidang empat beraturan T.ABC. nilai cosinus sudut antara garis TC dan bidang ABC adalah. A. 6 3 B. 3 C. 3 3 D. E Luas segi empat PQRS pada gambar di bawah ini adalah. A cm B. 3 3 cm C cm D. 4 3 cm E. 0 3 cm P S 60 o 8 cm R 3 cm Q U-ZA-06/07
7 8. Diketahui 0 a π dan 0 b π, Jika sin a sin b = 3 5 dan cos a + cos b = 4 5 sin (a + b)=. A. 3 B. 5 4 C. D. 5 E. 3 7 maka nilai dari 9. Himpunan penyelesaian dari persamaaan cos 4x 3 sin x = untuk 0 o x 80 o adalah. A. {5 o, 45 o } B. {5 o, 75 o } C. {30 o, 75 o } D. {45 o, 50 o } E. {75 o, 80 o } 30. Diketahui nilai maksimum dan nilai minimum fungsi trigonometri g(x) = 5 3 cos x berturut-turut adalah M dan m, nilai M + m =. A. B. 0 C. 9 D. 8 E Hasil 3 x dx =. x 6x A. x 6x + + C B. x 6x + + C C. x 6x + + C D. x 6x + + C E. x 6x + + C 4 3. Nilai x 3 x dx A. 9 B. 7 C. 5 D. 5 E U-ZA-06/07
8 33. Hasil sin 3x cos x dx =. A. cos 4x cos x + C 8 4 B. cos 4x + cos x + C 8 4 C. cos 4x cos x + C 4 D. cos 4x + cos x + C 4 E. 4 cos 4x sin x + C Luas daerah yang dibatasi oleh kurva y = x + 4x + 4, garis x + y = 0 dan sumbu x dapat dinyatakan dengan rumus. 0 A. x x 4dx 0 x 0 4 dx B. x x 4dx 0 x dx C. x x 4dx 0 x 0 4 dx D. x dx x 4x dx E. x dx x 4x dx Tabel berikut menyajikan data berat produksi beberapa jenis barang suatu perusahaan Berat Barang (kg) Banyak Barang Nilai modus data tersebut adalah.. A. 7,7 kg B. 7,4 kg C. 7, kg D. 6,7 kg E. 6, kg U-ZA-06/07
9 9 36. Nilai median dari histogram di bawah ini adalah. frekuensi Nilai A. 59,67 B. 60,67 C. 6,67 D. 6,67 E. 63, Dari angka,,3,4,5,6, dan 7 akan disusun bilangan yang terdiri dari 4 angka yang berbeda. Banyak bilangan yang lebih dari.500 adalah. A. 360 B. 480 C. 560 D. 660 E Sebuah tim delegasi yang terdiri dari 4 pria dan 3 wanita akan dipilih dari 0 pasang suamiistri, banyak cara memilih tim delegasi yang berbeda dengan syarat tidak ada pasangan suamiistri dalam tim tersebut adalah. A B C D E Sebuah dadu bersisi enam dilempar empat kali. Peluang muncul mata dadu faktor dari 5 untuk tiga kali lemparan adalah. A. 0 7 B. 9 7 C. 8 7 D. 7 7 E. 6 7 U-ZA-06/07
10 0 40. Di dalam sebuah kotak terdapat 0 bola yang diberi nomor dengan menggunakan angka-angka prima, 3, 5, dan seterusnya. Jika diambil dua bola sekaligus, maka peluang terambil bola dengan jumlah angka-angkanya merupakan bilangan genap adalah. A. 7 0 B. 9 0 C. 0 D. 7 0 E. 9 0 U-ZA-06/07
Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E
1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8
, maka nilai dari a b c
Nama : Ximple Education No. Peserta : 08-6600-747. Jika a =, b =, dan c = 3, maka nilai dari a b c 8 4 5 3 6 6 =. a b c A. 3 B. 6 C. 4 D. E. 4. Bentuk sederhana dari (3 6 )( 6 + 3 ) =. A. 30 + 4 3 B. 30
Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3
Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log
12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...
1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)
SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012
SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan
Matematika EBTANAS Tahun 2003
Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +
UN MATEMATIKA IPA PAKET
UN MATEMATIKA IPA PAKET Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Diberikan pernyataan berikut: P: Semua pramugari berwajah cantik P: Catherine seorang pramugari
Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA
Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)
8. Nilai x yang memenuhi 2 log 2 (4x -
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum
PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.
PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan
PAKET TRY OUT UN MATEMATIKA IPA
PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"
2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a
Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab
Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3.
Nama : No. Peserta :. Jika x =, y =, dan z = 0, maka nilai dari x y z =. x yz A. 6 B. 5 C. 6 D. 9 E.. Jika log A. ab+a+b a+ B. b+a+ a+ C. a+b+ a+ D. ab+a+ a+ E. ab+a+ a+ = a dan log 5 = b, maka log 60.
SOAL-SOAL TO UN MATEMATIKA IPA PAKET A ... A B. x 3 C. 2 5 D E. 3 x Bentuk sederhana dari ... A. B. C. D. E. 3. Nilai dari =...
SOAL-SOAL TO UN MATEMATIKA IPA PAKET A 5. 4 4 Nilai dari 4 ( )4 5 4.0..... 4 5 4 5. Bentuk sederhana dari 5... 0 8 5 8 5 5 8 8 5 8 5 5 log 4. log log8. Nilai dari log 4 log 8 4 4 8 4 =.... 4. Nilai x yang
adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16
. Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah
TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA
TRYOUT UN SM/M 04/0 MTMTIK IP. iketahui premis-premis berikut : Premis : Jika kita tidak menjaga kebersihan, maka kita akan terserang penyakit. Premis : Jika kita terserang penyakit, maka aktivitas kita
asimtot.wordpress.com Page 1
. Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri
9x 2 15x + 8, maka nilai dari g (4) =... A. 12 B. 14 C. 15 D. 36 E. 44
MATEMATIKA IPA PAKET A. Diberikan nilai p =, q = 9 dan r = 8 maka nilai paling sederhana dari A. 78 9 p p q q r r =... 9. Diketahui m = + dan n =. Nilai A. m n mn =.... Seorang ahli serangga memantau keberadaan
SOAL UN DAN PENYELESAIANNYA 2008
1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan
UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA
UJIAN NASIONAL TAHUN PELAJARAN 007/008 MATEMATIKA (D0) SMA/MA - PROGRAM STUDI IPA KODE : P 5 UTAMA SOAL :. Ingkaran dari pernyataan Beberapa siswa senang belajar matematika adalah... A. Ada siswa tidak
PREDIKSI UJIAN NASIONAL MATEMATIKA TAHUN 2009
PREDIKSI UJIAN NASIONAL MATEMATIKA TAHUN 009 HTTP://CANDRAPETRA.WORDPRESS.COM . Persamaan kuadrat yang akar-akarnya 5 dan - adalah A. x² + 7x + 0 = 0 B. x² - 7x + 0 = 0 C. x² + 3x + 0 = 0 D. x² + 3x -
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)
SANGGAR 14 SMA JAKARTA TIMUR
SANGGAR 4 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan yang
04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )
0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :
UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA
B Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang
1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.
1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00
Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran
Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran 009 00 Petunjuk Umum:. Tulislah nomor dan nama pada lembar jawaban!. Periksa dan bacalah soal dengan teliti!. Dahulukam
asimtot.wordpress.com Page 1
. Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau
Matematika EBTANAS Tahun 2001
Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Luas maksimum persegipanjang OABC pada gambar adalah satuan luas satuan luas C B(,y) satuan luas + y = satuan luas satuan luas O A EBT-SMA-0-0 Diketahui + Maka nilai
Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan
Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan
Ujian Nasional Tahun Pelajaran 2005/2006
Ujian Nasional Tahun Pelajaran 005/006 P Copyright oke.or.id Artikel ini boleh dicopy,diubah, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan kembali dalam berbagai bentuk dengan tetap
D. (1 + 2 ) 27 E. (1 + 2 ) 27
1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2
Ujian Akhir Nasional Tahun Pelajaran 2002/2003
DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran / SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D) SELASA, 6 MEI Pukul 7.. DEPARTEMEN PENDIDIKAN NASIONAL --D-P Hak Cipta pada
Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018
Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 2017/2018-1. Jika diketahui x = 8, y = 25 dan z = 81, maka nilai dari x 2 y 2 z adalah.... (a) 0 (b) 00 (c) 500
2009 ACADEMY QU IDMATHCIREBON
NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan
TRY OUT MATEMATIKA PAKET 2B TAHUN 2010
TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang
asimtot.wordpress.com Page 1
. Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika
TRY OUT UN MATEMATIKA SMA IPA 2013
TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika
Matematika EBTANAS Tahun 1999
Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar
Matematika EBTANAS Tahun 1991
Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai
2015 ACADEMY QU IDMATHCIREBON
2015 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2014/2015 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/04 April 2015 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu
Matematika Proyek Perintis I Tahun 1980
Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,
SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012
SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan
TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA
DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY
TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA
DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY
b c a b a c 1. Bentuk sederhanaa dari
7 a b c. Bentuk sederhanaa dari 6 6a b c c A. a b b B. a c C. b a c bc D. a E. 7 7 c a b. Dalam kantong kantong diambil dua kelereng sekaligus, maka peluang mendapatkan kelereng satu berwarna merah dan
Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010
PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh
02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E.
PILIHLAH JAWABAN YANG PALING TEPAT 0. Diketahui : Premis : Jika laut berombak besar, maka nelayan tidak berlayar Premis : Jika nelayan tidak berlayar, maka tidak ada ikan di pasar. Negasi dari kesimpulan
TRY OUT MATEMATIKA PAKET 2A TAHUN 2010
TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis
UN SMA IPA 2012 Matematika
UN SMA IPA 0 Matematika Kode Soal E8 Doc. Name: UNSMAIPA0MATE8 Doc. Version : 0- halaman. Diketahui premis-premis berikut: Premis I : Jika hari ini hujan maka saya tidak pergi. Premis II : Jika saya tidak
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2004/2005
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN /5. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB... A. cm C B. (- ) cm C. (- ) cm D. (8- ) cm E. (8- ) cm A B misal panjang
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka
ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA
PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan
( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75
Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran
UN SMA IPA 2003 Matematika
UN SMA IPA 00 Matematika Kode Soal Doc. Version : 0-0 halaman 0. Persamaan kuadrat (k + )² - (k - ) +k - = 0, mempunyai akar-akar nyata dan sama. Jumlah kedua persamaan tersebut 9 9 0. Jika akar-akar persamaan
PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB
PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI SUNGAI TARAB. Dari argumentasi berikut : Premis : Jika Ibu tidak pergi maka adik senang. Premis : Jika adik senang maka dia tersenyum. Kesimpulan
PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2
PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A0).. a bc Bentuk sederhana dari 9. a b c c a b. (C) ab c a b c a c b ac b. Dengan merasionalkan penyebut, bentuk sederhana dari. (C). (E).. (D). 7 9 log.
SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON
PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 05 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON SMA / MA MATEMATIKA Program Studi IPA Kerjasama dengan Dinas Pendidikan Provinsi DKI Jakarta,
SANGGAR 14 SMA JAKARTA TIMUR
SANGGAR 4 SMA JAKARTA TIMUR SOAL DAN SOLUSI TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan
Matematika EBTANAS Tahun 1986
Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo
UN SMA IPA 2011 Matematika
UN SMA IPA 0 Matematika Kode Soal Doc. Name: UNSMAIPA0MAT999 Doc. Version : 0- halaman 0. Suku ke- dan ke-9 suatu barisan aritmetika berturut-turut adalah 0 dan 50. Suku ke- 0 barisan aritmetika tersebut
SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal B) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON
PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 05 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON Downloaded from SMA / MA MATEMATIKA Program Studi IPA Kerjasama dengan Dinas Pendidikan Provinsi
UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA
A Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang
SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN
SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika
Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah
00-008-00- . Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah II Andi tidak pergi sekolah atau Andi bermain bola Kesimpulan yang sah dari premis-premis tersebut adalah.... cuaca cerah
UAN MATEMATIKA SMA IPA 2009 P45
1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.
PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA
Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut
NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah...
NAMA : NO PESERTA : 1. Perhatikan premis-premis berikut. Premis 1 : Jika 10 bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan ganjil Premis : bukan bilangan ganjil
SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009
SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh
SMA / MA IPA Mata Pelajaran : Matematika
Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban
PREDIKSI SOAL MATEMATIKA UN 2015 ( TUGAS KELOMPOK 1 )
PREDIKSI SOAL MATEMATIKA UN 0 ( TUGAS KELOMPOK ) SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 40 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika
TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA
DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY
TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA
DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY
Matematika EBTANAS Tahun 2002
Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0
BAB IV HASIL DAN PEMBAHASAN PENELITIAN
BAB IV HASIL DAN PEMBAHASAN PENELITIAN A. Analisis dan Deskripsi Data Analisis data dilakukan dengan tiga tahap. Pertama, analisis secara kualitatif untuk mengetahui validitas isi soal dengan telaah soal.
TRY OUT MATEMATIKA PAKET 3B TAHUN 2010
. Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan
1. Diketahui: x = 16, y = 9 dan z = 4. Nilai paling sederhana dari
MATEMATIKA IPA PAKET B. Diketahui: x =, y = 9 dan z =. Nilai paling sederhana dari A. 7 B. 8 C. 9 08 x x y z y z =.... Diketahui m = + dan n =. Nilai A. B. C. mn m n =.... menyimpan uang secara pasif pada
SOAL UN DAN PENYELESAIANNYA 2009
1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan
m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah.
. Di berikan premis sebagai berikut : Premis : Jika terjadi hujan lebat atau mendapat air kiriman maka Jakarta banjir Premis : Jalan menjadi macet dan aktivitas kerja terhambat jika Jakarta banjir Kesimpulan
3. Bentuk sederhana dari ekuivalen dengan. A B C. 6 1 D E
1. Diketahui premis-premis berikut: Premis 1: jika lampu menyala merah, maka semua kendaraan berhenti. Premis 2: Jika polisi memberi tilang, maka ada kendaraan yang tidak berhenti. Premis 3: Lampu menyala
SOAL UN DAN PENYELESAIANNYA 2005
1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... 4 D. (8-2 ) cm (4 - ) cm E. (8-4 ) cm (4-2 ) cm Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a BC² = a² + a² = 2 a²
2017 ACADEMY QU IDMATHCIREBON
NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/11 April 2017 Program Studi : IPA Waktu : 10.30 12.30 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Nilai
Prediksi US Mat Wajib log16 log9 =
Bentuk Eksponen dan Logaritma Bentuk sederhana dari =.... + + Bentuk sederhana dari =.... 3 2 2 2 + 3 2 3 + 2 2 1 2 2 3 2 Nilai dari + log16 log9 =.... Persamaan dan Pertidaksamaan Nilai Mutlak jika >
TO MGMP MATEMATIKA BAHASA PAKET A HAL 1
MATEMATIKA SMA BAHASA PAKET A 1. Bentuk sederhana dari( 4x 8 y 3 16x 6 y 5) 1 =. A. ( y 2x )2 B. ( 2x y )2 C. ( x 2y )2 D. ( 1 2xy )2 E. (2xy) 2 2. Hasil dari 5 2 5+2 =. A. 4 5 + 9 B. 4 5 C. 9 4 5 D. 9
Soal dan Pembahasan UN Matematika Program IPA 2008
Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat
Istiyanto.Com Media Belajar dan Berbagi Ilmu
Istiyanto.Com Media Belajar dan Berbagi Ilmu Dapatkan tutorial-tutorial TIK/komputer dan soal-soal Matematika secara mudah dan gratis dengan berlangganan melalui email. SOAL UAN MATEMATIKA JURUSAN BAHASA
Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4
1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 D. (8-2 ) cm B. (4 - ) cm E. (8-4 ) cm C. (4-2 ) cm Jawaban : E Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a
( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari
ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan
UN SMA IPA 2008 Matematika
UN SMA IPA 008 Matematika Kode Soal P Doc. Name: UNSMAIPA008MATP Doc. Version : 0-0 halaman 0. Ingkaran dari pernyataan "Semua anak-anak suka bermain air." Tidak ada anak-anak yang suka bermain air. Semua
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka
1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5
1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... A. 5 3 2 Kunci : C 3x + y = 5 y - 2z = -7-3x + 2z = 12 2x + 2z = 10 - x = 2-4 -5 x + z = 5 2 + z = 5 z = 3 3x + y = 5 3. 2 + y =
MATEMATIKA IPA PAKET D. 1. Diberikan nilai m = 81 dan n =64. Nilai paling sederhana dari =... D. 128 E. 256
MATEMATIKA IPA PAKET D. Diberikan nilai m = 8 dan n =. Nilai paling sederhana dari 5 9 8 * 5 8 5 m n m n n. m =.... Diketahui m = + dan n =. Nilai mn m n *. Seseorang menyimpan uang secara pasif pada sebuah
Soal Ujian Nasional Tahun 2007 Bidang Matematika
Soal Ujian Nasional Tahun 007 Bidang Matematika Oleh : Fendi Alfi Fauzi 6 Desember 01 1. Bentuk sederhana dari (1 + ) (4 50) adalah... A. B. + 5 C. 8 D. 8 + E. 8 + 5. Jika log = a dan log 5 = b, maka 15
Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018
Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)
Soal Ujian Nasional Tahun 2005 Bidang Matematika
Soal Ujian Nasional Tahun 2005 Bidang Matematika Oleh : Fendi Alfi Fauzi 7 Desember 2012 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... C A B A. 4 2 cm B. (4 2) cm C. (4 2 2) cm
PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH
PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p
Matematika Ujian Akhir Nasional Tahun 2004
Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh
UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )
UJIAN NASIONAL SMA/MA Tahun Pelajaran 004/005 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 005 Jam : 08.00 0.00 PELAKSANAAN