Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA"

Transkripsi

1 Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang

2 Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan Soal SIMAK UI 0 Matematika IPA Kode Soal 5 By Pak Anang ( PETUNJUK A: Untuk soal nomor - pilihlah satu jawaban yang paling tepat.. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut: { x xy + 3y + x 5y 4 = 0 x + y = 4 maka x y =... A. 6 B. 3 C. 0 D. 3 E. 6 Perhatikan bentuk sistem persamaan berikut: x xy + 3y + x 5y 4 = 0...() x + y = 4...() Persamaan () akan menjadi persamaan kuadrat dengan mensubstitusikan x atau y dari persamaan (). x + y = 4 x = 4 y atau y = x Dengan mudah dilihat bahwa substitusi x ke persamaan () lebih mudah daripada substitusi y, karena tidak mengandung unsur pecahan. Substitusi x = 4 y ke persamaan () akan diperoleh: x xy + 3y + x 5y 4 = 0 (4 y) (4 y)y + 3y + (4 y) 5y 4 = 0 6 6y + 4y 4y + y + 3y + 8 4y 5y 4 = 0 4y + y + 3y 6y 4y 4y 5y = 0 9y 9y + 0 = 0 Pembuat nol (9y 0)(y ) = 0 9y 0 = 0 atau y = 0 y = 0 9 atau y = TM Karena x dan y adalah bilangan bulat, maka y = 0 tidak memenuhi (TM). Sehingga, nilai y yang memenuhi adalah y =, sehingga x = 4 y x = 4 () = 4 = Jadi, nilai x y = () () = 4 = 3 9 LOGIKA PRAKTIS: Apabila x dan y adalah bilangan bulat, maka kemungkinan nilai x y adalah bilangan nol, atau bilangan bulat ganjil. Jadi jelas jawaban A dan E bukan jawaban yang benar. Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman

3 . Misalkan f(x) = (x 3) 3 + (x ) + (x ). Maka sisa dari pembagian f(x + ) oleh x adalah... A. + 5x B x C. 5 x D. 4 9x E. + 9x Fungsi f(x + ) dapat diperoleh dengan mensubstitusikan x dengan x +, sehingga: f(x) = (x 3) 3 + (x ) + (x ) f(x + ) = ((x + ) 3) 3 + ((x + ) ) + ((x + ) ) f(x + ) = (x ) 3 + x + (x + ) Misal sisa pembagian dari f(x + ) oleh x adalah px + q, maka menurut teorema pembagian suku banyak bisa dirumuskan sebagai berikut: f(x + ) = p(x) h(x) + s(x) f(x + ) = (x )h(x) + (px + q) f(x + ) = (x + )(x ) h(x) + (px + q) Substitusikan pembuat nol dari pembagi yaitu x= dan x= Dengan mensubstitusikan pembuat nol dari fungsi pembagi, maka akan diperoleh persamaan: x = f() = p + q... () x = f(3) = p + q... () Padahal f(x + ) = (x ) 3 + x + (x + ), sehingga: f() = f( + ) = (( ) ) 3 + ( ) + (( ) + ) = ( ) = 8 + = 7 f(3) = f( + ) = ( ) 3 + () + ( + ) = = 3 Dengan mensubstitusi f() = 7 dan f(3) = 3 serta mengeliminasi q pada persamaan () dan () akan diperoleh: p + q = 7 p + q = 3 p = 0 p = 0 p = 5 Substitusi p = 5 ke persamaan p + q = 3 menghasilkan: p + q = q = 3 q = 3 5 q = Jadi, sisa pembagian dari f(x + ) oleh x adalah 5x. TRIK SUPERKILAT dan LOGIKA PRAKTIS ada di halaman berikutnya! Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman

4 TRIK SUPERKILAT: f(x) = (x 3) 3 + (x ) + (x ) f(x + ) = (x ) 3 + x + (x + ) f(x + ) = x 3 x + 4x f(x + ) = x 3 x + x x + + 4x x(x ) Jadi, sisa pembagian dari f(x + ) oleh x adalah 5x. (x ) f(x + ) = x(x ) + x (x ) + 4x f(x + ) = (x )(x ) + 5x LOGIKA PRAKTIS Soal tersebut bisa dikerjakan menggunakan pembagian porogapit. f(x) = (x 3) 3 + (x ) + (x ) f(x + ) = (x ) 3 + x + (x + ) f(x + ) = x 3 x + 4x x x x 3 x + 4x x 3 x x + 5x x + 5x Jadi, sisa pembagian dari f(x + ) oleh x adalah 5x. Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman 3

5 3. Nilai-nilai x yang memenuhi x x adalah... A. Semua bilangan riil B. x atau x C. x D. x atau x E. x atau x Perhatikan pertidaksamaan pada soal melibatkan harga mutlak, ingat lagi definisi nilai mutlak: x = { x, untuk x ( x), untuk x > Jadi, kita harus memisah pertidaksamaan tersebut menjadi dua bentuk, yaitu: Bentuk pertama, Untuk x, maka: x x x + x + 3x 3 Bentuk kedua, Untuk x >, maka: x 3 3 x x ( x) x + x x x + x x x Jadi, karena penyelesaian pertidaksamaan tersebut adalah x atau x, maka penyelesaian pertidaksamaan tersebut adalah x = semua bilangan riil. Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman 4

6 4. Misalkan x dan x adalah akar-akar persamaan kuadrat x (k k )x + (3k + 4) = 0 dan kedua akar itu bilangan bulat dengan k konstan. Jika x, k, x merupakan 3 suku pertama barisan geometri, maka jumlah n suku pertama dari barisan tersebut adalah... A. ( )n + B. ( )n C. ( )n + D. ( ) n E. ( )n Akar-akar persamaan kuadrat x (k k )x + (3k + 4) = 0 adalah x dan x dimana x, x adalah bilangan bulat serta k konstan. a =, b = (k k ), c = (3k + 4) Dengan menggunakan rumus jumlah dan hasil kali akar diperoleh: x x = c a x (3k + 4) x = x x = (3k + 4). () Dengan memandang bahwa x, k, x adalah 3 suku pertama barisan geometri, maka kuadrat suku tengah adalah perkalian dari suku pertama dan suku terakhir, sehingga diperoleh: k = x x. () Dengan mensubstitusi persamaan () dan () diperoleh: k = 3k + 4 k 3k 4 = 0 (k + )(k 4) = 0 Pembuat nol k 4 = 0 atau k + = 0 k = 4 atau k = Kasus pertama, Jika k = 4, maka: x ((4) (4) )x + (3(4) + 4) = 0 x 7x + 6 = 0 Kok sepertinya tidak bisa difaktorkan ya? Mari kita periksa diskriminannya! D = b 4ac = (7) 4()(6) = 665 D > 0 dan D bukan bilangan kuadrat Sehingga akar-akarnya bukan bil. bulat Berarti untuk kasus pertama ini tidak memenuhi syarat x, x adalah bilangan bulat. Kasus kedua, Jika k =, maka: x (( ) ( ) )x + (3( ) + 4) = 0 x x + = 0 (x ) = 0 x = x = Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman 5

7 Sehingga, substitusi x, x pada persamaan () akan menghasilkan: k = x x k = ()() k = k = 0 (k + )(k ) = 0 k = atau k = Dengan mudah kita memilih k = sebagai pilihan yang tepat, mengingat di semua opsi jawaban mengandung unsur ( ) n Jadi barisan geometri yang dimaksud adalah,,,, Hal ini berarti bahwa suku pertama a = dan rasio barisan r =. Jadi, jumlah n suku pertama barisan geometri tersebut adalah: S n = a(rn ) r = (( )n ) ( ) = (( )n ) = ( )n + Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman 6

8 5. Dalam segitiga ABC, AB = a, AC = b. Jika titik G adalah titik berat segitiga ABC maka AG =... A. (a + b ) 6 B. 4 (a + b ) C. 3 (a + b ) D. 3 (a + b ) E. 3 4 (a + b ) Misalkan titik D adalah titik tengah garis AB, sehingga AD adalah salah satu garis berat segitiga. Dan titik G adalah titik berat segitiga, yaitu titik perpotongan semua garis berat segitiga. Untuk lebih jelasnya perhatikan gambar berikut: A A G G B D C B D C Jika AB = a dan AC = b, maka: BC = BA + AC = a + b Sehingga, AD = AB + BD AD = AB + BC = a + ( a + b ) = a a + b = a + b = (a + b ) Perhatikan bahwa titik G membagi AD sehingga AG GD =, sehingga: AG = 3 AD = 3 ( (a + b )) = 3 (a + b ) Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman 7

9 6. Dalam segitiga ABC, diketahui sudut α, β, γ berhadapan dengan sisi a, b, c. Jika b > c maka b c b+c =... A. sin (β γ) cos (α) B. cos (β γ) sin (α) C. tan (β γ) sin (α) D. tan (β γ) tan (α) E. tan (β γ) cot (α) Perhatikan gambar di samping! Pada ABC, berlaku aturan sinus yang nilai perbandingannya merupakan dua kali panjang jari-jari lingkaran luar segitiga, yaitu: a sin α = b sin β = c sin γ = R Dari aturan sinus bisa diperoleh kesamaan berikut: b sin β = R b = R sin β dan c = R c = R sin γ sin γ A b α C γ c a β B Sehingga, substitusikan b = R sin β dan c = R sin γ ke persamaan pada soal, b c R sin β R sin γ = b + c R sin β + R sin γ R(sin β sin γ) = R(sin β + sin γ) sin β sin γ = sin β + sin γ = cos (β + γ) sin (β γ) sin (β + γ) cos (β γ) = cos (β + γ) sin (β sin γ) (β + γ) cos (β γ) = cot (β + γ) tan (β γ) = cot (80 α) tan (β γ) = cot (90 (α)) tan (β γ) = tan (α) tan (β γ) = tan (β γ) cot (α) Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman 8

10 7. Jika sin t (csc t )( sin t + sin t sin 3 t + ) = x, dengan π < t π, maka nilai dari cos t adalah... A. (x ) B. (x ) C. + (x ) D. E. (x ) +(x ) Perhatikan! sin t (csc t ) Identitas trigonometri csc t =cot t ( sin t + sin t sin 3 t + ) Barisan geometri tak hingga dengan a= dan r= sin t S = a r = x sin t cot t ( + sin t ) = x sin t cos t sin t ( + sin t ) = x cos t ( + sin t ) = x ( sin t) ( + sin t ) = x ( sin t)( + sin t) ( + sin t ) = x ( sin t) = x x = sin t Karena π < t π berarti t berada di kuadran II, artinya nilai cos t negatif. Sehingga, bentuk cos t dapat diperoleh dari sin t dengan menggunakan identitas trigonometri: cos t + sin t = cos t = sin t cos t = sin t (ingat t di kuadran II maka cos t bernilai negatif) = ( x) (ingat ( x) = (x ) ) = (x ) Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman 9

11 8. lim x x 4x + 7 =... A. B. C. 0 D. 4 E. Ingat bentuk limit tak hingga bentuk adalah salah satu limit bentuk tak tentu. Sekarang periksa nilai limit berikut dengan mensubstitusikan nilai x pada fungsi limit terlebih dahulu, apakah menghasilkan sebuah limit bentuk tak tentu? lim x 4x + 7 = ( ) 4( ) + 7 x = = = Karena nilai limit tidak menyebabkan limit menjadi limit bentuk tak tentu, maka nilai limit tersebut adalah. Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman 0

12 9. Diberikan f(x) = sin x. Jika f (x) menyatakan turunan pertama dari f(x), maka lim h h {f (x + ) h f (x)} =... A. sin x B. cos x C. cos x D. sin x E. cos x Perhatikan bentuk limit pada soal! lim h h {f (x + h ) f (x)} (ingat h h = dan h = ) h lim {f h (x + h ) f (x)} (ingat = 0) h {f (x + lim h 0 f (x) h ) f (x)} h {f(x + h) f(x)} (Bukankah ini identik dengan lim = f (x)) h 0 h Sehingga penyelesaian limit tersebut adalah turunan kedua dari fungsi f(x). Jadi, f(x) = sin x lim h h {f (x + h ) f (x)} = f (x) = d dx (sin x) = d ( sin x cos x) dx = d (sin x cos x) dx = (cos x cos x + sin x ( sin x)) = (cos x sin x) = cos x TRIK SUPERKILAT: f(x) = sin x f(x) = cos x f (x) = sin x f (x) = cos x Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman

13 0. Jika diketahui garis singgung parabola y = 3x + ax +, pada titik x = membentuk sudut terhadap sumbu x sebesar arctan(6). Luas daerah yang dibatasi oleh garis lurus y = 9x 59 dan parabola tersebut adalah... A. 0 B. C. D. 3 E. Gradien garis singgung parabola y = 3x + ax + pada titik x = bisa diperoleh dari nilai turunan pertama dari kurva pada titik tersebut, sehingga: f(x) = 3x + ax + f (x) = 6x + a m = f ( ) m = 6( ) + a m = + a... () Garis singgung tersebut membentuk sudut terhadap sumbu x sebesar arctan(6), sehingga: θ = arctan(6) tan θ = 6 Padahal gradien garis singgung dari sebuah kurva juga merupakan nilai dari tan θ, dimana θ adalah sudut yang dibentuk oleh garis singgung dengan sumbu x, sehingga diperoleh: m = tan θ m = 6... () Dengan mensubstitusi persamaan () ke persamaan () akan diperoleh: + a = 6 a = 6 + a = 8 Jadi, dengan mensubstitusi nilai a = 8, maka persamaan parabola tersebut adalah: y = 3x + 8x + Sehingga, untuk mencari luas daerah yang dibatasi oleh y = 3x + 8x + dan sebuah garis lurus, y = 9x 59 maka gunakan rumus cepat TRIK SUPERKILAT berikut: Luas daerah yang hanya dibatasi kurva dan garis lurus adalah: dimana, L = D D 6a D = b 4ac. D adalah nilai diskriminan dari persamaan kuadrat ax + bx + c yang diperoleh dengan mensubstitusi persamaan garis ke persamaan kurva. Jadi, substitusi y = 9x 59 pada kurva, akan diperoleh: 9x 59 = 3x + 8x + 0 = 3x + 8x + ( 9x 59) 0 = 3x + 8x + + 9x = 3 x + 7 x + 60 Sehingga, nilai D adalah: a D = b 4ac D = (7) 4(3)(60) = = 9 Jadi, luas daerah tersebut adalah: L = D D 6a = 9 9 6(3) = = 3 6 = b c Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman

14 . Diberikan bidang empat A. BCD dengan BC tegaklurus BD dan AB tegaklurus bidang BCD. Jika BC = BD = a cm, dan AB = a cm, maka sudut antara bidang ACD dan BCD sama dengan... A. π 6 B. π 4 C. π 3 D. 3π 4 E. π Jadi, D E α α = (bidang ACD, bidang BCD) = (AE, EB) C A B Perhatikan bidang segiempat A. BCD di samping! BC BD, AB bidang BCD BC = BD = a cm AB = a cm Maka besar sudut antara bidang ACD dan BCD dapat ditentukan dengan membuat menentukan titik potong kedua bidang terlebih dulu. Ternyata garis potong kedua bidang tersebut adalah terletak pada ruas garis DC. Sudut antara bidang bidang ACD dan BCD adalah sudut yang dibentuk oleh dua garis pada masingmasing bidang yang tegak lurus dengan garis potong, Misal E adalah titik tengah DC, maka sudut antara bidang bidang ACD dan BCD adalah sudut yang dibentuk oleh ruas garis AE dengan ruas garis EB. Perhatikan bidang alas BCD yang merupakan segitiga siku-siku sama kaki. Apabila bidang alas kita perluas sehingga menjadi sebuah persegi BCDF, sehingga DC adalah salah satu diagonal persegi. DC = BC + BD = (a ) + (a ) = a + a = 4a = a Dan dengan mudah kita mengetahui bahwa: DE = EC = BE = DC DE = EC = BE = (a) DE = EC = BE = a Jadi, besar sudut α dengan mudah ditentukan dari nilai tangen sudut α, dimana nilai tangen sudut α adalah perbandingan antara ruas garis AB dengan ruas garis BE: tan α = AB BE tan α = a a tan α = α = arctan() α = 45 α = π 4 Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman 3

15 PETUNJUK C: Untuk soal nomor. Persamaan kuadrat x pqx + p + q = 0 akar-akarnya x dan x dengan x x = 5(x + x ). Pernyataan berikut yang BENAR untuk hubungan antara p dan q adalah... () p = q () p = q (3) p = q + (4) p = q Dengan menggunakan rumus jumlah dan hasil kali akar-akar persamaan kuadrat maka dari persamaan kuadrat x pqx + p + q = 0 akan diperoleh: x + x = b a x + x = ( pq) x + x = pq x x = c a x x = (p + q ) x + x = p + q Sehingga x x = 5(x + x ) bisa dinyatakan menjadi: x x = 5(x + x ) (p + q ) = 5(pq) p + q 5pq = 0 p 5pq + q = 0 (p q)(p q) = 0 Pembuat nol p q = 0 atau p q = 0 p = q atau p = q Sehingga diperoleh hubungan antara p dan q, yaitu p = q atau q = p Untuk download rangkuman materi, kumpulan SMART SOLUTION dan TRIK SUPERKILAT dalam menghadapi SIMAK-UI, UM STIS, SBMPTN, SNMPTN, OSN serta kumpulan pembahasan soal SIMAK-UI, SNMPTN, UM STIS, UMB PTN, OSN ataupun yang lainnya jangan lupa untuk selalu mengunjungi Terimakasih, Pak Anang. Bimbel SIMAK UI 03 Matematika IPA by Pak Anang ( Halaman 4

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika Dasar

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika Dasar Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika Dasar Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

Pembahasan Soal SNMPTN 2012 SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal SNMPTN 2012 SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SNMPTN 2012 SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika Dasar Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT

Lebih terperinci

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika Dasar Disusun Oleh : Pak Anang (http://pak-anang.blogspot.com) Kumpulan

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

OSN Guru Matematika SMA (Olimpiade Sains Nasional)

OSN Guru Matematika SMA (Olimpiade Sains Nasional) ocsz Pembahasan Soal OSN Guru 2012 OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE

Lebih terperinci

Matematika IPA (MATEMATIKA TKD SAINTEK)

Matematika IPA (MATEMATIKA TKD SAINTEK) Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA (MATEMATIKA TKD SAINTEK) Disusun Oleh : Pak Anang (http://pak-anang.blogspot.com)

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 132

Pembahasan Matematika IPA SNMPTN 2012 Kode 132 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,

Lebih terperinci

OSN Guru Matematika SMA

OSN Guru Matematika SMA ocsz Pembahasan Soal OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE GURU MATEMATIKA

Lebih terperinci

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA)

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA) Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS KABUPATEN/KOTA SMA 018 OSK Matematika SMA (Olimpiade Sains Kabupaten/Kota Matematika SMA) Disusun oleh: Pak Anang Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika Kode Paket 578 Oleh : Fendi Alfi Fauzi 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smart Solution UJIAN NASIONAL TAHUN PELAJARAN 2012/2013 Disusun Sesuai Indikator Kisi-Kisi UN 2013 Matematika SMA (Program Studi IPA) Disusun oleh : Pak Anang 2. 5. Menentukan persamaan lingkaran atau

Lebih terperinci

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011 Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.

Lebih terperinci

Matematika IPA (MATEMATIKA TKD SAINTEK)

Matematika IPA (MATEMATIKA TKD SAINTEK) Pembahasan Soal SBMPTN 2016 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA (MATEMATIKA TKD SAINTEK) Kumpulan SMART SOLUTION dan TRIK SUPERKILAT

Lebih terperinci

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u (a, -, -) dan v (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A. -

Lebih terperinci

Pembahasan Soal. Pak Anang SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal. Pak Anang SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan Soal SNMPTN 011

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

Pembahasan Simak UI Matematika Dasar 2012

Pembahasan Simak UI Matematika Dasar 2012 Pembahasan Simak UI Matematika Dasar 2012 PETUNJUK UMUM 1. Sebelum mengerjakan ujian, periksalah terlebih dulu, jumlah soal dan nomor halaman yang terdapat pada naskah soal. Naskah soal ini terdiri dari

Lebih terperinci

OSK Matematika SMP (Olimpiade Sains Kabupaten Matematika SMP)

OSK Matematika SMP (Olimpiade Sains Kabupaten Matematika SMP) Pembahasan Soal OSK SMP 2017 OLIMPIADE SAINS KABUPATEN SMP 2017 OSK Matematika SMP (Olimpiade Sains Kabupaten Matematika SMP) Disusun oleh: Pak Anang Halaman 2 dari 20 PEMBAHASAN SOAL OLIMPIADE SAINS MATEMATIKA

Lebih terperinci

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Blog:

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si   Blog: PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Email: sebelasseptember@yahoo.com Blog: http://istiyanto.com Berikut soal-soal yang dapat Anda gunakan untuk latihan dalam menghadapi

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 483

Pembahasan Matematika IPA SNMPTN 2012 Kode 483 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode 8 Oleh Tutur Widodo. Di dalam kotak terdapat bola biru, 6 bola merah dan bola putih. Jika diambil 8 bola tanpa pengembalian,

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

Pembahasan SNMPTN 2011 Matematika IPA Kode 576

Pembahasan SNMPTN 2011 Matematika IPA Kode 576 Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.

Lebih terperinci

PEMBAHASAN DAN KUNCI JAWABAN UN MATEMATIKA SMA 2011 PAKET 12 PLUS TRIK SUPERKILAT DAN LOGIKA PRAKTIS (By Pak Anang

PEMBAHASAN DAN KUNCI JAWABAN UN MATEMATIKA SMA 2011 PAKET 12 PLUS TRIK SUPERKILAT DAN LOGIKA PRAKTIS (By Pak Anang 1. Bentuk sederhana dari A. LOGIKA PRAKTIS: PEMBAHASAN DAN KUNCI JAWABAN UN MATEMATIKA SMA 2011 PAKET 12 PLUS TRIK SUPERKILAT DAN LOGIKA PRAKTIS (By Pak Anang http://www.facebook.com/pak.anang ) Pembilang

Lebih terperinci

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013 Soal dan Pembahasan UN Matematika SMA IPA Tahun 013 LOGIKA MATEMATIKA p siswa rajin belajar ; q mendapat nilai yang baik r siswa tidak mengikuti kegiatan remedial ~ r siswa mengikut kegiatan remedial Premis

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

Pembahasan Soal. Pak Anang SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal. Pak Anang SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SELEKSI NASIONAL MASUK PEGUUAN TINGGI NEGEI Disertai TIK SUPEKILAT dan LOGIKA PAKTIS Disusun Oleh : Pak Anang Kumpulan SMAT SOLUTION dan TIK SUPEKILAT Pembahasan Soal SNMPTN 2010 Matematika

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smart Solution UJIAN NASIONAL TAHUN PELAJARAN 0/0 Disusun Sesuai Indikator Kisi-Kisi UN 0 Matematika SMA (Program Studi IPA) Disusun oleh : Hario Pamungkas 4.. Menyelesaikan persamaan trigonometri. Nilai

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

C34 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

C34 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA C MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M9-0/0 Hak Cipta pada Pusat Penilaian Pendidikan-BALITBANG-KEMDIKBUD

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2007

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2007 Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 007. Jika a > 0 dan a memenuhi a 4 b ( ) a, maka log b A. B. C. D. E. a a 4 b ( ) a 4 ( b a ) a 4 b a b 4 4 log b log 4 log ( ) log log. Jawabannya

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

A18 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

A18 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA A8 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M-0/0 Hak Cipta pada Pusat Penilaian Pendidikan-BALITBANG-KEMDIKBUD

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2. Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0

Lebih terperinci

D46 MATEMATIKA. Rabu, 18 April 2012 ( ) Pembahasan soal oleh Perpustakaan.

D46 MATEMATIKA. Rabu, 18 April 2012 ( ) Pembahasan soal oleh  Perpustakaan. DOKUMEN NEGARA Pembahasan soal oleh http://pak-anang.blogspot.com D6 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Perpustakaan SMAN Wonogiri MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M0-0/0 Hak Cipta

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika n bilangan prima ganjil maka n.. Jika n maka n 4. Ingkaran dari kesimpulan

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket Oleh : Fendi Alfi Fauzi. Lingkaran x 6) 2 + y + ) 2 menyinggung garis y di titik a), ) b), ) c) 6, ) d) 6,

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)

Lebih terperinci

1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5

1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5 1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... A. 5 3 2 Kunci : C 3x + y = 5 y - 2z = -7-3x + 2z = 12 2x + 2z = 10 - x = 2-4 -5 x + z = 5 2 + z = 5 z = 3 3x + y = 5 3. 2 + y =

Lebih terperinci

SPMB 2004 Matematika Dasar Kode Soal

SPMB 2004 Matematika Dasar Kode Soal SPMB 00 Matematika Dasar Kode Soal Doc. Name: SPMB00MATDAS999 Version : 0- halaman 0. Nilai x yang memenuhi persamaan : 3 x ( ) adalah. 0 - - 0. Dalam bentuk pangkat positif dan bentuk akar, x y x y...

Lebih terperinci

Pembahasan soal oleh MATEMATIKA. Rabu, 18 April 2012 ( )

Pembahasan soal oleh  MATEMATIKA. Rabu, 18 April 2012 ( ) DOKUMEN NEGARA Pembahasan soal oleh http://pak-anang.blogspot.com B MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Perpustakaan SMAN Wonogiri MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M8-0/0 Hak Cipta

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA 1. ABC adalah segitiga sama

Lebih terperinci

Indikator : Menentukan penarikan kesimpulan dari beberapa premis. Modus Ponens Modus Tollens Silogisme

Indikator : Menentukan penarikan kesimpulan dari beberapa premis. Modus Ponens Modus Tollens Silogisme Indikator : Menentukan penarikan kesimpulan dari beberapa premis Modus Ponens Modus Tollens Silogisme p q p q p q p ~q q r q ~p p r Bentuk ekuivalen : p q ~q ~p p q ~p q Soal 1 : Diketahui premis : Premis

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6 4 ). ( -1 4 ) E. ( 5 4 ) B. ( 6 4) D. ( 1 4 ) BAB

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

Smart Solution TAHUN PELAJARAN 2012/201 /2013. (Program Studi IPA) Disusun Sesuai Indikator Kisi-Kisi UN Disusun oleh : Pak Anang

Smart Solution TAHUN PELAJARAN 2012/201 /2013. (Program Studi IPA) Disusun Sesuai Indikator Kisi-Kisi UN Disusun oleh : Pak Anang Smart Solution TAHUN PELAJARAN 0/0 /0 Disusun Sesuai Indikator Kisi-Kisi UN 0 (Program Studi IPA) Disusun oleh : Pak Anang SMART SOLUTION dan TRIK SUPERKILAT UN Matematika SMA Program IPA Per Indikator

Lebih terperinci

KISI KISI US Diberikan pernyataan majemuk berkuantor, ingkaran dari pernyataan tersebut majemuk atau pernyataan majemuk berkuantor

KISI KISI US Diberikan pernyataan majemuk berkuantor, ingkaran dari pernyataan tersebut majemuk atau pernyataan majemuk berkuantor KISI KISI US 2014 NO BAB INDIKATOR JENIS SOAL Menentukan penarikan Diketahui buah premis (ada bentuk ekuivalen) menarik kesimpulan dari buah 1 kesimpulan dari beberapa premis premis Menentukan ingkaran

Lebih terperinci

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan

Lebih terperinci

D. 90 meter E. 95 meter

D. 90 meter E. 95 meter 1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x

Lebih terperinci

B21 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( )

B21 MATEMATIKA. Pak Anang MATEMATIKA SMA/MA IPA. Rabu, 18 April 2012 ( ) B Pak Anang http://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M8-0/0 Mata Pelajaran Jenjang Program Studi Hari/Tanggal Jam MATA PELAJARAN : MATEMATIKA : SMA/MA : IPA WAKTU

Lebih terperinci

Pembahasan soal oleh MATEMATIKA. Rabu, 18 April 2012 ( )

Pembahasan soal oleh  MATEMATIKA. Rabu, 18 April 2012 ( ) DOKUMEN NEGARA Pembahasan soal oleh http://pak-anang.blogspot.com A8 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Perpustakaan SMAN Wonogiri MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M-0/0 Hak Cipta

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

CONTOH SOAL DAN PEMBAHASAN PERSIAPAN UN 2014

CONTOH SOAL DAN PEMBAHASAN PERSIAPAN UN 2014 CONTOH SOAL DAN PEMBAHASAN PERSIAPAN UN 04 DISUSUN OLEH AHMAD THOHIR MA FUTUHIYAH JEKETRO GUBUG GROBOGAN JATENG KATA PENGANTAR Tulisan yang sangat sederhana ini berisi kisi-kisi UN 0 disertai contoh soal

Lebih terperinci

Pembahasan Soal. Pak Anang SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal. Pak Anang SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan Soal SNMPTN 2010

Lebih terperinci

Bab1. Sistem Bilangan

Bab1. Sistem Bilangan Modul Pra Kalkulus -0. Bab. Sistim Bilangan Bab. Sistem Bilangan. Sistim Bilangan Jenis bilangan berkembang sejalan dengan perkembangan peradaban dan ilmu pengetahuan. Jenis bilangan yang pertama kali

Lebih terperinci

UAN MATEMATIKA SMA IPA 2009 P45

UAN MATEMATIKA SMA IPA 2009 P45 1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA

SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA m SOAL DAN PEMBAHASAN.c o SELEKSI MASUK UNIVERSITAS INDONESIA SIMAK UI 331 KEMAMPUAN DASAR Matematika Dasar FReS-TA Universitas Indonesia 2013 SIMAK

Lebih terperinci

OSN Guru Matematika SMA

OSN Guru Matematika SMA z Pembahasan Soal OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE GURU MATEMATIKA

Lebih terperinci

PEMBAHASAN UN SMA IPA TAHUN AJARAN 2011/2012

PEMBAHASAN UN SMA IPA TAHUN AJARAN 2011/2012 Page of PEMBAHASAN UN SMA IPA TAHUN AJARAN 0/0 OLEH: SIGIT TRI GUNTORO, M.Si MARFUAH, S.Si, M.T REVIEWER: UNTUNG TRISNA S., M.Si JAKIM WIYOTO, S.Si Page of Misalkan, p : hari ini hujan q: saya tidak pergi

Lebih terperinci

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI GARIS SINGGUNG LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi garis singgung lingkaran..

Lebih terperinci

log2 PEMBAHASAN SOAL TRY OUT = = 2 1 = 27 8 = 19 Jawaban : C = = = 2( 15 10) Jawaban : B . 4. log3 1 2 (1) .

log2 PEMBAHASAN SOAL TRY OUT = = 2 1 = 27 8 = 19 Jawaban : C = = = 2( 15 10) Jawaban : B . 4. log3 1 2 (1) . TRY OUT AKBAR UN SMA 08 PEMBAHASAN SOAL TRY OUT. 9 6 4 8 7 Jawaban : C 4 4 = = = 7 8 4 = 9. 5 + = 0 5 = 0 5 = 5 0 = ( 5 0). log5 5 log8 log6 4 log log4 = log5 5 4 log log log6 log4 =. log5 5. 4. log log

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

Ujian Nasional. Tahun Pelajaran 2010/2011 IPA MATEMATIKA (D10) UTAMA. SMA / MA Program Studi

Ujian Nasional. Tahun Pelajaran 2010/2011 IPA MATEMATIKA (D10) UTAMA. SMA / MA Program Studi Ujian Nasional Tahun Pelajaran 00/0 UTAMA SMA / MA Program Studi IPA MATEMATIKA (D0) c Fendi Alfi Fauzi alfysta@yahoo.com Ujian Nasional Tahun Pelajaran 00/0 (Pelajaran Matematika) Tulisan ini bebas dibaca

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

tanya-tanya.com Turunan Pertama Turunan Fungsi Trigonometri Persamaan Garis Singgung Fungsi Naik Turun Turunan pertama dari suatu fungsi f(x) adalah:

tanya-tanya.com Turunan Pertama Turunan Fungsi Trigonometri Persamaan Garis Singgung Fungsi Naik Turun Turunan pertama dari suatu fungsi f(x) adalah: Turunan Pertama Turunan pertama dari suatu fungsi f(x) adalah: Jika f(x) = x n, maka f (x) = nx n-1, dengan n R Jika f(x) = ax n, maka f (x) = anx n-1, dengan a konstan dan n R Rumus turunan fungsi aljabar:

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2010

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2010 Soal-Soal dan Pembahasan Matematika IPA SNMPTN. Diketahui a dan b adalah dua buah bilangan bulat positif yang memenuhi : Nilai ab (a+b) adalah.. A. 68 C. 68 E. 6 B. 8 D. 9 a b 6 a b 6 b a ab a+b ab 6 6

Lebih terperinci

Fisika IPA (TKD SAINTEK)

Fisika IPA (TKD SAINTEK) Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Fisika IPA (TKD SAINTEK) Disusun Oleh : Pak Anang (http://pak-anang.blogspot.com) Kumpulan

Lebih terperinci

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah...

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah... SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN /. Nilai a yang menyebabkan fungsi kuadrat f x a x ax a a a a a a Solusi: [Jawaban D] a a a. () D a a a a a

Lebih terperinci

TRIGONOMETRI Pengertian Sinus, Cosinus dan Tangen Hubungan Fungsi Trigonometri :

TRIGONOMETRI Pengertian Sinus, Cosinus dan Tangen Hubungan Fungsi Trigonometri : SMA - TRIGONOMETRI Pengertian Sinus, Cous dan Tangen Sin r y r y Cos r x x Tan x y Hubungan Fungsi Trigonometri :. + cos. tan 3. sec cos cos 4. cosec 5. cotan cos 6. tan + sec + cos + cos cos cos cos tan

Lebih terperinci

AB = c, AC = b dan BC = a, maka PQ =. 1

AB = c, AC = b dan BC = a, maka PQ =. 1 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 9. Jika a, b, maka pernyataan di bawah ini yang benar adalah A. B. a b ab C. ab b a D. ab ab E. ab ab ab b a karena pada jawaban terdapat ab maka selesaikan

Lebih terperinci