BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan"

Transkripsi

1 4 3.2 Peralatan..(9) dimana,, dan.(10) substitusi persamaan (10) ke persamaan (9) maka diperoleh persamaan gelombang soliton DNA model PBD...(11) agar persamaan (11) dapat dipecahkan sehingga harus diterapkan pendekatan semidiskrit yang artinya bahwa mencari solusi dalam bentuk gelombang soliton DNA model PBD [22] Peralatan yang digunakan adalah alat tulis, laptop, software maple 11 dan software MATLAB 2008b yang bertujuan menganalisa hasil solusi secara komputasinya dan simulasi dari hasil perhitungan analitik. 3.3 Studi Pustaka Studi pustaka dilakukan untuk memahami proses dalam mencari solusi soliton DNA model PBD dan memahami konsep perhitungan secara matematis, kemudian melihat hubungan segi fisis yang diperoleh sehingga memberi kesan bahwa tidak hanya persoalan matematis saja yang dibahas melainkan membahas hubungan antar variabel. 3.4 Penurunan S olusi Secara Analitik Metode ini dilakukan metode matematis untuk mendapatkan persamaan NLS model PBD ekspansi potensial morse hingga orde-4 yang kemudian mensubstitusikan anzats (tebakan solusi) traveling persamaan (14) ke persamaan (30) (14)... (12)..(13) di sini, l adalah jarak antara dua nukleotida tetangga pada rantai yang sama, adalah frekuensi optik dari getaran pendekatan linear, q adalah bilangan gelombang soliton DNA, c.c adalah istilah conjugate-compleks dari fungsi F 1, F 2 dan F 3. BAB 3 METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan di Laboratorium Fisika Teori Departemen Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor mulai bulan Juli 2010 sampai bulan Desember Analisa Hasil Perhitungan Analitik Metode ini menggunakan metode plot yaitu cara membuat plot antara variabel bebas (waktu) variabel terikat (y n ) pada software MATLAB dalam membuat gambar dan menganalisis solusi persamaan NLS soliton DNA model PBD. BAB 4 HASIL DAN PEMBAHASAN 4.1 Persamaan NLS Soliton DNA Model PBD Persamaan (12) merupakan persamaan untuk kasus diskrit dan untuk menyelesaikannya harus diubah ke batas kontinu mengambil batas dan menerapkan transformasi [16, 21, 22],..(15) Transformasi di atas menghasilkan pendekatan untuk kasus kontinu berikut:

2 5....(16) mengubah fungsi F 0, F 1, F 2 dan F 3 pada persamaan (12) menjadi bentuk kontinu seperti persamaan (16) dan kemudian mensubstitusikan persamaan hasil modifikasi tersebut ke persamaan (11), sehingga diperoleh persamaan (17) yang menggambarkan koefisien, dan ( penurunan lengkapnya dapat dilihat pada lampiran B yaitu persamaan (B.3a)- (B.6))... (17) Persamaan (17) merupakan bentuk kontinu hasil transformasi untuk koefisien F 1 dari persamaan (11), menyamakan koefisien untuk berbagai gerak harmonik, bisa diperoleh hubungan penting untuk menyatakan F 0, F 2, F 3 dalam F 1 [12-14,22]. Misal menyamakan koefisien untuk kemudian diperoleh hubungan dispersi ( penurunan lengkapnya dapat dilihat pada lampiran B yaitu persamaan (B.7a) dan (B.7d)) (18) cara yang sama menyamakan koefisien untuk yang artinya maka diperoleh hubungan F 0 F 1 ( penurunan lengkapnya dapat dilihat pada lampiran B yaitu persamaan (B.7e)- (B.7g))...(19a) Asumsikan merupakan koefisien untuk maka diperoleh hubungan F 2 F 1 ( penurunan lengkapnya dapat dilihat pada lampiran B yaitu persamaan (B.7h)- (B.7j))...(20a)..(20b) Asumsikan untuk koefisien maka diperoleh hubungan F 3 F 1 ( penurunan lengkapnya dapat dilihat pada lampiran B yaitu persamaan (B.7k)- (B.7n))...(21a) Persamaan (17) untuk koefisien dapat ditulis (21b)....(19b)

3 6...(22) Agar persamaan NLS ( persamaan (22) ) lebih sederhana maka diterapkan transformasi koordinat baru [16, 21, 22]...(23) merupakan kecepatan group dari nukleotida. Berdasarkan persamaan (23) maka persamaan (22) dilakukan transformasi menjadi ( penurunan lengkapnya dapat dilihat pada lampiran B yaitu persamaan (B.11a)- (B.11c) )...(24a).(24b) (24c) Substitusi persamaan (24b) dan (24c) ke persamaan (22) menghasilkan persamaan (25) ( penurunan lengkapnya dapat dilihat pada lampiran B yaitu persamaan (B.12))...(25) karena nilai <<1, dapat diasumsikan orde 3 O( 4 ) 0 sehingga.(26) agar terbentuk persamaan NLS maka kecepatan group dari nukleotida harus berbentuk:.(27) substitusi persamaan (26) ke persamaan (25) menghasilkan persamaan NLS ( persamaan (28)) ( penurunan lengkapnya dapat dilihat pada lampiran B yaitu persamaan (B.14)- (B.17))... (28)

4 7 Persamaan (28) dapat diubah mejadi lebih sederhana dalam penulisannya menerapkan pemisalan untuk koefisien dispersi dan koefisien nonlinear 2.(29a)...(29b)...(29c) Sehingga diperoleh persamaan NLS kubikkuitik soliton DNA model PBD..(30) Persamaan (30) merupakan persamaan NLS kubik-kuintik untuk fungsi F 1 dan untuk menyelesaikannya harus menggunakan anzats (tebakan). Berdasarkan persamaan tersebut terlihat perbedaan antara ekspansi potensial morse hingga orde-3 dan hingga orde-4 yaitu terdapat nilai konstanta R yang merupakan koefisien nonlinear atau kata lain potensial morse hingga orde-4 mempuyai dua koefisien nonlinear. Nilai R itu sendiri dipengaruhi oleh yang merupakan koefisien dari ekspansi deret taylor potensial morse hingga orde-4 ( 4 ). Jika diambil nilai sama nol maka nilai koefisien nonlinear sama nol (R=0), artinya persamaan (30) menjadi persamaan ekspansi potensial morse hingga orde-3. Persamaan (12) jika diganti anzats (tebakan) solusi orde epsilon yang lebih tinggi maka diperoleh koefisian nonlinear R mempunyai orde ( 2 ), sedangkan untuk nilai itu sendiri sangat kecil sekali ( <<1), artinya anzats (tebakan) pada persamaan (12) sudah tepat. 4.2 Solusi Persamaan NLS Soliton DNA Model PBD Agar persamaan (30) dapat diselesaikan maka diberikan persamaan (14) sebagai persamaan anzats (tebakan) dari persamaan NLS kubik-kuintik, F 1 merupakan fungsi dari S dan, sedangkan merupakan frekuensi gelombang soliton DNA berperan sebagai varibel bebas dan merupakan fungsi real. Substitusi persamaan (14) ke persamaan (30) maka diperoleh persamaan kalikan persamaan (31)....(31) maka diperoleh persamaan yang mengindikasikan ( penurunan lengkapnya dapat dilihat pada lampiran C yaitu persamaan (C.2)- (C.5)):...(32) dimana c merupakan sebuah konstanta. Selanjutnya kembali membatasi diri pada solusi yang memiliki kondisi 0 dan u 0 pada S ± dan mengimplikasikan untuk nilai c = 0. Persamaan (32) dapat diatur kembali menjadi bentuk yang lebih sederhana menjadi......(33) Integrasi pada persamaan (33) diselesaikan sehingga diperoleh persamaan (34) ( penurunan lengkapnya dapat dilihat pada lampiran C yaitu persamaan (C.8)- (C.15)) (34) Substitusi persamaan (34) ke persamaan (30) sehingga diperoleh solusi untuk anzats (tebakan) dari persamaan NLS kubik-kuintik ( persamaan (35a) ) dan untuk konjugat ( persamaan (35b) ) ( penurunan lengkapnya dapat dilihat pada lampiran C yaitu persamaan (C.16a) dan (C.16b))

5 (35a) dan.....(35b) Fungsi gelombang ( ) dari nukleotida dinyatakan dalam fungsi F 0, F 1, F 2 dan F 3, karena persamaan NLS kubik-kuintik hanya dinyatakan dalam fungsi F 1 maka lakukan substitusi persamaan (18a), (19a) dan (20a) ke persamaan (12)...(36) Solusi persamaan gelombang diperoleh mensubstitusi persamaan (35) ke persamaan (36) maka d iperoleh.... (37)......(38)

6 9 persamaan (38) tersebut dapat di sederhanakan menjadi.. (39) Solusi persamaan NLS soliton DNA model PBD dapat ditulis sebagai berikut: 2 cos3( + )...(40) Kasus amplitudo besar substitusi persamaan (40) ke persamaan (7) memisalkan koefisien untuk persamaan (7) adalah 1 yang mempengaruhi pada koefisien F 0 dan F 2. Apabila solusi pada penyelesaian persamaan (12) ditambah F 3 maka koefisien dari F 3 adalah, artinya atau karena 1 nilainya sangat kecil maka nilai 2 akan lebih besar dari pada 1 yang mengindikasikan untuk persamaan (7) bisa menggunakan nilai yang besar, maka diperoleh persamaan gelombang dalam bentuk 2 cos3( + ) (41) dimana dan t merupakan variabel bebas, sedangkan,,,, dan n merupakan variabel terikat yang artinya nilai dari variabel tersebut bergantung pada variabel bebas. Berdasarkan persamaan (40) dan persamaan (41) jelas terlihat agar solusi dari real maka harus dipenuhi >0 dan P>0, artinya /P>0 dan 16 R/3+Q 2 >0. n itu sendiri menyatakan beda fase antara nukleotida yang berada pada rantai yang sama. 4.3 Analisa Hasil Perhitungan Analitik Bagian ini membahas hasil-hasil analisa numerik yang berkaitan karakteristik solusi hingga orde-3 dan hingga orde-4. Program yang dipakai untuk menyelesaikan persamaan tersebut dibuat menggunakan parameter yang sudah ada pada literatur. Gambaran umum dari proses replikasi (denaturasi) DNA merambat dari tengah hingga ke ujung rantai atas dan ujung rantai bawah (dapat dilihat pada Gambar 1), bertambahnya waktu maka perambatan denaturasi DNA akan berpindah terlihat seperti gelombang pada Gambar 3, Gambar 4, Gambar 5 dan Gambar 6. Kasus pertama, karakteristik solusi hingga orde-3, pada kasus ini hanya menggunakan pendekatan potensial morse hingga orde-3 dan hanya terdapat satu koefisien nonlinear. Gambar 3 dan Gambar 4 merupakan representasi umum proses replikasi DNA ekspansi potensial morse hingga orde-3 nilai parameter a = 2.8 x m -1, = dan = y ( pm ) n ( pm ) nl Gambar 3. Karakteristik So lusi traveling Persamaan NLS soliton DNA model PBD h ingga orde- 3 pada saat a = 2.8 x m -1, = dan = 10-3 plot y n (pm) terhadap nl(pm) pada saat T=0.

7 10 y ( pm ) n (a) (b) Gambar 4. Karakteristik Solusi traveling Persamaan NLS soliton DNA model PBD hingga orde-3 pada saat a = 2.8 x m -1, = dan = 10-3 (a) profil soliton DNA dalam tiga dimensi (b) profil soliton DNA tampak atas. Kasus kedua, karakteristik Solusi hingga orde-4. Pada kasus ini menggunakan pendekatan potensial morse hingga orde-4 dan terdapat dua koefisien nonlinear. Gambar 5 merupakan representasi umum proses replikasi DNA ekspansi potensial morse hingga orde-4 nilai parameter a= 2.8 x m -1 (jarak antar nukleotida rantai yang berbeda), = dan = 10-3.

8 11 y ( pm ) n (a) y ( pm ) n (b) (c) Gambar 5. Karakteristik So lusi traveling Persamaan NLS soliton DNA model PBD hingga orde- 4 pada saat = 10 10, a = 2.8 x m - 1 dan = 10-3 (a) plot y n (pm) terhadap nl(pm) pada saat T=0, kurva merah ketika a = 2.8 x m -1 dan kurva hitam ketika a = 3 x m -1 (b) profil soliton DNA dalam tiga dimensi (c) profil soliton DNA tampak atas. Pada Gambar 3, Gambar 4 dan Gambar 5 terlihat ada beberapa faktor yang mempengaruhi model dari replikasi DNA, diantaranya jarak antar nukleotida untuk rantai yang berbeda dan ekspansi deret taylor pada potensial morse. Potensial morse itu sendiri merupakan ikatan hidrogen antar nukleotida untuk rantai yang berbeda pada DNA, sedangkan jarak antar nukleotida untuk rantai yang berbeda mempengaruhi lebar dari potensial morse. Perbedaan terlihat ketika menggunakan potensial morse

9 12 hingga orde-3 dan hingga orde-4 pada panjang gelombang yang dihasilkan dalam satu siklus, semakin besar orde potensial morse yang dipakai maka semakin kecil panjang gelombang yang terbentuk oleh suatu nukleotida. Gambar 3 dan Gambar 5a memiliki amplitudo (simpangan) yang berbeda, terlihat ekspansi potensial morse hingga orde-3 memiliki amplitudo yang positif dan ekspansi potensial morse hingga orde-4 memiliki amplitudo yang negatif. Artinya pada saat ekspansi potensial morse hingga orde-3 pergerakan denaturasi DNA lebih dominan ke arah u n, sedangkan pada saat potensial morse hingga orde-4 pergerakan denaturasi DNA lebih dominan ke arah v n. Pada Gambar 5a terdapat dua grafik amplitudo yang berbeda. Grafik warna merah untuk nilai a = 2.8 x m -1 dan grafik warna hitam untuk nilai a = 3 x m -1. Hal tersebut disebabkan oleh lebar dari potensial morse. Semakin lebar potensial morse maka amplitudo yang terbentuk akan semakin besar. Pengaruh lebar potensial morse dapat dilihat pada Gambar 6. (a) (b) Gambar 6. Karakteristik So lusi traveling Persamaan NLS soliton DNA model PBD hingga orde- 4 pada saat = dan = 10-2 (a) pada saat a = 2.8 x m -1 (b) pada saat a = 7 x m -1. Lebar potensial morse mempengaruhi amplitudo dari nukleotida, sedangkan lebar potensial morse itu sendiri bergantung pada jarak antar nukleotida pada rantai yang berbeda. Berdasarkan Gambar 6 terlihat semakin besar jarak antar nukleotida rantai yang berbeda, maka amplitudo denaturasi semakin kecil. Artinya lebar potensial morse berbanding terbalik jarak antar nukleotida rantai yang berbeda.

Lampiran A. Diagram Alir Penelitian. Mulai. Penelusuran literatur. Sudah siap. Penurunan solusi soliton DNA model PBD. Aplikasi maple 11 dan MATLAB

Lampiran A. Diagram Alir Penelitian. Mulai. Penelusuran literatur. Sudah siap. Penurunan solusi soliton DNA model PBD. Aplikasi maple 11 dan MATLAB LAMPIRAN 15 16 Lampiran A. Diagram Alir Penelitian Mulai Penelusuran literatur Sudah siap Penurunan solusi soliton DNA model PBD Aplikasi maple 11 dan MATLAB Analisa hasil perhitungan solusi soliton DNA

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN Melalui penerapan metode bedahingga dengan interpolasi Lagrange sebagai syarat batas terkait, maka solusi numerik dari dinamika dan interaksi soliton DNA model PBD dapat dicari

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

Bab 1 PENDAHULUAN. 1.1 Latar Belakang

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Bab 1 PENDAHULUAN 1.1 Latar Belakang Kerusakan pantai bukanlah suatu hal yang asing lagi bagi masyara- kat. Banyak faktor yang dapat menyebabkan kerusakan pantai baik karena ulah manusia maupun karena

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Ilmu fisika merupakan ilmu yang mempelajari berbagai macam fenomena alam dan berperan penting dalam kehidupan sehari-hari. Salah satu peran ilmu fisika

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK Dalam bab ini, kita akan mengamati perambatan gelombang pada fluida ideal dengan dasar rata. Perhatikan gambar di bawah ini. Gambar 3.1 Aliran Fluida pada Dasar

Lebih terperinci

Akar-Akar Persamaan. Definisi akar :

Akar-Akar Persamaan. Definisi akar : Akar-Akar Persamaan Definisi akar : Suatu akar dari persamaan f(x) = 0 adalah suatu nilai dari x yang bilamana nilai tersebut dimasukkan dalam persamaan memberikan identitas 0 = 0 pada fungsi f(x) X 1

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

DERET FOURIER DAN APLIKASINYA DALAM FISIKA Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER

Lebih terperinci

DINAMIKA DAN INTERAKSI SOLITON DNA MODEL PEYRARD-BISHOP-DAUXOIS SWITENIA WANA PUTRI

DINAMIKA DAN INTERAKSI SOLITON DNA MODEL PEYRARD-BISHOP-DAUXOIS SWITENIA WANA PUTRI DINAMIKA DAN INTERAKSI SOLITON DNA MODEL PEYRARD-BISHOP-DAUXOIS SWITENIA WANA PUTRI DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 01 Switenia Wana Putri.

Lebih terperinci

SOLUSI GELOMBANG BERJALAN UNTUK PERSAMAAN SCHRÖDINGER DENGAN PENUNDAAN TERDISTRIBUSI

SOLUSI GELOMBANG BERJALAN UNTUK PERSAMAAN SCHRÖDINGER DENGAN PENUNDAAN TERDISTRIBUSI SOLUSI GELOMBANG BERJALAN UNTUK PERSAMAAN SCHRÖDINGER DENGAN PENUNDAAN TERDISTRIBUSI (Traveling wave solutions for Schrödinger equation with distributed delay) Oleh : ACHMAD SUBEQAN NRP: 1206 100 062 Dosen

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

C.1 OSILASI GANDENG PEGAS

C.1 OSILASI GANDENG PEGAS Mata Kuliah GELOMBANG-OPTIK OPTIK TOPIK I SUB TOPIK OSILASI GANDENG C. SISTEM OSILASI DUA DERAJAT KEBEBASAN:OSILASI GANDENG Satu derajat kebebasan: Misalkan: pegas yang memiliki satu simpangan Dua derajat

Lebih terperinci

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Teknikom : Vol. No. (27) E-ISSN : 2598-2958 PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya Utama,

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER

MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER 1 Deret Fourier 2 Tujuan : 1. Dapat merepresentasikan seluruh fungsi periodik dalam bentuk deret Fourier. 2. Dapat memetakan Cosinus Fourier, Sinus Fourier, Fourier

Lebih terperinci

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya

Lebih terperinci

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH 1105 100 056 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

Institut Manajemen Telkom

Institut Manajemen Telkom Institut Manajemen Telkom Osa Omar Sharif JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. triyana.muliawati@ma.itera.ac.id 1. Pengenalan Metode

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik

Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik Eko Rendra Saputra, Agus Purwanto, dan Sumarna Pusat Studi Getaran dan Bunyi, Jurdik Fisika, FMIPA, UNY ABSTRAK Penelitian ini bertujuan untuk menganalisa

Lebih terperinci

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI HARMONIK PENDAHULUAN Gerak dapat dikelompokan menjadi: Gerak di sekitar suatu tempat contoh: ayunan bandul, getaran senar dll. Gerak yang berpindah tempat contoh:

Lebih terperinci

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Fisika

K13 Revisi Antiremed Kelas 11 Fisika K13 Revisi Antiremed Kelas 11 Fisika Persiapan PTS Semester Genap Halaman 1 01. Jika P adalah tekanan, V adalah volume, n adalah jumlah molekul, R adalah konstanta gas umum, dan T adalah suhu mutlak. Persamaan

Lebih terperinci

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA Rahmawati Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya,

Lebih terperinci

Studi Komputasi Gerak Bouncing Ball pada Vibrasi Permukaan Pantul

Studi Komputasi Gerak Bouncing Ball pada Vibrasi Permukaan Pantul Studi Komputasi Gerak Bouncing Ball pada Vibrasi Permukaan Pantul Haerul Jusmar Ibrahim 1,a), Arka Yanitama 1,b), Henny Dwi Bhakti 1,c) dan Sparisoma Viridi 2,d) 1 Program Studi Magister Sains Komputasi,

Lebih terperinci

PENENTUAN SOLUSI GELOMBANG NONLINIER KORTEWEG DE VRIES MENGGUNAKAN METODE HIROTA

PENENTUAN SOLUSI GELOMBANG NONLINIER KORTEWEG DE VRIES MENGGUNAKAN METODE HIROTA PENENTUAN SOLUSI GELOMBANG NONLINIER KORTEWEG DE VRIES MENGGUNAKAN METODE HIROTA Dra. HIDAYATI,.M.Si, Disampaikun pada Seminar Nasional, Mubes Ikutan Alumni FPMIPA-FMIPA UhP musan FISIKA FAKULTAS MATEMATIKA

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

PENERAPAN FORMULASI HIROTA UNTUK PERSAMAAN UMUM MODUS TERGANDENG PADA KISI BRAGG DALAM NONLINIER DENGAN DIFRAKSI

PENERAPAN FORMULASI HIROTA UNTUK PERSAMAAN UMUM MODUS TERGANDENG PADA KISI BRAGG DALAM NONLINIER DENGAN DIFRAKSI PENERAPAN FORMULASI HIROTA UNTUK PERSAMAAN UMUM MODUS TERGANDENG PADA KISI BRAGG DALAM NONLINIER DENGAN DIFRAKSI Oleh: ALETTA ANGGRAINI KANDI G74102025 PROGRAM STUDI FISIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

III. BAHAN DAN METODE

III. BAHAN DAN METODE III. BAHAN DAN METODE 3.1 Tempat dan Waktu Penelitian Penelitian dilakukan di Laboratorium Fisika Teori dan Komputasi, Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup

IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup IV. HASIL DAN PEMBAHASAN 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup berdampingan. Diasumsikan habitat ini dibagi menjadi dua

Lebih terperinci

COBA PERHATIKAN GAMBAR GRAFIK BERIKUT

COBA PERHATIKAN GAMBAR GRAFIK BERIKUT GELOMBANG STASIONER COBA PERHATIKAN GAMBAR GRAFIK BERIKUT POLA GELOMBANG APAKAH YANG DIHASILKAN APABILA PERTEMUAN GELOMBANG DATANG DARI TITIK A DAN YANG SATUNYA LAGI DIPANTULKAN DARI TITIK B SEPERTI YANG

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Persamaan SWE Linier untuk Dasar Sinusoidal

Persamaan SWE Linier untuk Dasar Sinusoidal Bab 3 Persamaan SWE Linier untuk Dasar Sinusoidal Pada bab ini akan dijelaskan mengenai penggunaan persamaan SWE linier untuk masalah gelombang air dengan dasar sinusoidal. Dalam menyelesaikan masalah

Lebih terperinci

Bab 4 Diskretisasi Numerik dan Simulasi Berbagai Kasus Pantai

Bab 4 Diskretisasi Numerik dan Simulasi Berbagai Kasus Pantai Bab 4 Diskretisasi Numerik dan Simulasi Berbagai Kasus Pantai Pada bab ini sistem persamaan (3.3.9-10) akan diselesaikan secara numerik dengan menggunakan metoda beda hingga. Kemudian simulasi numerik

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Imaddudin Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

Powered By Upload By - Vj Afive -

Powered By  Upload By - Vj Afive - Gelombang TRANSVERSAL Ber dasar kan Ar ah Get ar = Gelombang yang arah getarnya tegak lurus terhadap arah rambatnya Gelombang LONGI TUDI NAL = Gelombang yang arah getarnya sejajar dengan arah rambatnya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

SOLUSI SOLITON GELAP ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT DENGAN PENAMBAHAN PARAMETRIC DRIVING

SOLUSI SOLITON GELAP ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT DENGAN PENAMBAHAN PARAMETRIC DRIVING Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 6 12 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SOLUSI SOLITON GELAP ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT DENGAN PENAMBAHAN PARAMETRIC DRIVING

Lebih terperinci

BAB IV SIMULASI NUMERIK

BAB IV SIMULASI NUMERIK BAB IV SIMULASI NUMERIK Pada bab ini kita bandingkan perilaku solusi KdV yang telah dibahas dengan hasil numerik serta solusi numerik untuk persamaan fkdv. Solusi persamaan KdV yang disimulasikan pada

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

Penggunaan Bilangan Kompleks dalam Pemrosesan Signal

Penggunaan Bilangan Kompleks dalam Pemrosesan Signal Penggunaan Bilangan Kompleks dalam Pemrosesan Signal Stefanus Agus Haryono (13514097) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI

PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2015

Lebih terperinci

Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n!

Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n! Analisa Numerik Teknik Sipil 1 PENDAHULUAN 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah Dalam matematika, dikenal adanya fungsi transenden (fungsi eksponen, logaritma natural, invers dan sebagainya),

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan

Lebih terperinci

INTERFERENSI GELOMBANG

INTERFERENSI GELOMBANG INERFERENSI GELOMBANG Gelombang merupakan perambatan dari getaran. Perambatan gelombang tidak disertai dengan perpindahan materi-materi medium perantaranya. Gelombang dalam perambatannya memindahkan energi.

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan matematika merupakan bidang matematika yang berusaha untuk merepresentasikan dan menjelaskan masalah dunia nyata dalam pernyataan matematik. Representasi

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK 1. Jarak kota P dan kota R pada sebuah peta adalah 20 cm. Jika skala pada peta tersebut 1:2.500.000, maka jarak sebenarnya dua kota tersebut adalah. A.

Lebih terperinci

Jurnal MIPA 37 (2) (2014): Jurnal MIPA.

Jurnal MIPA 37 (2) (2014): Jurnal MIPA. Jurnal MIPA 37 (2) (2014): 192-199 Jurnal MIPA http://journal.unnes.ac.id/nju/index.php/jm PENYELESAIAN PERSAMAAN DUFFING OSILATOR PADA APLIKASI WEAK SIGNAL DETECTION MENGGUNAKAN METODE AVERAGING Z A Tamimi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

Mutawafaq Haerunnazillah 15B08011

Mutawafaq Haerunnazillah 15B08011 GELOMBANG STASIONER Gelombang stasioner merupakan perpaduan dua gelombang yang mempunyai frekuensi, cepat rambat, dan amplitudo yang sama besar namun merambat dalam arah yang berlawanan. Singkatnya, gelombang

Lebih terperinci

PERSAMAAN & SISTEM PERSAMAAN LINEAR

PERSAMAAN & SISTEM PERSAMAAN LINEAR PERSAMAAN & SISTEM PERSAMAAN LINEAR Persamaan Sistem Persamaan Linear DEFINISI PERSAMAAN Persamaan adalah kalimat matematika terbuka yang memuat hubungan sama dengan. Sedangkan kalimat matematika tertutup

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Pemodelan yang di lakukan pada penelitian kali ini adalah dengan metode studi litelatur dan komputasi dengan metode numerik. Studi literatur di gunakan untuk mempelajadi pemodelan

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK Disusun oleh : Muhammad Nur Farizky M0212053 SKRIPSI PROGRAM STUDI

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : EKA PUTRI ARDIANTI

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1 Model LWR Pada skripsi ini, model yang akan digunakan untuk memodelkan kepadatan lalu lintas secara makroskopik adalah model LWR yang dikembangkan oleh Lighthill dan William

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dijelaskan mengenai model matematika penyakit campak dengan pengaruh vaksinasi, diantaranya formulasi model penyakit campak, titik ekuilibrium bebas penyakit

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan Getaran Teredam Dalam Rongga Tertutup pada Sembarang Bentuk Dari hasil beberapa uji peredaman getaran pada pipa tertutup membuktikan bahwa getaran teredam di dalam rongga tertutup dapat dianalisa tidak

Lebih terperinci

APROKSIMASI VARIASIONAL UNTUK SOLUSI SOLITON PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT NONLOKAL

APROKSIMASI VARIASIONAL UNTUK SOLUSI SOLITON PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT NONLOKAL Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 40 46 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND APROKSIMASI VARIASIONAL UNTUK SOLUSI SOLITON PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT NONLOKAL GUSRIAN

Lebih terperinci

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

Metode Split Step Fourier Untuk Menyelesaikan Nonlinear Schrödinger Equation Pada Nonlinear Fiber Optik

Metode Split Step Fourier Untuk Menyelesaikan Nonlinear Schrödinger Equation Pada Nonlinear Fiber Optik Metode Split Step Fourier Untuk Menyelesaikan Nonlinear Schrödinger Equation Pada Nonlinear Fiber Optik Endra Fakultas Ilmu Komputer, Jurusan Sistem Komputer, Universitas Bina Nusantara Jl K.H. Syahdan

Lebih terperinci

PERHITUNGAN NUMERIK DALAM MENENTUKAN KESTABILAN SOLITON CERAH ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT DENGAN PENAMBAHAN POTENSIAL LINIER

PERHITUNGAN NUMERIK DALAM MENENTUKAN KESTABILAN SOLITON CERAH ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT DENGAN PENAMBAHAN POTENSIAL LINIER Jurnal Matematika UNAND Vol 3 No 3 Hal 68 75 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERHITUNGAN NUMERIK DALAM MENENTUKAN KESTABILAN SOLITON CERAH ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Berbagai gejala alam menampilkan perilaku yang rumit, tidak dapat diramalkan dan tampak acak (random). Keacakan ini merupakan suatu yang mendasar, dan tidak akan hilang

Lebih terperinci

BANK SOAL METODE KOMPUTASI

BANK SOAL METODE KOMPUTASI BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

Reflektor Gelombang Berupa Serangkaian Balok

Reflektor Gelombang Berupa Serangkaian Balok Bab 4 Reflektor Gelombang Berupa Serangkaian Balok Setelah kita mengetahui bagaimana pengaruh dan dimensi optimum dari 1 balok terendam sebagai reflektor gelombang maka pada bab ini akan dibahas bagaimana

Lebih terperinci

Bab VI Perbandingan Model Simulasi menggunakan Metode Monte Carlo dan Metode Functional Statistics Algorithm (FSA)

Bab VI Perbandingan Model Simulasi menggunakan Metode Monte Carlo dan Metode Functional Statistics Algorithm (FSA) 37 Bab VI Perbandingan Model Simulasi menggunakan Metode Monte Carlo dan Metode Functional Statistics Algorithm (FSA) VI.1 Probabilitas Integral (Integral Kumulatif) Ketika menganalisis distribusi probabilitas,

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci