C.1 OSILASI GANDENG PEGAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "C.1 OSILASI GANDENG PEGAS"

Transkripsi

1 Mata Kuliah GELOMBANG-OPTIK OPTIK TOPIK I SUB TOPIK OSILASI GANDENG

2 C. SISTEM OSILASI DUA DERAJAT KEBEBASAN:OSILASI GANDENG Satu derajat kebebasan: Misalkan: pegas yang memiliki satu simpangan Dua derajat kebebasan: Misalkan: pegas yang memiliki dua simpangan berbeda

3 C. OSILASI GANDENG PEGAS k m k m k Keadaan Setimbang ψ ψ Keadaan Umum Sistem pegas gandeng, terdiri dari tiga pegas yang konstanta pegasnya sama yakni k, dan dua benda yang massanya sama juga yakni m. Sistem ini terletak pada permukaan datar tanpa gesekan.

4 Untuk benda m, hukum II Newton: ψ ψ m m... (.4)

5 Untuk benda m, hukum II Newton: ψ ψ m m... (.5)

6 Persamaan umum gelombang dengan... (.6)... (.7) Masukan solusi umum penyelesaian persamaan gelombang kedalam (.6) dan (.7)

7 Atau dalam bentuk matrik: Dengan determinan ( )( ω + a ω + a ) a a = ( ) ( ) ω a + a ω + a a a a = Persamaan kuadrat dalam ω ω Ingat Rumus abc (akar pers. Kuadrat)! ( a + a ) I, II = ± 4 ( a + a ) ( a a a a )

8 Jika Maka Mode tinggi Perbandingan amplitudo Mode I Mode II? A A = a ( ω a ) II

9 Untuk kasus Maka + Jika maka

10 Solusi persamaan merupakan osilasi pusat massa gerak osilasi pusat massa ini mempunyai frekuensi yang sama dengan frekuensi osilasi pegas tunggal, pegas penggandeng hanya berfungsi sebagai penyelaras gerak osilasi. Perpindahan masing-masing benda mempunyai besar dan arah yang sama ψ ψ =ψ ψ =ψ ψ

11 _ Jika maka

12 Solusi persamaan merupakan osilasi relatif ψ ψ =ψ ( ==+ ) IIIIII At cos( ) ψ =ψ ψ cos = + ( AAt ) ( ωφ ) II Gerak osilasi seluruh sistem merupakan superposisi linier dari kedua osilasi harmonik tersebut, yaitu: ψ = ψ I + ψ II

13 OSILASI GANDENG RANGKAIAN LC I I I C C 3 C II Osilasi Gandeng Rangkaian LC Rangkaian LC gandeng yang terdiri dari tiga kapasitor yang kapasitansinya sama yakni C, dan dua induktor yang induktansinya juga sama yakni L, seperti pada gambar. Mula-mula rangkaian ini dihubungkan dengan suatu sumber, dan setelah tercapai resonansi sumber dilepas kembali.

14 Hukum II Kirchoff, dalam rangkaian tertutup V = Loop I : V V V + + = L C C di Q Q L + + = dt C C Q L + + = (.8) d dq dq dt C dt C dt

15 d dq dq dt LC dt LC dt I + + = d I + I + I = dt L C L C I = I + I I = I - I 3 3 Dari hukum I Kirchoff Maka : d 3 dt LC LC I + I + I - I = ( ) d 3 dt LC LC LC I + + I I =... (.9)

16 Loop II V V V + + = 3 L C C di Q Q 3 3 L + = dt C C3 d I3 I I3 dt LC LC3 + = d I3 ( I I3 ) I3 dt LC LC3 + = + + = d I3 I I3 dt LC LC3 LC... (.)

17 Mode normal I =I sin( ω t- ϕ) n n n d I dt d I3 dt = ω I = ω I 3 Subsitusikan pada pers. (.9) Subsitusikan pada pers. (.) I I ω I = LC LC LC ω I I = LC LC LC

18 I I ω = LC LC LC ω I3 I + + I3 = LC LC3 LC Dalam bentuk matrik ω L C L C L C + I3 I = 3 + ω LC3 LC LC I I + ω LC LC LC3 3 =

19 Determinan matrik ω ω LC3 LC LC3 LC LC LC + + = LC LC3 LC LC ( ) ( ) ( ω ω ω ) X = LC LC LC LC3 LC LC Ingat!!! Rumus abc ( ) ( ω ω ) A B C = Silahkan selesaikan!!!! Persamaan kuadrat

20 ANALISIS OSILASI HARMONIS Fungsi gangguan ψ(t) yang periodik dapat diuraikan sebagai superposisi linier dari fungsi harmonik sederhana dengan amplitudo dan frekuensi tertentu, melalui uraian deret Fourier sebagai berikut: ψ ω ω { n n } ( t) = a + a cos( n t) + b sin ( n t) n= dengan a n dan b n disebut koefisien-koefisien Fourier. T an = ψ ( t) cos( nωt ) dt T T T bn = ψ ( t ) sin ( nωt ) dt T T dengan n =,,,3,, dan ω = π T (.) (.) (.3)

21 Untuk gangguan ψ(t) yang tidak periodik dapat diuraikan sebagai superposisi linier dari fungsi harmonik sederhana, melalui transformasi Fourier sebagai berikut: dengan iω t ψ ( t ) = g ( ω ) e dω π iω t g ( ω ) = f ( t ) e dt π (.4) (.5) Persamaan.4 menunjukkan bahwa gangguan yang tidak periodik dapat dinyatakan sebagai superposisi linier dan fungsi harmonik dalam spektrum ω yang kontinu. Analisis energi potensial dari sistem osilasi: ψ V F d k ( ψ ) = ( ψ ). ψ = ψ (.6) Jadi, fungsi energi potensial V(ψ) yang sebanding dengan ψ,mengungkapkan gerak osilasi harmonis dari sistem tersebut.

22 Sebaliknya dapat ditunjukkan bahwa setiap sistem dengan fungsi energi potensial yang berharga minimum pada suatu titik tertentu (misalnya di ψ= ψ ), maka sistem tersebut akan berosilasi di sekitar titik ψ tersebut. Syarat Minimum: dv = ψ = d ψ ψ d V > dψ ψ = ψ dan (.7) Fungsi potensial V(ψ) diekspansikan kedalam deret Taylor untuk ψ= ψ maka V ( ) V( ) ( ) ( ψ ψ ) dv d V... ψ = ψ + ψ ψ + + d ψ! d ψ ψ= ψ ψ= ψ

23 Mengingat persamaan (.7), maka persamaan terakhir ini dapat dituliskan dalam bentuk : V ( ψ ) V ( ψ ) ( ψ ψ ) d V! dψ ψ = ψ = (.8) Tampak bahwa persamaan (.8) ini merupakan bentuk yang sama dengan persamaan (.6), ini terpenuhi bila osilasinya mempunyai simpangan (aproksimasi) yang kecil.

24 Thanks for your Attention!!!

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI HARMONIK PENDAHULUAN Gerak dapat dikelompokan menjadi: Gerak di sekitar suatu tempat contoh: ayunan bandul, getaran senar dll. Gerak yang berpindah tempat contoh:

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK

OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK 1 Last Time Induktansi Diri 2 Induktansi Diri Menghitung: 1. Asumsikan arus I mengalir 2. Hitung B akibat adanya I tersebut 3. Hitung fluks akibat adanya B tersebut

Lebih terperinci

menganalisis suatu gerak periodik tertentu

menganalisis suatu gerak periodik tertentu Gerak Harmonik Sederhana GETARAN Gerak harmonik sederhana Gerak periodik adalah gerak berulang/berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak harmonik sederhana (GHS) adalah gerak

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

Materi Pendalaman 01:

Materi Pendalaman 01: Materi Pendalaman 01: GETARAN & GERAK HARMONIK SEDERHANA 1 L T (1.) f g Contoh lain getaran harmonik sederhana adalah gerakan pegas. Getaran harmonik sederhana adalah gerak bolak balik yang selalu melewati

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG 1/19 Kuliah Fisika Dasar Teknik Sipil 2007 GETARAN DAN GELOMBANG Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id GETARAN Getaran adalah salah satu bentuk

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas 11 FISIKA Gerak Harmonis - Soal Doc Name: K1AR11FIS0401 Version : 014-09 halaman 1 01. Dalam getaran harmonik, percepatan getaran (A) selalu sebanding dengan simpangannya tidak bergantung

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

Teori & Soal GGB Getaran - Set 08

Teori & Soal GGB Getaran - Set 08 Xpedia Fisika Teori & Soal GGB Getaran - Set 08 Doc Name : XPFIS0108 Version : 2013-02 halaman 1 01. Menurut Hukum Hooke untuk getaran suatu benda bermassa pada pegas ideal, panjang peregangan yang dijadikan

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons SILABUS : 1.Getaran a. Getaran pada sistem pegas b. Getaran teredam c. Energi dalam gerak harmonik sederhana 2.Gelombang a. Gelombang sinusoidal b. Kecepatan phase dan kecepatan grup c. Superposisi gelombang

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

K13 Revisi Antiremed Kelas 10 FISIKA

K13 Revisi Antiremed Kelas 10 FISIKA K Revisi Antiremed Kelas 0 FISIKA Getaran Harmonis - Soal Doc Name: RKAR0FIS00 Version : 06-0 halaman 0. Dalam getaran harmonik, percepatan getaran (A) selalu sebanding dengan simpangannya tidak bergantung

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

The Forced Oscillator

The Forced Oscillator The Forced Oscillator Behaviour, Displacement, Velocity and Frequency Apriadi S. Adam M.Sc Jurusan Fisika Universitas Islam Negeri Sunan Kalijaga Yogyakarta Update 5 November 2013 A.S. Adam (UIN SUKA)

Lebih terperinci

MODUL MATEMATIKA TEKNIK

MODUL MATEMATIKA TEKNIK MODUL MATEMATIKA TEKNIK Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2011 Linear

Lebih terperinci

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 Arus bolak-balik adalah arus yang arahnya berubah secara bergantian. Bentuk arus bolakbalik yang paling sederhana adalah arus sinusoidal. Tegangan yang mengalir

Lebih terperinci

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB Getaran (Osilasi) : Gerakan berulang pada lintasan yang sama Ayunan Gerak Kipas Gelombang dihasilkan oleh getaran Gelombang bunyi Gelombang air

Lebih terperinci

Arus & Tegangan bolak balik(ac)

Arus & Tegangan bolak balik(ac) Arus & Tegangan bolak balik(ac) Dede Djuhana E-mail:dede@fisika.ui.ac.id Departemen Fisika FMIPA-UI 0-0 Pendahuluan Arus dan Tegangan AC Arus dan tegangan bolak balik adalah arus yang dihasilkan oleh sebuah

Lebih terperinci

Getaran, Gelombang dan Bunyi

Getaran, Gelombang dan Bunyi Getaran, Gelombang dan Bunyi Getaran 01. EBTANAS-06- Pada getaran selaras... A. pada titik terjauh percepatannya maksimum dan kecepatan minimum B. pada titik setimbang kecepatan dan percepatannya maksimum

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

Induktansi. Kuliah Fisika Dasar II Jurusan TIP, FTP, UGM 2009

Induktansi. Kuliah Fisika Dasar II Jurusan TIP, FTP, UGM 2009 Induktansi Kuliah Fisika Dasar II Jurusan TIP, FTP, UGM 2009 Ikhsan Setiawan, M.Si. Jurusan Fisika FMIPA UGM http:/setiawan.synthasite.com ikhsan_s@ugm.ac.id 1 Outline Induktansi Diri Rangkaian RL Energi

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana MODUL PERKULIAHAN OSILASI Bagian- Fakultas Program Studi atap Muka Kode MK Disusun Oleh eknik eknik Elektro 3 MK4008, S. M Abstract Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik

Lebih terperinci

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA GELOMBAG : Gerak Harmonik Sederhana M. Ishaq Pendahuluan Gerak harmonik adalah sebuah kajian yang penting terutama jika anda bergelut dalam bidang teknik, elektronika, geofisika dan lain-lain. Banyak gejala

Lebih terperinci

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG GETARAN

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG GETARAN Mata Pelajaran : Fisika Guru : Arnel Hendri, SPd., M.Si Nama Siswa :... Kelas :... EBTANAS-06-24 Pada getaran selaras... A. pada titik terjauh percepatannya maksimum dan kecepatan minimum B. pada titik

Lebih terperinci

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017 A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.

Lebih terperinci

BAB 3 DINAMIKA STRUKTUR

BAB 3 DINAMIKA STRUKTUR BAB 3 DINAMIKA STRUKTUR Gerakan dari struktur terapung akan dipengaruhi oleh keadaan sekitarnya, dimana terdapat gaya gaya luar yang bekerja pada struktur dan akan menimbulkan gerakan pada struktur. Untuk

Lebih terperinci

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan Getaran Teredam Dalam Rongga Tertutup pada Sembarang Bentuk Dari hasil beberapa uji peredaman getaran pada pipa tertutup membuktikan bahwa getaran teredam di dalam rongga tertutup dapat dianalisa tidak

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

BAB GETARAN HARMONIK

BAB GETARAN HARMONIK BAB GETARAN HARMONIK Tujuan Pembelajaran Setelah mempelajari materi pada bab ini, diharapkan Anda mampu menganalisis, menginterpretasikan dan menyelesaikan permasalahan yang terkait dengan konsep hubungan

Lebih terperinci

Deret Fourier. Slide: Tri Harsono PENS ITS Politeknik Elektronika Negeri Surabaya (PENS) - ITS

Deret Fourier. Slide: Tri Harsono PENS ITS Politeknik Elektronika Negeri Surabaya (PENS) - ITS Deret Fourier Slide: Tri Harsono PENS ITS trison@eepis-its.edu . Pendahuluan Gelombang di alam nyata merupakan : Jumlahan gelombang-gelombang pembentuknya (=gelombanggelombang harmonisanya) Suatu gelombang

Lebih terperinci

HUKUM - HUKUM NEWTON TENTANG GERAK.

HUKUM - HUKUM NEWTON TENTANG GERAK. DINAMIKA GERAK HUKUM - HUKUM NEWTON TENTANG GERAK. GERAK DAN GAYA. Gaya : ialah suatu tarikan atau dorongan yang dapat menimbulkan perubahan gerak. Dengan demikian jika benda ditarik/didorong dan sebagainya

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

iii Banda Aceh, Nopember 2008 Sabri, ST., MT

iii Banda Aceh, Nopember 2008 Sabri, ST., MT ii PRAKATA Buku ini menyajikan pembahasan dasar mengenai getaran mekanik dan ditulis untuk mereka yang baru belajar getaran. Getaran yang dibahas di sini adalah getaran linier, yaitu getaran yang persamaan

Lebih terperinci

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Program Studi Teknik Pertambangan GERAK HARMONIK SEDERHANA Dalam mempelajari masalah gerak pada gelombang atau gerak harmonik, kita mengenal yang namanya PERIODE, FREKUENSI DAN

Lebih terperinci

SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA

SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA Hari, tanggal: Rabu, 2 April 2014 Waktu: 60 menit Nama: NIM: 1. (50 poin) Sebuah

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat. BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan

Lebih terperinci

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung (agussuroso@fi.itb.ac.id) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Materi 1 Sumber arus bolak-balik (alternating current, AC) 2 Resistor pada rangkaian AC 3 Induktor

Lebih terperinci

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17, 3. ORBIT KEPLERIAN AS 2201 Mekanika Benda Langit 1 3.1 PENDAHULUAN Mekanika Newton pada mulanya dimanfaatkan untuk menentukan gerak orbit benda dalam Tatasurya. Misalkan Matahari bermassa M pada titik

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

PEMBENTUKAN MODEL RANGKAIAN LISTRIK

PEMBENTUKAN MODEL RANGKAIAN LISTRIK PEMBENTUKAN MODEL RANGKAIAN LISTRIK Pada sub bab ini akan membahas tentang sistem listrik. Pembahasan ini berperan sebagai suatu contoh yang mengesankan dari kenyataan penting, bahwa sistem fisis yang

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : FISIKA DASAR Kode Mata : DK - 11203 Jurusan / Jenjang : D3 MANAJEMEN INFORMAA Tujuan Instruksional Umum : Agar

Lebih terperinci

19:25:08. Fisika I. mengenal persamaan matematik. harmonik sederhana. osilasi harmonik Mahasiswa. Mahasiswa. Kompetensi: Osilasi

19:25:08. Fisika I. mengenal persamaan matematik. harmonik sederhana. osilasi harmonik Mahasiswa. Mahasiswa. Kompetensi: Osilasi Kompetensi: Osilasi Mahasiswa mengenal persamaan matematik osilasi harmonik Mahasiswa harmonik sederhana. Mahasiswa mampu mencari besaran-besaran osilasi antara lain amplitudo, frekuensi, fasa. Osilasi

Lebih terperinci

4. Orbit dalam Medan Gaya Pusat. AS 2201 Mekanika Benda Langit

4. Orbit dalam Medan Gaya Pusat. AS 2201 Mekanika Benda Langit 4. Orbit dalam Medan Gaya Pusat AS 2201 Mekanika Benda Langit 4. Orbit dalam Medan Gaya Pusat 4.1 Pendahuluan Pada bab ini dibahas gerak benda langit dalam medan potensial umum, misalnya potensial sebagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Suatu sistem tenaga listrik dikatakan ideal jika bentuk gelombang arus yang dihasilkan dan bentuk gelombang tegangan yang disaluran ke konsumen adalah gelombang sinus murni.

Lebih terperinci

Hendra Gunawan. 25 April 2014

Hendra Gunawan. 25 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 April 014 Kuliah yang Lalu 15.11 Persamaan Diferensial Linear Orde, Homogen 15. Persamaan Diferensial Linear Orde, Tak Homogen 15.3 Penggunaan Persamaan

Lebih terperinci

GERAK OSILASI. Penuntun Praktikum Fisika Dasar : Perc.3

GERAK OSILASI. Penuntun Praktikum Fisika Dasar : Perc.3 GERAK OSILASI I. Tujuan Umum Percobaan Mahasiswa akan dapat memahami dinamika sistem yang bersifat bolak-balik khususnya sistem yang bergetar secara selaras. II Tujuan Khusus Percobaan 1. Mengungkapkan

Lebih terperinci

Modulasi Sudut / Modulasi Eksponensial

Modulasi Sudut / Modulasi Eksponensial Modulasi Sudut / Modulasi Eksponensial Modulasi sudut / Modulasi eksponensial Sudut gelombang pembawa berubah sesuai/ berpadanan dengan gelombang informasi kata lain informasi ditransmisikan dengan perubahan

Lebih terperinci

KATA PENGANTAR. Semarang, 28 Mei Penyusun

KATA PENGANTAR. Semarang, 28 Mei Penyusun KATA PENGANTAR Segala puji syukur kami panjatkan ke hadirat Tuhan Yang MahaEsa. Berkat rahmat dan karunia-nya, kami bisa menyelesaikan makalah ini. Dalam penulisan makalah ini, penyusun menyadari masih

Lebih terperinci

dy dx B. Tujuan Adapun tujuan dari praktikum ini adalah

dy dx B. Tujuan Adapun tujuan dari praktikum ini adalah BAB I PENDAHULUAN 1. Latar Belakang Persamaan diferensial berperang penting di alam, sebab kebanyakan fenomena alam dirumuskan dalam bentuk diferensial. Persamaan diferensial sering digunakan sebagai model

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Fisika

K13 Revisi Antiremed Kelas 10 Fisika K13 Revisi Antiremed Kelas 10 Fisika Persiapan Penilaian Akhir Semester (PAS) Genap Halaman 1 01. Dalam getaran harmonik, percepatan getaran... (A) selalu sebanding dengan simpangannya (B) tidak bergantung

Lebih terperinci

TUJUAN PERCOBAAN II. DASAR TEORI

TUJUAN PERCOBAAN II. DASAR TEORI I. TUJUAN PERCOBAAN 1. Menentukan momen inersia batang. 2. Mempelajari sifat sifat osilasi pada batang. 3. Mempelajari sistem osilasi. 4. Menentukan periode osilasi dengan panjang tali dan jarak antara

Lebih terperinci

PEMBENTUKAN MODEL : AYUNAN (OSILASI) BEBAS. Husna Arifah,M.Sc

PEMBENTUKAN MODEL : AYUNAN (OSILASI) BEBAS. Husna Arifah,M.Sc PEMBENTUKAN MODEL : AYUNAN (OSILASI) BEBAS Husna Arifah,M.Sc Email : husnaarifah@uny.ac.id MEMBANGUN MODEL Suatu pegas yang digantungkan secara vertikal dari suatu titik tetap. Diujung bawah pegas diikatkan

Lebih terperinci

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA MATERI MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA 1 Tujuan 1. Dapat menyelesaikan persamaan diferensial orde dua.. Dapat menyelesaikan suatu Sistem Linier dengan menggunakan metode Eliminasi atau

Lebih terperinci

Untai Elektrik I. Untai Orde Tinggi & Frekuensi Kompleks. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I.

Untai Elektrik I. Untai Orde Tinggi & Frekuensi Kompleks. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Untai Elektrik I Untai Orde Tinggi & Frekuensi Kompleks Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Pada bagian sebelumnya, dibahas untai RC dan RL dengan hanya satu elemen penyimpan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Harmonisa Dalam sistem tenaga listrik dikenal dua jenis beban yaitu beban linier dan beban tidak linier. Beban linier adalah beban yang memberikan bentuk gelombang keluaran

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN Hak Cipta Dilindungi Undang-undang NASKAH SOAL OLIMPIADE SAINS NASIONAL 016 CALON PESERTA INTERNATIONAL PHYSICS OLYMPIAD (IPhO) 017 FISIKA Teori Waktu: 5 jam KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT

Lebih terperinci

Penerapan Bilangan Kompleks pada Rangkaian RLC

Penerapan Bilangan Kompleks pada Rangkaian RLC Penerapan Bilangan Kompleks pada Rangkaian RLC Hishshah Ghassani - 354056 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 0 Bandung 403, Indonesia

Lebih terperinci

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt. 1. Pengertian Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap. Pada sebuah tali yang panjang diregangkan di dalam arah x di mana sebuah gelombang transversal sedang berjalan.

Lebih terperinci

Rangkaian Arus Bolak-Balik. Balik (Rangkaian AC) Pendahuluan. Surya Darma, M.Sc Departemen Fisika Universitas Indonesia

Rangkaian Arus Bolak-Balik. Balik (Rangkaian AC) Pendahuluan. Surya Darma, M.Sc Departemen Fisika Universitas Indonesia Rangkaian Arus Bolak-Balik Balik (Rangkaian A) Surya Darma, M.Sc Departemen Fisika Universitas ndonesia Pendahuluan Akhir abad 9 Nikola esla dan George Westinghouse memenangkan proposal pendistribusian

Lebih terperinci

Mutawafaq Haerunnazillah 15B08011

Mutawafaq Haerunnazillah 15B08011 GELOMBANG STASIONER Gelombang stasioner merupakan perpaduan dua gelombang yang mempunyai frekuensi, cepat rambat, dan amplitudo yang sama besar namun merambat dalam arah yang berlawanan. Singkatnya, gelombang

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : FISIKA DASAR 2 Kode Mata : DK 12206 Jurusan / Jenjang : S1 SISTEM KOMPUTER Tujuan Instruksional Umum : Mahasiswa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Arus Netral pada Sistem Tiga Fasa Empat Kawat Jaringan distribusi tegangan rendah adalah jaringan tiga fasa empat kawat, dengan ketentuan, terdiri dari kawat tiga fasa (R, S,

Lebih terperinci

Analisis Ajeg dari Sinusoidal

Analisis Ajeg dari Sinusoidal Analisis Ajeg dari Sinusoidal Slide-08 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 23 Materi Kuliah 1 Karakteristik Sinusoid Bentuk Umum Pergeseran Fase Sinus Kosinus 2 Tanggapan Paksaan thdp Sinusoid

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

PROGRAM SEMESTER GASAL 2011 / 2012 MATA PELAJARAN FISIKA KELAS X

PROGRAM SEMESTER GASAL 2011 / 2012 MATA PELAJARAN FISIKA KELAS X PROGRAM SEMESTER GASAL 2011 / 2012 MATA PELAJARAN FISIKA KELAS X 1 1.1 1.2 2 2.1 2.2 Materi / Sub Materi 1. Pengertian dan definisi besaran pokok dan besaran turunan 2. Jenis-jenis besaran pokok dan besaran

Lebih terperinci

Kumpulan soal-soal level Olimpiade Sains Nasional: solusi:

Kumpulan soal-soal level Olimpiade Sains Nasional: solusi: Kumpulan soal-soal level Olimpiade Sains Nasional: 1. Sebuah batang uniform bermassa dan panjang l, digantung pada sebuah titik A. Sebuah peluru bermassa bermassa m menumbuk ujung batang bawah, sehingga

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial merupakan persamaan yang didalamnya terdapat beberapa derivatif. Persamaan diferensial menyatakan hubungan antara derivatif dari satu variabel

Lebih terperinci

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan 4 3.2 Peralatan..(9) dimana,, dan.(10) substitusi persamaan (10) ke persamaan (9) maka diperoleh persamaan gelombang soliton DNA model PBD...(11) agar persamaan (11) dapat dipecahkan sehingga harus diterapkan

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

PENENTUAN FREKUENSI OSILASI LC DARI KURVA TEGANGAN INDUKTOR DAN KAPASITOR TERHADAP FREKUENSI. Islamiani Safitri* dan Neny Kurniasih

PENENTUAN FREKUENSI OSILASI LC DARI KURVA TEGANGAN INDUKTOR DAN KAPASITOR TERHADAP FREKUENSI. Islamiani Safitri* dan Neny Kurniasih PENENTUAN FREKUENSI OSILASI LC DARI KURVA TEGANGAN INDUKTOR DAN KAPASITOR TERHADAP FREKUENSI Islamiani Safitri* dan Neny Kurniasih STKIP Universitas Labuhan Batu Email: islamiani.safitri@gmail.com Abstrak

Lebih terperinci

ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER. Oleh: Supardi. Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta

ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER. Oleh: Supardi. Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER Oleh: Supardi Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta Penelitian tentang gejala chaos pada pendulum nonlinier telah dilakukan.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Transformator Ukur Transformator ukur di rancang secara khusus untuk pengukuran dalam sistem daya. Transformator ini banyak digunakan dalam sistem daya karena mempunyai keuntungan,

Lebih terperinci

Laboratorium Fisika Dasar Jurusan Pendidikan Fisika FPMIPA UPI

Laboratorium Fisika Dasar Jurusan Pendidikan Fisika FPMIPA UPI 2. Sistem Osilasi Pegas A. Tujuan 1. Menentukan besar konstanta gaya pegas tunggal 2. Menentukan besar percepatan gravitasi bumi dengan sistem pegas 3. Menentukan konstanta gaya pegas gabungan (specnya)

Lebih terperinci

Bab 7 Persamaan Differensial Non-homogen

Bab 7 Persamaan Differensial Non-homogen Bab 7 Persamaan Differensial Non-homogen Persamaan Differensial Orde- Non Homogen Bentuk hukum : d y dy + p( ) + Q( ) y R( ) (*) Dimana, P(), Q(), dan R() dapat juga berwujud suatu leoust Solusinya : y

Lebih terperinci

BAB 2 TEORI DASAR 2-1. Gambar 2.1 Sistem dinamik satu derajat kebebasan tanpa redaman

BAB 2 TEORI DASAR 2-1. Gambar 2.1 Sistem dinamik satu derajat kebebasan tanpa redaman BAB TEORI DASAR BAB TEORI DASAR. Umum Analisis respon struktur terhadap beban gempa memerlukan pemodelan. Pemodelan struktur dilakukan menurut derajat kebebasan pada struktur. Pada tugas ini ada dua jenis

Lebih terperinci

Latihan Soal UAS Fisika Panas dan Gelombang

Latihan Soal UAS Fisika Panas dan Gelombang Latihan Soal UAS Fisika Panas dan Gelombang 1. Grafik antara tekanan gas y yang massanya tertentu pada volume tetap sebagai fungsi dari suhu mutlak x adalah... a. d. b. e. c. Menurut Hukum Gay Lussac menyatakan

Lebih terperinci

Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu

Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu Kunlestiowati H *. Nani Yuningsih **, Sardjito *** * Staf Pengajar Polban, kunpolban@yahoo.co.id ** Staf Pengajar Polban, naniyuningsih@gmail.com

Lebih terperinci

MINGGUKE KE-5. Learning Outcome:

MINGGUKE KE-5. Learning Outcome: 1/14/1 MINGGUKE KE-5 Learning Outcome: Setelah mengikuti kuliah ini, mahasiswa diharapkan : Mampu menjelaskan konsep gaya balik Mampu menyelesaikan persamaan gerak harmonik Mampu menyelesaikan kasus harmonik

Lebih terperinci

Satuan Pendidikan. : XI (sebelas) Program Keahlian

Satuan Pendidikan. : XI (sebelas) Program Keahlian Satuan Pendidikan Kelas Semester Program Keahlian Mata Pelajaran : SMA : XI (sebelas) : 1 (satu) : IPA : Fisika 1. Bacalah do a sebelum mengerjakan Lembar Kerja Siswa (LKS) ini. 2. Pelajari materi secara

Lebih terperinci

TEGANGAN DAN ARUS BOLAK-BALIK

TEGANGAN DAN ARUS BOLAK-BALIK TEGANGAN DAN ARUS BOLAK-BALIK 1.Pengertian Tegangan dan Arus Listrik Bolak-Balik Yang dimaksud dengan arus bolsk-balik ialah arus listrik yang arah serta besarnya berubah berkala,menurut suatu cara tertentu.hal

Lebih terperinci

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto Getaran Mekanik Getaran Bebas Tak Teredam Muchammad Chusnan Aprianto Getaran Bebas Getaran bebas adalah gerak osilasi di sekitar titik kesetimbangan dimana gerak ini tidak dipengaruhi oleh gaya luar (gaya

Lebih terperinci

PENGGUNAAN LOGGER PRO UNTUK ANALISIS GERAK HARMONIK SEDERHANA PADA SISTEM PEGAS MASSA

PENGGUNAAN LOGGER PRO UNTUK ANALISIS GERAK HARMONIK SEDERHANA PADA SISTEM PEGAS MASSA PENGGUNAAN LOGGER PRO UNTUK ANALISIS GERAK HARMONIK SEDERHANA PADA SISTEM PEGAS MASSA DANDAN LUHUR SARASWATI dandanluhur09@gmail.com Program Studi Pendidikan Fisika Fakultas Teknik, Matematika dan Ilmu

Lebih terperinci

ANTIREMED KELAS 11 FISIKA

ANTIREMED KELAS 11 FISIKA ANTIRMD KLAS 11 FISIKA Persiapan UAS 1 Fisika Doc. Name: AR11FIS01UAS Version : 016-08 halaman 1 01. Jika sebuah partikel bergerak dengan persamaan posisi r = 5t + 1, maka kecepatan rata-rata antara t

Lebih terperinci

ANALISIS DERET FOURIER UNTUK MENENTUKAN PERSAMAAN FUNGSI GELOMBANG SINUSOIDAL ARUS AC PADA OSILOSKOP

ANALISIS DERET FOURIER UNTUK MENENTUKAN PERSAMAAN FUNGSI GELOMBANG SINUSOIDAL ARUS AC PADA OSILOSKOP ANAISIS DERE FOURIER UNUK MENENUKAN PERSAMAAN FUNGSI GEOMBANG SINUSOIDA ARUS AC PADA OSIOSKOP 1.Dian Sandi,.Imas R.E, Malinda Pendidikan Fisika UHAMKA Jakarta Email 1.diansandi@gmail.com.iye1@yahoo.com

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR I PENGUKURAN KONSTANTA PEGAS DENGAN METODE PEGAS DINAMIK

LAPORAN PRAKTIKUM FISIKA DASAR I PENGUKURAN KONSTANTA PEGAS DENGAN METODE PEGAS DINAMIK LAPORAN PRAKTIKUM FISIKA DASAR I PENGUKURAN KONSTANTA PEGAS DENGAN METODE PEGAS DINAMIK Nama : Ayu Zuraida NIM : 1308305030 Dosen Asisten Dosen : Drs. Ida Bagus Alit Paramarta,M.Si. : 1. Gusti Ayu Putu

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

INFORMASI PENTING Massa electron NAMA:.. ID PESERTA:.. m e = 9, kg Besar muatan electron. e = 1, C Bilangan Avogadro

INFORMASI PENTING Massa electron NAMA:.. ID PESERTA:.. m e = 9, kg Besar muatan electron. e = 1, C Bilangan Avogadro PETUNJUK UMUM 1. Tuliskan NAMA dan ID peserta di setiap lembar soal. 2. Tuliskan jawaban akhir di kotak yang disediakan untuk Jawaban. 3. Peserta boleh menggunakan kalkulator sewaktu mengerjakan soal.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Gelombang Bunyi Gelombang bunyi merupakan gelombang longitudinal yang terjadi sebagai hasil dari fluktuasi tekanan karena perapatan dan perenggangan dalam media elastis. Sinyal

Lebih terperinci