NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG"

Transkripsi

1 DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04

2 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka et beeft yag telah ddsko dega megguaka socal opportuty cost of captal sebaga dsko faktor. Rumus: atau atau NB NB ( ) ( ) Dmaa: NB Net beeft Beeft Cost C Baya vestas Baya operas B Beeft yag telah ddsko C Cost yag telah ddsko dsko faktor tahu (waktu B C N B

3 Krtera: > 0 (ol) usaha/proyek layak (feasble) utuk dlaksaaka < 0 (ol) usaha/proyek tdak layak (feasble) utuk dlaksaaka 0 (ol) usaha/proyek berada dalam keadaa BEP dmaa TRTC dalam betuk preset value. Utuk meghtug dperluka data tetag perkraa baya vestas, baya operas, da pemelharaa serta perkraa beeft dar proyek yag drecaaka.

4 Cotoh : Berdasarka hasl peelta yag dlakuka utuk membagu dustr pegolaha hasl pertaa, dketahu: Daa vestas: Rp ,- dalokaska selama tahu, yatu tahu persapa Rp.,- da tahu pertama Rp ,-. Kegata pabrk dmula setelah tahu ke- dar pegembaga kotruks. Jumlah baya operas da pemelharaa berdasarka rekaptulas dar berbaga baya pada tahu kedua sebesar Rp ,- per tahu da utuk tahu-tahu berkutya sepert pada tabel. Beeft dar kegata dustr adalah jumlah produks dar pegolaha hasl-hasl pertaa. Kegata produks dmula pada tahu kedua dega jumlah peghasla Rp ,- sedag tahu-tahu berkutya sepert terlhat pada tabel. Berdasarka data d atas, apakah recaa pembukaa dustr yag megolah hasl pertaa tersebut layak utuk dkembagka bla dlhat dar seg dega dsko faktor sebesar 8%?

5 Th Ivestas Baya Operas Total Cost Beeft Net Beeft D.F. 8% Preset Value , ,8475 -, ,78 3, ,6086 3, ,558 4, ,437 4,37 Tabel : Persapa Perhtuga (dalam 0,3704Rp.000,-) 5, ,339 5, ,660 5, ,55 5, ,9 6,5.5,73

6 Dar keteraga da tabel yag dberka maka: NB ( ) Hasl meujukka bahwa > 0, berart gagasa usaha (proyek) layak dusahaka. Catata: Perkraa cash flow da cash out flow yag meyagkut proyeks harus medapat perhata Perkraa beeft harus dperhtugka dega megguaka berbaga varabel (perkembaga tred, potes pasar, perkembaga proyek sejes d masa datag, perubaha tekolog, perubaha selera kosume).

7 Th Ivestas Baya Operas Total Cost Beeft Net Beeft D.F. 8% B C , , , , , , Tabel : Persapa Perhtuga (dalam Rp.000,-) 0, , , , ,

8 Dega megguaka rumus yag la, dapat juga dhtug dega batua Tabel berkut. Pada tabel tersebut cost da beeft lagsug dkalka dega DF: B C Rp.4.000, Hasl meujukka bahwa > 0, berart gagasa usaha (proyek) layak dusahaka.

9 Cotoh : Pmpa perusahaa aka meggat mes lama dega mes baru karea mes lama tdak ekooms lag, bak secara teks maupu ekooms. Utuk meggat mes lama dbutuhka daa vestas sebesar Rp ,-. Mes baru mempuya umur ekooms selama 5 tahu dega salvage value berdasarka pegalama pada akhr tahu kelma sebesar Rp ,-. Berdasarka pegalama pegusaha, cash flows setap tahu dperkraka sebesar Rp,- dega baya modal 8% per tahu. Apakah peggata mes layak utuk dlakuka apabla dlhat dar da?

10 CF Sv r m ( r) ( ) D maa: Preset value CF Cash flow perode waktu tahu ke m perode waktu r tgkat buga Sv salvage value ( 0,8) ( 0,8) 3 ( 0,8)... 5 ( 0,8) ( 0,8) Berdasarka pada hasl perhtuga d atas, pembela mes baru dega harga Rp ,- teryata tdak feasble karea lebh kecl dar orgal outlays atau orgal cost (harga bel). OO , dmaa OOorgal outlays Berdasarka perhtuga dperoleh la egatf, maka pembela mes pu tdak feasble.

11 . Iteral Rate of Retur (IRR) IRR adalah suatu tgkat dscout rate yag meghaslka 0 (ol). Jka IRR > SOCC maka proyek dkataka layak IRR SOCC berart proyek pada BEP IRR < SOCC dkataka bahwa proyek tdak layak. Utuk meetuka besarya la IRR harus dhtug dulu da dega cara coba-coba. Jka berla postf maka dscout factor kedua harus lebh besar dar SOCC, da sebalkya. Dar percobaa tersebut maka IRR berada atara la postf da egatf yatu pada 0. Rumus: IRR ( ) ( ) dmaa: tgkat dscout rate yag meghaslka tgkat dscout rate yag meghaslka

12 Dar Cotoh dbuat Tabel 3 berkut: Tabel 3: Persapa Perhtuga IRR (dalam Rp.000,-) Th Net Beeft D.F. 8% Preset Value D.F. 4% Preset Value , , ,8475 -,73 0,8065 -, ,78 3,59 0,6504 3, ,6086 3,65 0,545 3, ,558 4,6 0,430 4, ,437 4,37 0,34 4, ,3704 5,86 0,75 5, ,339 5,336 0,8 5, ,660 5,586 0,789 5, ,55 5,863 0,443 5, ,9 6,5 0,64 6,5.5,73-48,94

13 IRR IRR IRR 0,8 ( 0,3974 3,97% ( ).4 (0,4 (.4 48) ) 0,8) Hasl perhtuga meujukka bahwa IRR 3,97% lebh besar dar SOCC sebesar 8%, berart proyek tersebut layak utuk dkerjaka.

14 Dar Cotoh, IRR merupaka tgkat buga yag meyamaka atara harga bel aset (Orgal outlays) dega preset value. Jad utuk medapatka la OO harus dcar dega megguaka dua tgkat buga. Tgkat buga I meghaslka < OO da tgkat buga II meghaslka > OO. I dega DF8% meghaslka Rp ,- da II dega DF4% adalah: ( 0,4) ( 0,4) 3 ( 0,4)... 5 ( 0,4) ( 0,5) IRR IRR IRR IRR ( Berdasarka pada hasl perhtuga d atas, maka: OO) ( )( ) (.45.49)( ) ,79 4,79% IRR4,79% lebh kecl dar tgkat buga yag berlaku (DF) y 8% berart peggata mes tdak layak.

Analisis Kriteria Investasi

Analisis Kriteria Investasi Uverstas Guadarma TUJUAN Setelah mempelajar Bab dharapka mahasswa dapat memaham: Apakah gagasa usaha (proyek) yag drecaaka dapat memberka mafaat (beeft), bak dlhat dar facal beeft maupu socal beeft. Pelaa

Lebih terperinci

Analisis Kriteria Investasi TUJUAN

Analisis Kriteria Investasi TUJUAN Aalss Krtera Ivestas TUJUAN Setelah mempelajar Bab dharapka mahasswa dapat memaham: Apakah gagasa usaha (proyek) yag drecaaka dapat memberka mafaat (beeft), bak dlhat dar facal beeft maupu socal beeft.

Lebih terperinci

STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc

STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc STUDI KELAYAKAN: ASPEK FINANSIAL F.Hafz Saragh SP, MSc Pajak Baya bag perusahaa/ usahata, sehgga merupaka peguraga dar beeft Subsd FINANSIAL Peguraga baya bag perusahaa/ usahata, sehgga merupaka tambaha

Lebih terperinci

STUDI KELAYAKAN BISNIS. Investment Criteria Analysis. Arranged by : R. AGUS BAKTIONO UNIVERSITAS NAROTAMA SURABAYA 2010

STUDI KELAYAKAN BISNIS. Investment Criteria Analysis. Arranged by : R. AGUS BAKTIONO UNIVERSITAS NAROTAMA SURABAYA 2010 STUDI KELAYAKAN BISNIS Arraged by : R. AGUS BAKTIONO UNIVERSITAS NAROTAMA SURABAYA 2010 TUJUAN Setelah mempelajari Bab ii diharapka mahasiswa dapat memahami: Apakah gagasa usaha (proyek) yag direcaaka

Lebih terperinci

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilakukan di PT. Mulya Agro Bioteknologi yang terletak

BAB III METODE PENELITIAN. Penelitian ini dilakukan di PT. Mulya Agro Bioteknologi yang terletak BAB III METODE PENELITIAN 3.1 Lokas da Waktu Peelta Peelta dlakuka d PT. Mulya Agro Botekolog yag terletak Perumaha Tegalgodo Asr Blok H III No. 10 Kecamata Karagploso, Kabupate Malag. Pemlha lokas peelta

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

ANALISIS KELAYAKAN USAHA PUPUK ORGANIK (PO) CURAH. Oleh : CECEP PARDANI FAKULTAS PERTANIAN UNIVERSITAS GALUH CIAMIS

ANALISIS KELAYAKAN USAHA PUPUK ORGANIK (PO) CURAH. Oleh : CECEP PARDANI FAKULTAS PERTANIAN UNIVERSITAS GALUH CIAMIS ANALISIS KELAYAKAN USAHA PUPUK ORGANIK (PO) CURAH Oleh : CECEP PARDANI FAKULTAS PERTANIAN UNIVERSITAS GALUH CIAMIS e-mal : alfarhac@gmal.com DEVI SUTRIANA FAKULTAS PERTANIAN UNIVERSITAS GALUH CIAMIS e-mal

Lebih terperinci

ANALISIS KELAYAKAN FINANSIAL USAHA PENGOLAHAN DODOL SIRSAK

ANALISIS KELAYAKAN FINANSIAL USAHA PENGOLAHAN DODOL SIRSAK ANALISIS KELAYAKAN FINANSIAL USAHA PENGOLAHAN DODOL SIRSAK (Aoa murcata) (Stud Kasus d Desa Sgapara Kecamata Sgapara Kabupate Taskmalaya) Oleh: Ga Ekayaa 1, Soetoro 2, Mochamad Ramda 3 1,3 Fakultas Pertaa

Lebih terperinci

Angka Banding Manfaat dan Biaya

Angka Banding Manfaat dan Biaya METODE ANALISIS PERENCANAAN 2 Mater 3 : TPL 311 Oleh : Ke Marta Kaskoe Agka Badg Mafaat da Baya Dalam proyek pembagua, perlu dketahu apa mafaat dar proyek tersebut? Bagamaa keutuga ekoom atau keutuga sosal

Lebih terperinci

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB Dasar Ekoom Tekk: Matematka Uag Ekoom Tekk TIP TP UB Bahasa lra Kas (Cash low Tme Value of Moey Buga Ekvales Cash low Tata alra uag masuk da keluar per perode waktu pada suatu perusahaa lra kas aka terjad

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

MUTUALLY EXCLUSIVE ALTERNATIVE PROJECT UNTUK ANALISIS KELAYAKAN USAHA INDUSTRI KECIL

MUTUALLY EXCLUSIVE ALTERNATIVE PROJECT UNTUK ANALISIS KELAYAKAN USAHA INDUSTRI KECIL Jural Sstem Tekk Idustr Volume 6, No. Jul 005 MUTUALLY EXCLUSIVE ALTERNATIVE PROJECT UNTUK ANALISIS KELAYAKAN USAHA INDUSTRI KECIL A Had Arf Fakultas Ekoom Uverstas Malkussaleh Abstrak: Pembagua asoal

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

EKIVALENSI PRESENT WORTH FUTURE WORTH ANNUAL WORTH GRADIENT SERIES. Christina Wirawan 1

EKIVALENSI PRESENT WORTH FUTURE WORTH ANNUAL WORTH GRADIENT SERIES. Christina Wirawan 1 EKIVLENSI RESENT WORTH UTURE WORTH NNUL WORTH GRDIENT SERIES Chrsta Wrawa KONSE Dperluka terutama utuk memlh alteratf Ekvales tergatug pada : Tgkat suku buga Jumlah uag Waktu peermaa/pegeluara Cara buga

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

3.1 Biaya Investasi Pipa

3.1 Biaya Investasi Pipa BAB III Model Baya Pada model baya [8] d tugas akhr, baya tahua total utuk megoperaska jarga ppa terdr dar dua kompoe, yatu baya operasoal da baya vestas. Baya operasoal terdr dar baya operasoal ppa da

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

PENERAPAN BARISAN DAN DERET

PENERAPAN BARISAN DAN DERET PENERPN BRIN DN DERET. MODEL PERKEMBNGN UH Jka perkembaga varabel-varabel tertetu dalam kegata usaha (msalya: produks, baya, pedapata, pegguaa teaga kerja, peaama modal) berpola sepert barsa artmetka,

Lebih terperinci

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama. BAB 2 LANDASAN TEORI 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatve lama. Sedagka ramala adalah

Lebih terperinci

ANALISIS KORELASI DAN REGRESI (LINEAR)

ANALISIS KORELASI DAN REGRESI (LINEAR) ANALISIS KORELASI DAN REGRESI (LINEAR) Hubuga atara dua kejada dapat dyataka dega hubuga dua varabel Apabla dua varabel da mempuya hubuga, maka la varabel yag sudah dketahu dapat dperguaka utuk memperkraka/meaksr.

Lebih terperinci

ANALISIS PERBANDINGAN ARUS KAS PT DUTA PERTIWI TBK DAN PT KAWASAN INDUSTRI JABABEKA TBK

ANALISIS PERBANDINGAN ARUS KAS PT DUTA PERTIWI TBK DAN PT KAWASAN INDUSTRI JABABEKA TBK ANALISIS PRBANDINGAN ARUS KAS PT DUTA PRTIWI TBK DAN PT KAWASAN INDUSTRI JABABKA TBK (Rsk ad Cash Flow Aalyss) Oleh/By: Sutart da Sr Bawoo Dose Akadem Maajeme Kesatua da STI Kesatua ABSTRAK Perusahaa megguaka

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama.

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. BAB 2 LANDASAN TEORITIS 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatf lama. Sedagka ramala adalah

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

ANALISIS KELAYAKAN FINANSIAL PADA AGROINDUSTRI TEMPE (Studi Kasus pada Perajin Tempe di Kelurahan Banjar Kecamatan Banjar Kota Banjar)

ANALISIS KELAYAKAN FINANSIAL PADA AGROINDUSTRI TEMPE (Studi Kasus pada Perajin Tempe di Kelurahan Banjar Kecamatan Banjar Kota Banjar) ANALISIS KELAYAKAN FINANSIAL PADA AGROINDUSTRI TEMPE (Stud Kasus pada Peraj Tempe d Keluraha Bajar Kecamata Bajar Kota Bajar) Oleh: Hel Oktavyat 1, Soetoro 2, Cecep Parda 3 1) Mahasswa Fakultas Pertaa

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

BAB I PENDAHULUAN. Proyeksi pada dasarnya merupakan suatu pikiran atau taksiran mengenai. proyeksi bibit kelapa sawit untuk 5 tahun yang akan datang.

BAB I PENDAHULUAN. Proyeksi pada dasarnya merupakan suatu pikiran atau taksiran mengenai. proyeksi bibit kelapa sawit untuk 5 tahun yang akan datang. BAB I PENDAHULUAN 1.1. Latar Belakag Proyeks pada dasarya merupaka suatu pkra atau taksra megea terjadya suatu kejada (la dar suatu varabel) utuk waktu yag aka datag sepert proyeks bbt kelapa sawt utuk

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d

Lebih terperinci

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: prohumas@smkwkrama.et, webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB METODE PENELTAN 3.1 Tempat da Waktu Peelta Peelta dlaksaaka d areal/wlaah koses huta PT. Sarmeto Parakata Tmber, Kalmata Tegah pada bula Aprl sampa dega Me 007. 3. Baha da Alat Baha ag dguaka utuk

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

EKONOMI TEKNIK. Ekuivalensi

EKONOMI TEKNIK. Ekuivalensi EKONOMI TEKNIK Ekuvales Ekuvales Ekuvales = Nla uag yag sama pada waktu yag berbeda. Jumlah uag berbeda pada waktu berbeda dapat berla ekooms sama. Cotoh = harga bes Rp 4.5, (25), Rp 5.5, (29), da Rp 6.5

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

TINJAUAN PUSTAKA Evaluasi Pengajaran

TINJAUAN PUSTAKA Evaluasi Pengajaran TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2013 sampai Januari 2014

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2013 sampai Januari 2014 BAB III METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia ii dilaksaaka pada bula Juli 2013 sampai Jauari 201 berlokasi di Kabupate Gorotalo. B. Jeis Peelitia Peilitia tetag evaluasi program pegembaga

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange Praktkum 0 Iterpolas Polomal da Lagrage PRAKTIKUM 0 Iterpolas Polomal da Lagrage Tuua : Mempelaar berbaga metode Iterpolas ag ada utuk meetuka ttkttk atara dar buah ttk dega megguaka suatu fugs pedekata

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

Penurunan Persamaan Perpetuitas dan Anuitas

Penurunan Persamaan Perpetuitas dan Anuitas SEMINR NSIONL MTEMTIK DN PENDIDIKN MTEMTIK UNY 2016 Peurua Persamaa Perpetutas da utas T - 6 Bud Fresdy Fakultas Ekoom da Bss Uverstas Idosa bstrak Mahasswa bss da akutas, debtor bak, da vestor memerluka

Lebih terperinci

III. METODOLOGI PENELITIAN. Metode penelitian merupakan strategi umum yang di anut dalam

III. METODOLOGI PENELITIAN. Metode penelitian merupakan strategi umum yang di anut dalam III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta merupaka strateg umum yag d aut dalam pegumpula data da aalss data yag dperluka, gua mejawab persoala yag dhadap. Meurut Arkuto (006 : 3) peelta

Lebih terperinci

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar

Lebih terperinci

BAB 3 METODOLOGI PEMECAHAN MASALAH

BAB 3 METODOLOGI PEMECAHAN MASALAH BAB 3 METODOLOGI PEMECAHAN MASALAH 3. Metode Pemecaha Masalah Metodolog peelta merupaka tahap-tahap dalam suatu peelta yag harus dtetapka atau dlakuka terlebh dahulu sebelum melakuka pecara solus masalah

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

III. METODE PENELITIAN. komparatif. Dalam penelitian ini, desain yang digunakan adalah pre test-post

III. METODE PENELITIAN. komparatif. Dalam penelitian ini, desain yang digunakan adalah pre test-post III. METODE PENELITIAN A. Metode Peelta Metode yag dguaka dalam peelta adalah metode eksperme komparatf. Dalam peelta, desa yag dguaka adalah pre test-post test desg (desa tes awal-tes akhr) sepert tabel

Lebih terperinci

PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG

PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG Asa Kurat Peddka Ekoom, FKIP Uverstas Muhammadah Purworejo asachaca8@ahoo.com

Lebih terperinci

Muniya Alteza

Muniya Alteza RISIKO DAN RETURN 1. Estmas Retur da Rsko Idvdual. Kosep Dversfkas 3. Kovaras da Koefse Korelas 4. Estmas Retur da Rsko Portofolo Muya Alteza m_alteza@uy.ac.d Estmas Retur da Rsko 1) Estmas Realzed Retur

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

Integrasi 1. Metode Integral Reimann Metode Integral Trapezoida Metode Integral Simpson. Integrasi 1

Integrasi 1. Metode Integral Reimann Metode Integral Trapezoida Metode Integral Simpson. Integrasi 1 Itegras Metode Itegral Rema Metode Itegral Trapezoda Metode Itegral Smpso Itegras Permasalaa Itegras Pertuga tegral adala pertuga dasar yag dguaka dalam kalkulus, dalam bayak keperlua. Itegral secara det

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF

PELABELAN HARMONIS GANJIL PADA GRAF Jural EduTech ol. No. Maret 08 ISSN: -60 e-issn: -06 PELABELAN HARMONIS GANJIL PADA GRAF Zulf Amr, Arda Aula, Army Syella, Harsma Pratamal, Saftr Ramadha, Charusa Uverstas Muhammadyah Sumatera Utara zulfamr@umsu.ac.d;

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

Rancangan Sistem Pengendalian Persediaan Bahan Baku Multi Item Single Supplier di PT. Pertamina (Persero)

Rancangan Sistem Pengendalian Persediaan Bahan Baku Multi Item Single Supplier di PT. Pertamina (Persero) Semar Nasoal Teko 20 ISBN 978-979-96964-8-9 acaga Sstem Pegedala Persedaa Baha Baku Mult Item Sgle Suppler d PT. Pertama (Persero) Ff Her Mustofa, ST., MT. ) Hedro Prassetyo, ST., MT. 2) Djauhary Syaref

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

IV METODE PENELITIAN

IV METODE PENELITIAN IV METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia Lokasi peelitia dilakuka di PT. Bak Bukopi, Tbk Cabag Karawag yag berlokasi pada Jala Ahmad Yai No.92 Kabupate Karawag, Jawa Barat da Kabupate Purwakarta

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci