Angka Banding Manfaat dan Biaya

Save this PDF as:

Ukuran: px
Mulai penontonan dengan halaman:

Download "Angka Banding Manfaat dan Biaya"

Transkripsi

1 METODE ANALISIS PERENCANAAN 2 Mater 3 : TPL 311 Oleh : Ke Marta Kaskoe Agka Badg Mafaat da Baya Dalam proyek pembagua, perlu dketahu apa mafaat dar proyek tersebut? Bagamaa keutuga ekoom atau keutuga sosal dar proyek tersebut? Dar seg ekoom utuk meetuka tepat/tdakya suatu proyek dapat dketahu dega meghtug besarya agka badg mafaat da baya atau dsebut BCR = Beeft Cost Rato. BCR = Mafaat/Baya Cotoh : Peaama modal dalam pembagua jala raya - jumlah kecelakaa damat, bla baya akbat kecelakaa sepert : upah, pegobata, kerusaka beda dhtug selama beberapa tahu, maka kemuda dhtug secara hara atau rata-rata perhar. - Msal dar hasl perhtuga : Baya ekvale kecelakaa tahua per Km : Rp ,- Keutuga yag ddapat (dega berkuragya kecelakaa) per Km sebesar Rp ,- Maka BCR = Rp ,-/Rp ,- = 1,9 Tme Value of Moey Cotoh : Bla kta memjam uag d Bak sebesar Rp ,- dega tgkat buga ( sebesar 12% setahu, maka jumlah uag yag harus dkembalka setelah setahu adalah sebesar : = Rp ,- + (12% x Rp ,-) = Rp ,- Setelah 2 (dua) tahu : = Rp x (1 + 12%) x (1 + 12%) = Rp x (1+12%) 2 = Rp ,- 1

2 Berbaga Rumus dar Tme Value of Moey : Symbol-symbol : P = F = A = Preset Value = la sekarag Future amout = jumlah yag aka datag Auty = uform seres = semacam agsura dega la/jumlah yag seragam (sama) Rumus rumus : 1. Compoudg Factor for : ( F P) Smbol meggambarka utuk mecar F, jka dketahu P,, Rumus : F = P( 1 + Compoudg factor : ( 1 + Soal 1 Msalka saudara memjam uag d bak sebesar Rp ,- da aka dkembalka 2 tahu lag. Tgkat buga sebesar 12% per tahu. Berapakah daa yag harus saudara kembalka kepada Bak pada akhr tahu kedua tersebut? P = Rp ,- = 12% = 2 F =? Soal 2 Msalka saudara meabug d Bak sebesar Rp ,- da baru aka dambl 4 tahu lag. Bla tgkat buga 6% per tahu, berapakah besarya uag tersebut pada akhr tahu ke 4? P = Rp ,- = 6% = 4 F =? Msalka saudara memjam uag d bak sebesar Rp ,- da aka dkembalka 13 tahu lag. Tgkat buga sebesar 15% per tahu. 2

3 Berapakah daa yag harus saudara kembalka kepada Bak pada akhr tahu kedua tersebut? P = Rp ,- = 15% = 13 F =? 2. Compoudg Factor for per aum : ( F A) Smbol meggambarka utuk mecar F, jka dketahu A,, Rumus : aum : 1+ ) ( 1 F = A 1+ 1 ( Compoudg factor for per Cotoh Soal : 1) Jka saudara dmta meabug dega jumlah yag sama setap tahu sebesar Rp ,- (A), dega tgkat buga ( 6% per tahu, berapakah jumlah uag yag aka saudara terma (F?) pada akhr tahu ke 5 ()? 2) Jka saudara dmta meabug dega jumlah yag sama setap tahu sebesar Rp ,- (A), dega tgkat buga ( 15% per tahu, berapakah jumlah uag yag aka saudara terma (F?) pada akhr tahu ke 5 ()? 3. Skg Fud Factor ( A/ F) Smbol meggambarka utuk mecar A, jka dketahu F,, Rumus : A = F (

4 Compoudg factor : ( Kta msalka seseorag g megumpulka uag utuk membel rumah ketka a pesu. Meurut perkraa a pesu sesuda 6 tahu, da jumlah yag dperluka adalah sebayak Rp ,-. Jka tgkat buga adalah 20% setahu, berapa jumlah yag harus a tabug setahuya utuk mecapa jumlah tersebut? F = Rp ,- = 20% = 6 Dtayaka : A? Jawab Rp ,- Bla dhtug satu persatu ccla tersebut : Tahu 1 : aburg Rp ,- = maka setelah 6 tahu uagya mejad : F = P( 1 + =2,9859 x = Tahu 2 : abug Rp ,- = maka setelah 5 tahu uagya mejad : F = P( 1 + =2,4883 x = Tahu 3 : abug Rp ,- = maka setelah 4 tahu uagya mejad : F = P( 1 + =2,0736 x = Tahu 4 : abug Rp ,- = maka setelah 3 tahu uagya mejad : F = P( 1 + =1,7280 x = Tahu 5 : abug Rp ,- = maka setelah 2 tahu uagya mejad : F = P( 1 + =1,4400 x = Tahu 6 : abug Rp ,- = maka setelah 1 tahu uagya mejad : F = P( 1 + =1,2000 x = Maka Total uag yag ddapat : Rp Dscout Factor = Preset Worth Factor ( P / F ) Smbol meggambarka utuk mecar P, jka dketahu F,, 4

5 Rumus : P = F 1 ( 1+ ) 1 Compoudg factor : ( 1+ Soal : Msalka pada akhr tahu ke 5 besar uag yag kta mlk adalah Rp ,-, maka berapakah uag yag harus kta savg pada tahu pertama bla tgkat buga 20%? Jawab : F = Rp. 50 juta = 20% = 5 P =? P = {1/(1+0,2) 5 }= ,6 5. Preset Worth (Value) of Auty Factor ( P / A) Smbol meggambarka utuk mecar P, jka dketahu A,, ( 1+ 1 Rumus : P = A Compoudg factor : ( + ( 1+ ( Soal : Bla seorag jutawa medapat ccla sebesar Rp. 10 juta per tahu selama 5 tahu dar sebuah bak, dega tgkat buga 15%, berapakah uag yag semula dsmpa oleh jutawa tersebut pada tahu awal? A = Rp. 10 juta = 5 = 15% P =? (1+0,15) 5 1 =3, ,15(1+0,15) 5 P = Rp x 3,3521 = Rp ,98 5

6 6. Captal Recovery Factor : ( A / P) Smbol meggambarka utuk mecar A, jka dketahu P,, Rumus : ( 1+ ( 1+ 1 A = P Compoudg factor : ( 1+ ( 1+ 1 Cotoh : 1) Bla seorag jutawa mempuya uag Rp. 50 juta yag dsmpa d bak, da g membelajakaya secara seragam (sama) setap tahu selama 5 tahu. Berapakah besar uag yag aka dbelajaka setap tahu, bla tgkat buga 20% per tahu? P = Rp. 50 juta = 5 = 20% A =? A = Rp (0,33438) = Rp ,- 2) Jka Rp ,- dvestaska dega tgkat buga 8% per tahu pada taggal 1 Jauar 2008, da aka dtark selama 10 tahu dega jumah yag sama sehgga pearka ke sepuluh tdak ada ssaya, maka berapakah jumlah yag dtark setap tahuya? P = 8,4 juta = 8%/tahu = 10 tahu A =? Rp ,60 DAFTAR PUSTAKA 1. Kadarah, Evaluas Proyek Aalsa Ekooms,Eds Kedua, Lembaga Peerbt Fakultas Ekoom UI, Jakarta. 2. Warpa, Suwardjoko, Aalss Kota da Daerah, Eds ketga, Peerbt ITB, Badug, 1984, ISBN No

STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc

STUDI KELAYAKAN: ASPEK FINANSIAL. F.Hafiz Saragih SP, MSc STUDI KELAYAKAN: ASPEK FINANSIAL F.Hafz Saragh SP, MSc Pajak Baya bag perusahaa/ usahata, sehgga merupaka peguraga dar beeft Subsd FINANSIAL Peguraga baya bag perusahaa/ usahata, sehgga merupaka tambaha

Lebih terperinci

EKONOMI TEKNIK. Ekuivalensi

EKONOMI TEKNIK. Ekuivalensi EKONOMI TEKNIK Ekuvales Ekuvales Ekuvales = Nla uag yag sama pada waktu yag berbeda. Jumlah uag berbeda pada waktu berbeda dapat berla ekooms sama. Cotoh = harga bes Rp 4.5, (25), Rp 5.5, (29), da Rp 6.5

Lebih terperinci

EKIVALENSI PRESENT WORTH FUTURE WORTH ANNUAL WORTH GRADIENT SERIES. Christina Wirawan 1

EKIVALENSI PRESENT WORTH FUTURE WORTH ANNUAL WORTH GRADIENT SERIES. Christina Wirawan 1 EKIVLENSI RESENT WORTH UTURE WORTH NNUL WORTH GRDIENT SERIES Chrsta Wrawa KONSE Dperluka terutama utuk memlh alteratf Ekvales tergatug pada : Tgkat suku buga Jumlah uag Waktu peermaa/pegeluara Cara buga

Lebih terperinci

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG

NPV DAN IRR IR. ASEP TOTO KARTAMAN, MENG DAN IRR IR. ASEP TOTO KARTAMAN, MENG SEMESTER PENDEK SEMESTER TAHUN AKADEMIK 03-04 Prod Tekk Idustr Fakultas Tekk Uverstas Pasuda Badug 04 PERHITUNGAN KELAYAKAN INVESTASI. Net Preset Value () merupaka

Lebih terperinci

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN

BAB 2 : BUNGA, PERTUMBUHAN DAN PELURUHAN Jl. Raya Wagu Kel. Sdagsar Kota Bogor Telp. 0251-8242411, emal: prohumas@smkwkrama.et, webste : www.smkwkrama.et BAB 2 : BUNGA, PERTUBUHAN DAN PELURUHAN PENGERTIAN BUNGA Buga adalah jasa dar smpaa atau

Lebih terperinci

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB

Dasar Ekonomi Teknik: Matematika Uang. Ekonomi Teknik TIP FTP UB Dasar Ekoom Tekk: Matematka Uag Ekoom Tekk TIP TP UB Bahasa lra Kas (Cash low Tme Value of Moey Buga Ekvales Cash low Tata alra uag masuk da keluar per perode waktu pada suatu perusahaa lra kas aka terjad

Lebih terperinci

Penurunan Persamaan Perpetuitas dan Anuitas

Penurunan Persamaan Perpetuitas dan Anuitas SEMINR NSIONL MTEMTIK DN PENDIDIKN MTEMTIK UNY 2016 Peurua Persamaa Perpetutas da utas T - 6 Bud Fresdy Fakultas Ekoom da Bss Uverstas Idosa bstrak Mahasswa bss da akutas, debtor bak, da vestor memerluka

Lebih terperinci

PENERAPAN BARISAN DAN DERET

PENERAPAN BARISAN DAN DERET PENERPN BRIN DN DERET. MODEL PERKEMBNGN UH Jka perkembaga varabel-varabel tertetu dalam kegata usaha (msalya: produks, baya, pedapata, pegguaa teaga kerja, peaama modal) berpola sepert barsa artmetka,

Lebih terperinci

Buku Padua Belajar Maajeme Keuaga Chapter 0 KONSEP NILAI WAKTU UANG. Pegertia. Nilai Uag meurut waktu, berarti uag hari ii lebih baik / berharga dari pada ilai uag dimasa medatag pada harga omial yag sama.

Lebih terperinci

MATERI HITUNG KEUANGAN

MATERI HITUNG KEUANGAN ATERI HITUNG KEUANGAN. emecahka masalah keuaga megguaka kosep matematka. eyelesaka masalah buga tuggal da buga majemuk dalam keuaga.2 eyelesaka masalah rete dalam sstem keuaga.3 eyelesaka masalah autas

Lebih terperinci

JENIS BUNGA PEMAJEMUKAN KONTINYU

JENIS BUNGA PEMAJEMUKAN KONTINYU JENIS BUNGA PEMAJEMUKAN KONTINYU Suku Buga Nomal Suku Buga Efektf Hubuga ataa Suku Buga Nomal da Efektf Aus Daa Dskt da Aus Daa Kotyu SUKU BUNGA NOMINAL & SUKU BUNGA EFEKTIF Selama daggap aus daa (peemaa

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilakukan di PT. Mulya Agro Bioteknologi yang terletak

BAB III METODE PENELITIAN. Penelitian ini dilakukan di PT. Mulya Agro Bioteknologi yang terletak BAB III METODE PENELITIAN 3.1 Lokas da Waktu Peelta Peelta dlakuka d PT. Mulya Agro Botekolog yag terletak Perumaha Tegalgodo Asr Blok H III No. 10 Kecamata Karagploso, Kabupate Malag. Pemlha lokas peelta

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

H. MEMECAHKAN MASALAH KEUANGAN DENGAN KONSEP MATEMATIKA

H. MEMECAHKAN MASALAH KEUANGAN DENGAN KONSEP MATEMATIKA H. EECAHKAN ASALAH KEUANGAN DENGAN KONSE ATEATIKA eyelesaka asalah Buga Tuggal da Buga ajemuk Dalam Keuaga Buga Tuggal egerta Buga erse Datas Seratus da erse Dbawah Seratus erse D atas Seratus erse datas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

CATATAN KULIAH #12&13 Bunga Majemuk

CATATAN KULIAH #12&13 Bunga Majemuk CATATAN KULIAH #12&13 Buga Majemuk 10.1 Pedahulua Pada pembahasa sebelumya diasumsika bahwa P atau ilai pokok pembayara tidak megalami perubaha dari awal higga akhir sehigga ilai buga selalu dihitug dari

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si.

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si. ANUITAS 9/19/2012 MK. Aktuaria Darmato,S.Si. 1 OVERVIEW Auitas adl suatu pembayara dalam jumlah tertetu, yag dilakuka setiap selag waktu da lama tertetu, secara berkelajuta. Suatu auitas yg pasti dilakuka

Lebih terperinci

Analisis Kriteria Investasi

Analisis Kriteria Investasi Uverstas Guadarma TUJUAN Setelah mempelajar Bab dharapka mahasswa dapat memaham: Apakah gagasa usaha (proyek) yag drecaaka dapat memberka mafaat (beeft), bak dlhat dar facal beeft maupu socal beeft. Pelaa

Lebih terperinci

STATISTIKA DASAR. Oleh

STATISTIKA DASAR. Oleh STATISTIKA DASAR Oleh Suryo Gurto cara peyaja data - tabel - grak meghtug harga-harga petg : - ukura lokas - ukura sebara/peympaga apabla data mempuya observasya cukup bayak perlu dsusu secara sstematk

Lebih terperinci

Analisis Kriteria Investasi TUJUAN

Analisis Kriteria Investasi TUJUAN Aalss Krtera Ivestas TUJUAN Setelah mempelajar Bab dharapka mahasswa dapat memaham: Apakah gagasa usaha (proyek) yag drecaaka dapat memberka mafaat (beeft), bak dlhat dar facal beeft maupu socal beeft.

Lebih terperinci

Nilai Waktu dan Uang (Time Value of Money)

Nilai Waktu dan Uang (Time Value of Money) Nilai Waktu da Uag (Time Value of Moey) Kosep Dasar Jika ilai omialya sama, uag yag dimiliki saat ii lebih berharga daripada uag yag aka diterima di masa yag aka datag Lebih baik meerima Rp juta sekarag

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

3.1 Biaya Investasi Pipa

3.1 Biaya Investasi Pipa BAB III Model Baya Pada model baya [8] d tugas akhr, baya tahua total utuk megoperaska jarga ppa terdr dar dua kompoe, yatu baya operasoal da baya vestas. Baya operasoal terdr dar baya operasoal ppa da

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

PERTEMUAN 14-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 14-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 4-MPC PRAKTIK Oleh: Adh Kurawa SEKOLAH TINGGI ILMU STATISTIK Double Samplg Utuk Peduga Beda, Rato, Regres Msalka, pada kods tertetu, kta g megguaka dfferece estmator, rato estmator, atau regresso

Lebih terperinci

Menghitung Kinerja Investasi

Menghitung Kinerja Investasi Meghtug Kerja Ivestas Dalam perjalaa vestas, la suatu asset bsa berubah dar waktu ke waktu akbat perubaha kods pasar. Sela tu, sebaga baga dar proses vestas, vestor perlu mematau da megevaluas kerja vestas

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

MEKANISME KERUNTUHAN LINGKARAN (Circular Failure Mechanisms)

MEKANISME KERUNTUHAN LINGKARAN (Circular Failure Mechanisms) MEKANISME KERUNTUHAN LINGKARAN (Crcular alure Mechasms) Stabltas Lereg Moda kerutuha lereg umumya adalah rotatoal slp sepajag bdag rutuh yag medekat lgkara Kerutuha dagkal Kerutuha dalam Saat rutuh Stabltas

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

INTERPOLASI. FTI-Universitas Yarsi

INTERPOLASI. FTI-Universitas Yarsi BAB VI INTERPOLASI FTI-Uverstas Yars Pedahulua Bla dketahu taulas ttk-ttk (y seaga erkut (yag dalam hal rumus ugs y ( tdak dketahu secara eksplst: Htug taksra la y utuk 3.8! FTI-Uverstas Yars Persoala

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama. BAB 2 LANDASAN TEORI 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatve lama. Sedagka ramala adalah

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

Manajemen Keuangan. Idik Sodikin,SE,MBA,MM KONSEP WAKTU UANG PADA MASALAH KEUANGAN. Modul ke: Fakultas EKONOMI DAN BISNIS. Program Studi Akuntansi

Manajemen Keuangan. Idik Sodikin,SE,MBA,MM KONSEP WAKTU UANG PADA MASALAH KEUANGAN. Modul ke: Fakultas EKONOMI DAN BISNIS. Program Studi Akuntansi Modul ke: 05 KONSEP WAKTU UANG PADA MASALAH KEUANGAN Fakultas EKONOMI DAN BISNIS Program Studi Akutasi Idik Sodiki,SE,MBA,MM Pedahulua Kosep ilai waktu dari uag (time value of moey) pada dasarya mejelaska

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE RISI IKLUSI- EKSKLUSI ICLUSIO- EXCLUSIO RICILE rsp Iklus-Eksklus Ada berapa aggota dalam gabuga dua hmpua hgga? A A = A A - A A Cotoh Ada berapa blaga bulat postf lebh kecl atau sama dega 00 yag habs dbag

Lebih terperinci

CADANGAN PROSEKTIF ASURANSI JIWA DWIGUNA BERDASARKAN ASUMSI CONSTANT FORCE

CADANGAN PROSEKTIF ASURANSI JIWA DWIGUNA BERDASARKAN ASUMSI CONSTANT FORCE CADANGAN ROSEKTIF ASURANSI JIWA DWIGUNA BERDASARKAN ASUMSI CONSTANT FORCE Tara Mustka 1, Johaes Kho 2, Azskha 2 1 Mahasswa rogra S1 Mateatka 2 Dose Jurusa Mateatka Fakultas Mateatka da Ilu egetahua Ala

Lebih terperinci

KEPUTUSAN-KEPUTUSAN LINTAS WAKTU

KEPUTUSAN-KEPUTUSAN LINTAS WAKTU KEPUTUSA-KEPUTUSA LITAS WAKTU Dr. Mohammad Abdul Mukhy Page Modal adalah uang dan sumber daya yang dnvestaskan Bunga (nterest) adalah pengembalan atas modal atau sejumlah uang yang dterma nvestor untuk

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

25/09/2010 KONSEP TIME VALUE OF MONEY

25/09/2010 KONSEP TIME VALUE OF MONEY Termiologi Buga da Suku Buga (i) KONSEP TIME VALUE OF MONEY DWI PURNOMO http//www.labsistemtmip.wordpress.com http//www.agroidustry.wordpress.com Buga (iterest) uag yag dibayarka/diterima atas pegguaa

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Muniya Alteza

Muniya Alteza NILAI WAKTU UANG 1. Kosep dasar ilai waktu uag (time value of moey) 2. Nilai masa depa (future value) 3. Nilai sekarag (preset value) 4. Auitas (auity) 5. Perpetuitas (perpetuity) 6. Buga tahua efektif/

Lebih terperinci

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama.

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. BAB 2 LANDASAN TEORITIS 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatf lama. Sedagka ramala adalah

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Waktu da Tempat Peelta megea la ekoom koflk mausa da gajah dlaksaaka selama 2 bula mula dar bula Jul hgga Agustus 2009. Pegambla data lapaga dlaksaaka d Desa Lubuk Kembag

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange

PRAKTIKUM 20 Interpolasi Polinomial dan Lagrange Praktkum 0 Iterpolas Polomal da Lagrage PRAKTIKUM 0 Iterpolas Polomal da Lagrage Tuua : Mempelaar berbaga metode Iterpolas ag ada utuk meetuka ttkttk atara dar buah ttk dega megguaka suatu fugs pedekata

Lebih terperinci

Edge Anti-Magic Total Labeling dari

Edge Anti-Magic Total Labeling dari Edge At-Magc Total Labelg dar Charul Imro da Suhud Wahyud Jurusa Matematka Isttut Tekolog Sepuluh Nopember Surabaya mro-ts@matematka.ts.ac.d, suhud@matematka.ts.ac.d C Abstract We wll fd edge at-magc total

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

KULIAH KE 7. METODA KELOMPOK (COHORT SURVIVAL METHOD) Lanjutan. Melihat pengaruh komponen kematian terhadap perubahan penduduk.

KULIAH KE 7. METODA KELOMPOK (COHORT SURVIVAL METHOD) Lanjutan. Melihat pengaruh komponen kematian terhadap perubahan penduduk. ROGRA TUDI ERENANAAN WILAYAH DAN KOTA FAKULTA TEKNIK UNIVERITA EA UNGGUL ETODE ANALII ERENANAAN TL K DR. Ir. Ke arta K, T. b. Kompoe Kemata KULIAH KE ETODA KELOOK (OHORT URVIVAL ETHOD) Lajta elhat pegarh

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA 3. Pegkodea Matrks Ketetaggaa Matrks ketetaggaa A adaah matrks smetr, sehgga, dega memh semua eeme pada dagoa utama da eeme-eeme dbawah dagoa utama, maka aka

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400

100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400 h t t p : / / m a t e m a t r c k. b l o g p o t. c o m Meetuka uur-uur pada dagram lgkara atau batag Rgkaa Mater : Uur uur pada dagram lgkara yag pokok haya hal :. Meetuka bear baga dalam lgkara ( dapat

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

4/15/2009. Arti investasi : a. Hasil penjualan. b. Biaya c. Ekspektasi dan kepercayaan.

4/15/2009. Arti investasi : a. Hasil penjualan. b. Biaya c. Ekspektasi dan kepercayaan. Arti ivestasi : a. Hasil pejuala. b. Biaya c. Ekspektasi da kepercayaa. Ivestasi : peigkata barag modal berujud Kekuata Ekoomi Utama; Hasil pegembalia ivestasi yag dipegaruhi oleh struktur ekoomi, biaya

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1 Waktu da Tempat Peelta dlakuka mula taggal 13 Me sampa dega 19 Agustus 007d perara Teluk Lasogko, Kabupate Buto, Sulawes Teggara. Lokas dplh dega pertmbaga bahwa perara merupaka

Lebih terperinci

MUTUALLY EXCLUSIVE ALTERNATIVE PROJECT UNTUK ANALISIS KELAYAKAN USAHA INDUSTRI KECIL

MUTUALLY EXCLUSIVE ALTERNATIVE PROJECT UNTUK ANALISIS KELAYAKAN USAHA INDUSTRI KECIL Jural Sstem Tekk Idustr Volume 6, No. Jul 005 MUTUALLY EXCLUSIVE ALTERNATIVE PROJECT UNTUK ANALISIS KELAYAKAN USAHA INDUSTRI KECIL A Had Arf Fakultas Ekoom Uverstas Malkussaleh Abstrak: Pembagua asoal

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK

INTERPOLASI INTERPOLASI LINIER INTERPOLASI KUADRATIK INTERPOASI INTERPOASI INIER INTERPOASI KUADRATIK INTERPOASI POINOMIA Dua ttk data : Gars Tga ttk data : Kuadratk g Empat ttk data :Polomal tgkat-3 Dketahu: ttk data ( y ) ( y ) ( y ) D ttk data :Polomal

Lebih terperinci

CAL ( ) ( ) E r. Var rp i M im

CAL ( ) ( ) E r. Var rp i M im LAIRAN 3 Lampra Bukt ersamaa ( Gambar: Kurva Froter da CAL E ( r CAL E ( r ( E r r roter r ( E r r Kemrga gars CAL adalah, merupaka market prce o rsk (rsko harga pasar da dsebut raso mbal hasl terhadap

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci