Pengenalan Pola. Klasifikasi Linear Discriminant Analysis

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengenalan Pola. Klasifikasi Linear Discriminant Analysis"

Transkripsi

1 Pengenalan Pola Klasifiasi Linear Discriminant Analysis PTIIK

2 Course Contents 1 Analisis Disriminan 2 Linear Classification 3 Linear Discriminant Analysis (LDA 4 Studi Kasus dan Latihan

3 Analisis Disriminan Salah satu teni statisti yang dapat digunaan pada hubungan dependensi dari suatu variabel Suatu teni analisis multivariate yang digunaan untu menglasifiasi suatu obje e dalam dua elompo atau lebih berdasaran variabel independennya

4 Analisis Disriminan Pengelompoan pada analisis disriminan bersifat mutually eclusive dan ehaustive mutually eclusive yaitu jia suatu obje telah masu pada salah satu elompo maa tida dapat menjadi anggota dari elompo yang lain ehaustive yaitu menyeluruh berdasaran sejumlah variabel penjelas berupa data uantitatif / continue

5 Linear Classification Suatu bentu lasifiasi yang bertujuan untu menemuan batas-batas eputusan (decision boundaries di dalam ruang fitur (input secara linier R 1 R 2 X 2 R 4 R 3 X 1 Batas-batas eputusan linier pada ruang input 2D

6 Linear Classification Terdapat sebuah fungsi disriminan ( untu setiap class Aturan lasifiasi : { : arg ma ( } Ingat bahwa fungsi loss 0-1 menyebaban aturan lasifiasi menjadi : R Jadi, P( G X dapat digunaan sebagai pengganti dari ( R j { : arg ma P( G j X } j j

7 Linear Discriminant Analysis Esensi : meminimalan error pada Bayes Classifier Jia diasumsian epadatan class ondisional berdistribusi Gaussian Multivariate dan memilii ovarians yang sama untu setiap class, maa : dimana: K l l l f f X G 1 ( ( Pr( ( ( 2 1 ep( (2 1 ( 1 2 1/ 2 / T p f Σ Σ

8 Fungsi Disriminan : Aturan lasifiasi : Euivalen dengan : Linear Discriminant Analysis ( arg ma ( ˆ G arg ma Pr( ( ˆ X G G ln( i T i i T i i p C C f

9 Contoh LDA LDA mampu menghindari masing

10 Studi Kasus : Pabri "ABC" menghasilan Chip Ring dengan ualitas yang sangat mahal dan tinggi. Kualitas tersebut diuur dalam uuran elengungan dan diameter. Hasil ontrol ualitas oleh para ahli diberian dalam tabel di bawah ini. Curvature Diameter Quality Control Result Passed Passed Passed Passed Not passed Not passed Not passed

11 Sebagai seorang onsultan pabri, Anda mendapatan tugas untu mengatur riteria pengendalian ualitas secara otomatis. Kemudian, manajer pabri juga ingin menguji riteria pada jenis baru dari chip ring yang bahan para ahli berpendapat berbeda antara satu sama lain. chip ring baru tersebut memilii elengungan 2.81 dan diameter 5,46.

12 Solusi Ketia ita merencanaan fitur, ita dapat melihat bahwa data tersebut secara linear terpisah. Kita bisa menari garis untu memisahan dua elompo. Masalahnya adalah untu menemuan garis dan memutarnya sedemiian rupa untu memasimalan jara antara elompo dan untu meminimalan jara dalam elompo.

13 X = fitur (atau variabel independent dari semua data. Setiap baris merepresentasian satu obje Setiap olom merepresentasian satu fitur Y = class (atau variabel dependent dari semua data. Setiap baris merepresentasian satu obje dan hanya memilii satu olom

14 = y=

15 X = data dari baris e-, 3 = [ ] g = jumlah class pada y, g=2 X i = fitur untu class e i. Dilauan pemisahan edalam class berdasaran jumlah class pada y X 1 = X 2 =

16 Hitung μi = mean features dari group i dan μ = mean global Hitung global i 0 (Mean Corrected : ( i minus mean

17 Hitung matri Kovarian group I c ( 0 T 0 i i i n i C1 = C2 =

18 Mengumpulan matris ovarians per elompo e dalam satu nilai. Hal ini dihitung untu setiap entri dalam matris menggunaan formula : C(r,s 1 n g i1 n i c i (r,s Dalam asus ini: 4/7* /7*0.259 = /7*( /7*( = dan 4/7* /7*2.142 = 1.689

19 Matris ovarians C = Matris inversnya C -1 =

20 P = prior probability vector P = = /7 3/7 Fungsi Disriminan : 1 1 ln( Tentuan class dari object e dalam class i yang memilii nilai f i masimum f i C i 1 T ic 2 T i p i

21 Hasil

22 Tugas Tambahan metode LDA pada apliasi pengenalan pola dari data UCI yang alian erjaan sebelumnya Munculan eluaran sesuai dengan tahapan-tahapan penyelesaian: Sheet4 / Form4 Covarians, Prior, Fungsi Disriminan, dan Hasil Klasifiasi

23 /

Pengenalan Pola/ Pattern Recognition

Pengenalan Pola/ Pattern Recognition Pengenalan Pola/ Pattern Recognition Linear Discriminant Analysis Imam Cholissodin S.Si., M.Kom. Pokok Pembahasan 1. Linear Discriminant Analysis (LDA) Pengertian Klasifikasi LDA Rumus Umum LDA 2. Case

Lebih terperinci

Pengenalan Pola. Klasifikasi Teori Keputusan Bayes

Pengenalan Pola. Klasifikasi Teori Keputusan Bayes Pengenalan Pola Klasifikasi Teori Keputusan Bayes PTIIK - 2014 Course Contents 1 Teori Keputusan Bayes 2 Fase Training 3 Fase Testing 4 Latihan Prosedur Keputusan Bayes Prosedur pengenalan pola dan pengambilan

Lebih terperinci

BAB III ANALISIS DISKRIMINAN. analisis multivariat dengan metode dependensi (dimana hubungan antar variabel

BAB III ANALISIS DISKRIMINAN. analisis multivariat dengan metode dependensi (dimana hubungan antar variabel BAB III ANALISIS DISKRIMINAN 3.1 Pengertian Analisis Disriminan Analisis disriminan merupaan sala satu metode yang digunaan dalam analisis multivariat dengan metode dependensi (dimana ubungan antar variabel

Lebih terperinci

BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA

BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA Pada penelitian ini, suatu portfolio memilii seumlah elas risio. Tiap elas terdiri dari n, =,, peserta dengan umlah besar, dan

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah teknik yang baru yang disebut analisis ragam. Anara adalah suatu metode

II. TINJAUAN PUSTAKA. sebuah teknik yang baru yang disebut analisis ragam. Anara adalah suatu metode 3 II. TINJAUAN PUSTAKA 2.1 Analisis Ragam (Anara) Untu menguji esamaan dari beberapa nilai tengah secara sealigus diperluan sebuah teni yang baru yang disebut analisis ragam. Anara adalah suatu metode

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Variabel Variabel ialah sesuatu yang nilainya berubah-ubah menurut watu atau berbeda menurut elemen/tempat. Umumnya nilai arateristi merupaan variabel dan diberi simbol huruf X.

Lebih terperinci

Pengenalan Pola. Klasifikasi Naïve Bayes

Pengenalan Pola. Klasifikasi Naïve Bayes Pengenalan Pola Klasifikasi Naïve Bayes PTIIK - 2014 Course Contents 1 Naïve Bayes Classifier 2 Fase Training 3 Fase Testing 4 Studi Kasus dan Latihan Naïve Bayes Classifier Metode klasifikasi ini diturunkan

Lebih terperinci

ANALISIS DISKRIMINAN

ANALISIS DISKRIMINAN ANALISIS DISKRIMINAN I Prinsip Dasar dan Tujuan Analisis Analisis disriminan adalah salah satu teni statisti yang bisa digunaan pada hubungan dependensi (hubungan antarvariabel dimana sudah bisa dibedaan

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 2, Tahun 2015, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 2, Tahun 2015, Halaman Online di: ISSN: 339-54 JURNAL GAUSSIAN, Volume 4, Nomor, Tahun 5, Halaman 87-93 Online di: http://ejournal-s.undip.ac.id/index.php/gaussian PENERAPAN FORMULA BENEISH M-SCORE DAN ANALISIS DISKRIMINAN LINIER UNTUK

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar belakang

BAB 1 PENDAHULUAN. 1.1 Latar belakang BAB PENDAHULUAN. Latar belaang Metode analisis yang telah dibicaraan hingga searang adalah analisis terhadap data mengenai sebuah arateristi atau atribut (jia data itu ualitatif) dan mengenai sebuah variabel,

Lebih terperinci

BAB II PENGENALAN WAJAH

BAB II PENGENALAN WAJAH BAB II PENGENALAN WAJAH Sistem pengenalan waah dapat dibagi menadi empat tahap, yaitu tahap pengolahan citra, detesi waah, estrasi fitur dan tahap pengenalan waah. Pada tugas ahir ini aan lebih diteanan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belaang Model Loglinier adalah salah satu asus husus dari general linier model untu data yang berdistribusi poisson. Model loglinier juga disebut sebagai suatu model statisti

Lebih terperinci

Sah Tidaknya Sidik Ragam. Data Bermasalah. Data Bermasalah PERANCANGAN PERCOBAAN (DATA BERMASALAH)

Sah Tidaknya Sidik Ragam. Data Bermasalah. Data Bermasalah PERANCANGAN PERCOBAAN (DATA BERMASALAH) Sah Tidanya Sidi Ragam PERANCANGAN PERCOBAAN (DATA BERMASALAH) Oleh: Dr. Ir. Dirvamena Boer, M.Sc.Agr. HP: 081 385 065 359 Universitas Haluoleo, Kendari [email protected] http://dirvamenaboer.tripod.com/

Lebih terperinci

Metode Penggerombolan Berhirarki

Metode Penggerombolan Berhirarki 4 TINJAUAN PUSTAKA Analisis gerombol dalam bidang riset pemasaran sering diistilahan sebagai analisis segmentasi, merupaan alat statistia peubah ganda yang bertujuan untu mengelompoan n indiidu data e

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Statisti Inferensia Tujuan statisti pada dasarnya adalah melauan desripsi terhadap data sampel, emudian melauan inferensi terhadap data populasi berdasaran pada informasi yang

Lebih terperinci

PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursakti ( )

PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursakti ( ) PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursati (13507065) Program Studi Teni Informatia, Seolah Teni Eletro dan Informatia, Institut Tenologi Bandung Jalan Ganesha No. 10 Bandung, 40132

Lebih terperinci

Studi dan Analisis mengenai Hill Cipher, Teknik Kriptanalisis dan Upaya Penanggulangannya

Studi dan Analisis mengenai Hill Cipher, Teknik Kriptanalisis dan Upaya Penanggulangannya Studi dan Analisis mengenai Hill ipher, Teni Kriptanalisis dan Upaya enanggulangannya Arya Widyanaro rogram Studi Teni Informatia, Institut Tenologi Bandung, Jl. Ganesha 10 Bandung Email: [email protected]

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belaang Masalah untu mencari jalur terpende di dalam graf merupaan salah satu masalah optimisasi. Graf yang digunaan dalam pencarian jalur terpende adalah graf yang setiap sisinya

Lebih terperinci

ANALISIS PETA KENDALI DEWMA (DOUBLE EXPONENTIALLY WEIGHTED MOVING AVERAGE)

ANALISIS PETA KENDALI DEWMA (DOUBLE EXPONENTIALLY WEIGHTED MOVING AVERAGE) Seminar Nasional Matematia dan Apliasinya, 1 Otober 17 ANALISIS PETA KENDALI DEWMA (DOUBLE EXPONENTIALLY WEIGHTED MOVING AVERAGE) DALAM PENGENDALIAN KUALITAS PRODUKSI FJLB (FINGER JOINT LAMINATING BOARD)

Lebih terperinci

SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER. Abstrak

SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER. Abstrak SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER Oleh : Pandapotan Siagia, ST, M.Eng (Dosen tetap STIKOM Dinamia Bangsa Jambi) Abstra Sistem pengenal pola suara atau yang lebih dienal dengan

Lebih terperinci

SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER

SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER Pandapotan Siagian, ST, M.Eng Dosen Tetap STIKOM Dinamia Bangsa - Jambi Jalan Sudirman Theoo Jambi Abstra Sistem pengenal pola suara atau

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini menggunakan data sekunder bersifat runtun waktu (time series)

III. METODOLOGI PENELITIAN. Penelitian ini menggunakan data sekunder bersifat runtun waktu (time series) III. METODOLOGI PENELITIAN A. Jenis dan Sumber Data Penelitian ini menggunaan data seunder bersifat runtun watu (time series) dalam periode tahunan dan data antar ruang (cross section). Data seunder tersebut

Lebih terperinci

Solusi Pengayaan Matematika Edisi 16 April Pekan Ke-4, 2005 Nomor Soal:

Solusi Pengayaan Matematika Edisi 16 April Pekan Ke-4, 2005 Nomor Soal: Solusi Pengayaan Matematia Edisi 6 pril Pean Ke-4, 00 Nomor Soal: -60. Jia. sin cos tan 00 00, maa nilai adalah... cos sin 00 00. 40 Solusi: [] sin cos tan 00 00 cos sin 00 00 sin sin 00 00 cos sin 00

Lebih terperinci

KAJIAN METODE BERBASIS MODEL PADA ANALISIS KELOMPOK DENGAN PERANGKAT LUNAK MCLUST

KAJIAN METODE BERBASIS MODEL PADA ANALISIS KELOMPOK DENGAN PERANGKAT LUNAK MCLUST KAJIAN METODE BERBASIS MODEL PADA ANALISIS KELOMPOK DENGAN PERANGKAT LUNAK MCLUST Timbul Pardede ([email protected]) Jurusan Statisti FMIPA, Universitas Terbua ABSTRAK Metode Ward dan metode K-rataan

Lebih terperinci

BAB 3 LANGKAH PEMECAHAN MASALAH

BAB 3 LANGKAH PEMECAHAN MASALAH BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi Gambar 3.1 Bagan Penetapan Kriteria Optimasi Sumber: Peneliti Determinasi Kinerja Operasional BLU Transjaarta Busway Di tahap ini, peneliti

Lebih terperinci

Analisis Varians = Analysis of Variance = ANOVA

Analisis Varians = Analysis of Variance = ANOVA . Pendahuluan. Distribusi F Analisis Varians Analysis of Variance ANOVA χ² pengujian beberapa (>) proporsi ANOVA pengujian beberapa (>) nilai rata-rata Dasar perhitungan ANOVA ditetapan oleh Ronald A.

Lebih terperinci

CATATAN KULIAH RISET OPERASIONAL

CATATAN KULIAH RISET OPERASIONAL CATATAN KULIAH RISET OPERASIONAL Pertemuan minggu pertama ( x 50 menit) Pemrograman Bulat Linear (Integer Linear Programming - ILP) Tuuan Instrusional Umum : Mahasiswa dapat menggunaan algoritma yang

Lebih terperinci

PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA

PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA Sear Wulandari, Nur Salam, dan Dewi Anggraini Program Studi Matematia Universitas Lambung Mangurat

Lebih terperinci

ANALISIS VARIANSI (ANOVA)

ANALISIS VARIANSI (ANOVA) ANALISIS VARIANSI (ANOVA) ANOVA = Analisis Varians (Anava) = Analisis Ragam = Sidi Ragam Diperenalan oleh R.A. Fisher (195) disebut uji F pengembangan dari uji t dua sampel bebas (independent samples t

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENENTU NILAI INTERVAL KADAR LEMAK TUBUH MENGGUNAKAN REGRESI INTERVAL DENGAN NEURAL FUZZY

SISTEM PENDUKUNG KEPUTUSAN PENENTU NILAI INTERVAL KADAR LEMAK TUBUH MENGGUNAKAN REGRESI INTERVAL DENGAN NEURAL FUZZY SISTEM PENDUKUNG KEPUTUSAN PENENTU NILAI INTERVAL KADAR LEMAK TUBUH MENGGUNAKAN REGRESI INTERVAL DENGAN NEURAL FUZZY Tedy Rismawan dan Sri Kusumadewi Laboratorium Komputasi dan Sistem Cerdas, Jurusan Teni

Lebih terperinci

CONTENT BASED IMAGE RETRIEVAL MENGGUNAKAN MOMENT INVARIANT, TEKSTUR DAN BACKPROPAGATION

CONTENT BASED IMAGE RETRIEVAL MENGGUNAKAN MOMENT INVARIANT, TEKSTUR DAN BACKPROPAGATION UPN Veteran Yogyaarta, 30 Juni 2012 CONTENT BASED IMAGE RETRIEVAL MENGGUNAKAN MOMENT INVARIANT, TEKSTUR DAN BACKPROPAGATION Ni G.A.P Harry Saptarini 1), Rocy Yefrenes Dilla 2) 1) Politeni Negeri Bali 2)

Lebih terperinci

BAB 5 RUANG VEKTOR UMUM. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 5 RUANG VEKTOR UMUM. Dr. Ir. Abdul Wahid Surhim, MT. BAB 5 RUANG VEKTOR UMUM Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN. Ruang Vetor Nyata. Subruang. Kebebasan Linier 4. Basis dan Dimensi 5. Ruang Baris, Ruang Kolom dan Ruang Nul 6. Ran dan Nulitas

Lebih terperinci

BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING

BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING Bab III Desain Dan Apliasi Metode Filtering Dalam Sistem Multi Radar Tracing BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING Bagian pertama dari bab ini aan memberian pemaparan

Lebih terperinci

Aplikasi diagonalisasi matriks pada rantai Markov

Aplikasi diagonalisasi matriks pada rantai Markov J. Sains Dasar 2014 3(1) 20-24 Apliasi diagonalisasi matris pada rantai Marov (Application of matrix diagonalization on Marov chain) Bidayatul hidayah, Rahayu Budhiyati V., dan Putriaji Hendiawati Jurusan

Lebih terperinci

Pengenalan Pola/ Pattern Recognition

Pengenalan Pola/ Pattern Recognition Pengenalan Pola/ Pattern Recognition Bayesian Decision Theory Team Teaching Klasifikasi 1. Teori Keputusan Bayes ü Keputusan didukung probabilitas posterior ü Keputusan mempertimbangkan Risk/Cost 2. Fase

Lebih terperinci

PERBAIKAN KUALITAS CITRA MENGGUNAKAN HISTOGRAM LINEAR CONTRAST STRETCHING PADA CITRA SKALA KEABUAN

PERBAIKAN KUALITAS CITRA MENGGUNAKAN HISTOGRAM LINEAR CONTRAST STRETCHING PADA CITRA SKALA KEABUAN PERBAIKAN KUALITAS CITRA MENGGUNAKAN HISTOGRAM LINEAR CONTRAST STRETCHING PADA CITRA SKALA KEABUAN Murinto Program Studi Teni Informatia Universitas Ahmad Dahlan Kampus III UAD Jl. Prof. Soepomo Janturan

Lebih terperinci

2. Menentukan koleksi inti ubi kayu dan mengevaluasi kebaikan koleksi inti yang diperoleh. METODE. Data

2. Menentukan koleksi inti ubi kayu dan mengevaluasi kebaikan koleksi inti yang diperoleh. METODE. Data 2 2. Menentuan olesi inti ubi ayu dan mengevaluasi ebaian olesi inti yang dieroleh. METODE Data Data yang digunaan dalam enelitian ini berasal dari Kelomo Peneliti Pengelolaan Sumberdaya Geneti (Kelti

Lebih terperinci

Analisis Varians = Analysis of Variance = ANOVA

Analisis Varians = Analysis of Variance = ANOVA Analisis Varians Analysis of Variance ANOVA. Pendahuluan. Distribusi F χ² pengujian beberapa (>) proporsi ANOVA pengujian beberapa (>) nilai rata-rata Dasar perhitungan ANOVA ditetapan oleh Ronald A. Fisher.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Kendali Lup [1] Sistem endali dapat diataan sebagai hubungan antara omponen yang membentu sebuah onfigurasi sistem, yang aan menghasilan tanggapan sistem yang diharapan.

Lebih terperinci

Optimasi Non-Linier. Metode Numeris

Optimasi Non-Linier. Metode Numeris Optimasi Non-inier Metode Numeris Pendahuluan Pembahasan optimasi non-linier sebelumnya analitis: Pertama-tama mencari titi-titi nilai optimal Kemudian, mencari nilai optimal dari fungsi tujuan berdasaran

Lebih terperinci

BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN

BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN Berdasaran asumsi batasan interval pada bab III, untu simulasi perhitungan harga premi pada titi esetimbangan, maa

Lebih terperinci

KLASIFIKASI DATA MENGGUNAKAN JST BACKPROPAGATION MOMENTUM DENGAN ADAPTIVE LEARNING RATE

KLASIFIKASI DATA MENGGUNAKAN JST BACKPROPAGATION MOMENTUM DENGAN ADAPTIVE LEARNING RATE KLASIFIKASI DATA MENGGUNAKAN JST BACKPROPAGATION MOMENTUM DENGAN ADAPTIVE LEARNING RATE Warih Maharani Faultas Teni Informatia, Institut Tenologi Telom Jl. Teleomuniasi No.1 Bandung 40286 Telp. (022) 7564108

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA 1 Latar Belaang PENDAHULUAN Sistem biometri adalah suatu sistem pengenalan pola yang melauan identifiasi personal dengan menentuan eotentian dari arateristi fisiologis dari perilau tertentu yang dimilii

Lebih terperinci

3. Sebaran Peluang Diskrit

3. Sebaran Peluang Diskrit 3. Sebaran Peluang Disrit EL2002-Probabilitas dan Statisti Dosen: Andriyan B. Susmono Isi 1. Sebaran seragam (uniform) 2. Sebaran binomial dan multinomial 3. Sebaran hipergeometri 4. Sebaran Poisson 5.

Lebih terperinci

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang Latar Belaang Terdapat banya permasalahan atau ejadian dalam ehidupan sehari hari yang dapat dimodelan dengan suatu proses stoasti Proses stoasti merupaan permasalahan yang beraitan dengan suatu aturan-aturan

Lebih terperinci

UJI BARTLETT. Elty Sarvia, ST., MT. Fakultas Teknik Jurusan Teknik Industri Universitas Kristen Maranatha Bandung. Scheffe Multiple Contrast Procedure

UJI BARTLETT. Elty Sarvia, ST., MT. Fakultas Teknik Jurusan Teknik Industri Universitas Kristen Maranatha Bandung. Scheffe Multiple Contrast Procedure 8/9/01 UJI TUKEY UJI DUNCAN UJI BARTLETT UJI COCHRAN UJI DUNNET Elty Sarvia, ST., MT. Faultas Teni Jurusan Teni Industri Universitas Kristen Maranatha Bandung Macam Metode Post Hoc Analysis The Fisher

Lebih terperinci

OSN 2014 Matematika SMA/MA

OSN 2014 Matematika SMA/MA Soal 5. Suatu barisan bilangan asli a 1, a 2, a 3,... memenuhi a + a l = a m + a n untu setiap bilangan asli, l, m, n dengan l = mn. Jia m membagi n, butian bahwa a m a n. Solusi. Andaian terdapat bilangan

Lebih terperinci

Makalah Seminar Tugas Akhir

Makalah Seminar Tugas Akhir Maalah Seminar ugas Ahir Simulasi Penapisan Kalman Dengan Kendala Persamaan Keadaan Pada Kasus Penelusuran Posisi Kendaraan (Vehicle racing Problem Iput Kasiyanto [], Budi Setiyono, S., M. [], Darjat,

Lebih terperinci

PEMANFAATAN METODE HEURISTIK DALAM PENCARIAN JALUR TERPENDEK DENGAN ALGORITMA SEMUT DAN ALGORITMA GENETIKA

PEMANFAATAN METODE HEURISTIK DALAM PENCARIAN JALUR TERPENDEK DENGAN ALGORITMA SEMUT DAN ALGORITMA GENETIKA PEMANFAATAN METODE HEURISTIK DALAM PENCARIAN JALUR TERPENDEK DENGAN ALGORITMA SEMUT DAN ALGORITMA GENETIKA Iing Mutahiroh, Fajar Saptono, Nur Hasanah, Romi Wiryadinata Laboratorium Pemrograman dan Informatia

Lebih terperinci

Ukuran Pemusatan Data

Ukuran Pemusatan Data Uuran Pemusatan Data Atina Ahdia, S.Si., M.Si. Universitas Islam Indonesia Uuran Pemusatan Data 1. Mean (rata-rata) 2. Median (nilai tengah) 3. Modus Mean 1. Rata-rata Hitung Misalan terdapat N observasi,

Lebih terperinci

BAB III METODE SCHNABEL

BAB III METODE SCHNABEL BAB III METODE SCHNABEL Uuran populasi tertutup dapat diperiraan dengan teni Capture Mar Release Recapture (CMRR) yaitu menangap dan menandai individu yang diambil pada pengambilan sampel pertama, melepasan

Lebih terperinci

Materi. Menggambar Garis. Menggambar Garis 9/26/2008. Menggambar garis Algoritma DDA Algoritma Bressenham

Materi. Menggambar Garis. Menggambar Garis 9/26/2008. Menggambar garis Algoritma DDA Algoritma Bressenham Materi IF37325P - Grafia Komputer Geometri Primitive Menggambar garis Irfan Malii Jurusan Teni Informatia FTIK - UNIKOM IF27325P Grafia Komputer 2008 IF27325P Grafia Komputer 2008 Halaman 2 Garis adalah

Lebih terperinci

BAB IV APLIKASI PADA MATRIKS STOKASTIK

BAB IV APLIKASI PADA MATRIKS STOKASTIK BAB IV : ALIKASI ADA MARIKS SOKASIK 56 BAB IV ALIKASI ADA MARIKS SOKASIK Salah satu apliasi dari eori erron-frobenius yang paling terenal adalah penurunan secara alabar untu beberapa sifat yang dimilii

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1. Distribusi Seragam Diskrit

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1. Distribusi Seragam Diskrit DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 1 TI2131 TEORI PROBABILITAS MINGGU KE-9 Distribusi Seragam Disrit Jia sebuah variabel random X mengambil nilai x 1, x 2,, x dengan probabilitas yang sama, maa distribusi

Lebih terperinci

PENCARIAN JALUR TERPENDEK MENGGUNAKAN ALGORITMA SEMUT

PENCARIAN JALUR TERPENDEK MENGGUNAKAN ALGORITMA SEMUT Seminar Nasional Apliasi Tenologi Informasi 2007 (SNATI 2007) ISSN: 1907-5022 Yogyaarta, 16 Juni 2007 PENCARIAN JALUR TERPENDEK MENGGUNAKAN ALGORITMA SEMUT I ing Mutahiroh, Indrato, Taufiq Hidayat Laboratorium

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN 36 BAB 3 METODE PENELITIAN 3.1 Disain Penelitian Jenis penelitian yang digunaan adalah penelitian desriptif, yaitu penelitian terhadap fenomena atau populasi tertentu yang diperoleh peneliti dari subye

Lebih terperinci

Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming

Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming JURAL TEKIK POMITS Vol. 2, o. 2, (2013) ISS: 2337-3539 (2301-9271 Print) B-137 Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming Yunan Helmy Amrulloh, Rony Seto Wibowo, dan Sjamsjul

Lebih terperinci

MATA KULIAH MATEMATIKA TEKNIK 2 [KODE/SKS : KD / 2 SKS] Ruang Vektor

MATA KULIAH MATEMATIKA TEKNIK 2 [KODE/SKS : KD / 2 SKS] Ruang Vektor MATA KULIAH MATEMATIKA TEKNIK [KODE/SKS : KD4 / SKS] Ruang Vetor FIELD: Ruang vetor V atas field salar K adalah himpunan ta osong dengan operasi penjumlahan vetor dan peralian salar. Himpunan ta osong

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Fuzzy 2.1.1 Dasar-Dasar Teori Fuzzy Secara prinsip, di dalam teori fuzzy set dapat dianggap sebagai estension dari teori onvensional atau crisp set. Di dalam teori crisp

Lebih terperinci

PENERAPAN ALGORITMA BACKPROPAGATION UNTUK KLASIFIKASI MUSIK DENGAN SOLO INSTRUMEN

PENERAPAN ALGORITMA BACKPROPAGATION UNTUK KLASIFIKASI MUSIK DENGAN SOLO INSTRUMEN Seminar Nasional Apliasi Tenologi Informasi 009 (SNATI 009) Yogyaarta, 0 Juni 009 ISSN:1907-50 PENERAPAN ALGORITMA BACKPROPAGATION UNTUK KLASIFIKASI MUSIK DENGAN SOLO INSTRUMEN Gunawan 1, Agus Djaja Gunawan,

Lebih terperinci

STUDI KOMPARASI IMPLEMENTASI JARINGAN BASIS RADIAL DAN FUZZY INFERENCE SYSTEM TSK UNTUK PENYELESAIAN CURVE FITTING

STUDI KOMPARASI IMPLEMENTASI JARINGAN BASIS RADIAL DAN FUZZY INFERENCE SYSTEM TSK UNTUK PENYELESAIAN CURVE FITTING STUDI KOPARASI IPEENTASI JARINGAN BASIS RADIA DAN FUZZY INFERENCE SYSTE TSK UNTUK PENYEESAIAN CURVE FITTING Sri Kusumadewi Teni Informatia Universitas Islam Indonesia Jl. Kaliurang Km 4,5 Yogyaarta [email protected]

Lebih terperinci

BAB III MODEL KANAL WIRELESS

BAB III MODEL KANAL WIRELESS BAB III MODEL KANAL WIRELESS Pemahaman mengenai anal wireless merupaan bagian poo dari pemahaman tentang operasi, desain dan analisis dari setiap sistem wireless secara eseluruhan, seperti pada sistem

Lebih terperinci

ANALISIS KEPUASAN KONSUMEN TERHADAP PELAYANAN PELAYANAN JASA PENGIRIMAN PAKET (KURIR) DENGAN MENGGUNAKAN METODE TOPSIS FUZZY

ANALISIS KEPUASAN KONSUMEN TERHADAP PELAYANAN PELAYANAN JASA PENGIRIMAN PAKET (KURIR) DENGAN MENGGUNAKAN METODE TOPSIS FUZZY Jurnal Manti Penusa Vol No Desember ISSN 88-9 ANALISIS EPUASAN ONSUMEN TERHADAP PELAYANAN PELAYANAN JASA PENGIRIMAN PAET (URIR DENGAN MENGGUNAAN METODE TOPSIS FUZZY Desi Vinsensia Program Studi Teni Informatia

Lebih terperinci

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika hazanah informatia Jurnal Ilmu Komputer dan Informatia Sistem Klasifiasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunaan Jaringan Syaraf Tiruan Bacpropagation Yusuf Dwi Santoso *, Suhartono Departemen

Lebih terperinci

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika hazanah informatia Jurnal Ilmu Komputer dan Informatia Sistem Klasifiasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunaan Jaringan Syaraf Tiruan Bacpropagation Yusuf Dwi Santoso *, Suhartono Program

Lebih terperinci

VI. PEMILIHAN MODA (Modal Split/Choice)

VI. PEMILIHAN MODA (Modal Split/Choice) VI. PEMILIHAN MODA (Modal Split/Choice) 6.. UMUM Tujuan: Mengetahui proporsi pengaloasian perjalanan e berbagai moda transportasi. Ada dua emunginan situasi yang dihadapi dalam meramal pemilihan moda:

Lebih terperinci

MATA KULIAH METODE RUNTUN WAKTU. Oleh : Entit Puspita Nip

MATA KULIAH METODE RUNTUN WAKTU. Oleh : Entit Puspita Nip MAA KULIAH MEODE RUNUN WAKU Oleh : Entit Puspita Nip 08 JURUSAN PENDIDIKAN MAEMAIKA FAKULAS PENDIDIKAN MAEMAIKA DAN ILMU PENGEAHUAN ALAM UNIVERSIAS PENDIDIKAN INDONESIA 00 //00 Entit Puspita BEBERAPA KONSEP

Lebih terperinci

ADAPTIVE NOISE CANCELING MENGGUNAKAN ALGORITMA LEAST MEAN SQUARE (LMS) Anita Nardiana, SariSujoko Sumaryono ABSTRACT

ADAPTIVE NOISE CANCELING MENGGUNAKAN ALGORITMA LEAST MEAN SQUARE (LMS) Anita Nardiana, SariSujoko Sumaryono ABSTRACT Jurnal Teni Eletro Vol. 3 No.1 Januari - Juni 1 6 ADAPTIVE NOISE CANCELING MENGGUNAKAN ALGORITMA LEAST MEAN SQUARE (LMS) Anita Nardiana, SariSujoo Sumaryono ABSTRACT Noise is inevitable in communication

Lebih terperinci

SATUAN ACARA PERKULIAHAN ( SAP )

SATUAN ACARA PERKULIAHAN ( SAP ) SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Watu : 1x 3x 50 Menit Pertemuan : 7 A. Kompetensi 1. Utama Mahasiswa dapat memahami tentang sistem

Lebih terperinci

tidak mempunyai fixed mode terdesentralisasi, dapat dilakukan dengan memberikan kompensator terdesentralisasi. Fixed mode terdesentralisasi pertama

tidak mempunyai fixed mode terdesentralisasi, dapat dilakukan dengan memberikan kompensator terdesentralisasi. Fixed mode terdesentralisasi pertama BB IV PENGENDLIN TERDESENTRLISSI Untu menstabilan sistem yang tida stabil, dengan syarat sistem tersebut tida mempunyai fixed mode terdesentralisasi, dapat dilauan dengan memberian ompensator terdesentralisasi.

Lebih terperinci

MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS

MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS Seminar Sains Penidi Sains VI UKSW Salatiga Juni 0 MSLH VEKTOR EIGEN MTRIKS INVERS MONGE DI LJBR MX-PLUS Farida Suwaibah Subiono Mahmud Yunus Jurusan Matematia FMIP Institut Tenologi Sepuluh Nopember Surabaya

Lebih terperinci

Soal-Jawab Fisika OSN x dan = min. Abaikan gesekan udara. v R Tentukan: a) besar kelajuan pelemparan v sebagai fungsi h. b) besar h maks.

Soal-Jawab Fisika OSN x dan = min. Abaikan gesekan udara. v R Tentukan: a) besar kelajuan pelemparan v sebagai fungsi h. b) besar h maks. Soal-Jawab Fisia OSN - ( poin) Sebuah pipa silinder yang sangat besar (dengan penampang lintang berbentu lingaran berjarijari R) terleta di atas tanah. Seorang ana ingin melempar sebuah bola tenis dari

Lebih terperinci

BAB II LANDASAN TEORI. Graf adalah kumpulan simpul (nodes) yang dihubungkan satu sama lain

BAB II LANDASAN TEORI. Graf adalah kumpulan simpul (nodes) yang dihubungkan satu sama lain 8 BAB II LANDASAN TEORI 2.1 Teori Graf 2.1.1 Definisi Graf Graf adalah umpulan simpul (nodes) yang dihubungan satu sama lain melalui sisi/busur (edges) (Zaaria, 2006). Suatu Graf G terdiri dari dua himpunan

Lebih terperinci

ANALISIS VARIASI PARAMETER BACKPROPAGATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA IRIS

ANALISIS VARIASI PARAMETER BACKPROPAGATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA IRIS Jurnal Teni dan Ilmu Komputer ANALISIS VARIASI PARAMETER BACKPROPAGATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA IRIS AN ANALYSIS OF THE VARIATION PARAMETERS OF THE ARTIFICIAL NEURAL NETWORK

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Tinjauan Pustaa Untu menacapai tujuan penulisan sripsi, diperluan beberapa pengertian dan teori yang relevan dengan pembahasan. Karena itu, dalam subbab ini aan diberian beberapa

Lebih terperinci

BAB 3 PATTERN MATCHING BERBASIS JARAK EUCLID, PATTERN MATCHING BERBASIS JARAK MAHALANOBIS, DAN JARINGAN SYARAF TIRUAN BERBASIS PROPAGASI BALIK

BAB 3 PATTERN MATCHING BERBASIS JARAK EUCLID, PATTERN MATCHING BERBASIS JARAK MAHALANOBIS, DAN JARINGAN SYARAF TIRUAN BERBASIS PROPAGASI BALIK BAB 3 PATTERN MATCHING BERBASIS JARAK EUCLID, PATTERN MATCHING BERBASIS JARAK MAHALANOBIS, DAN JARINGAN SYARAF TIRUAN BERBASIS PROPAGASI BALIK Proses pengenalan dilauan dengan beberapa metode. Pertama

Lebih terperinci

ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN SNI DENGAN VARIASI JUMLAH TINGKAT

ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN SNI DENGAN VARIASI JUMLAH TINGKAT Jurnal Sipil Stati Vol. No. Agustus (-) ISSN: - ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN SNI - DENGAN VARIASI JUMLAH TINGKAT Revie Orchidentus Francies Wantalangie Jorry

Lebih terperinci

STUDI PENYELESAIAN PROBLEMA MIXED INTEGER LINIER PROGRAMMING DENGAN MENGGUNAKAN METODE BRANCH AND CUT OLEH : RISTA RIDA SINURAT

STUDI PENYELESAIAN PROBLEMA MIXED INTEGER LINIER PROGRAMMING DENGAN MENGGUNAKAN METODE BRANCH AND CUT OLEH : RISTA RIDA SINURAT TUGAS AKHIR STUDI PENYELESAIAN PROBLEMA MIXED INTEGER LINIER PROGRAMMING DENGAN MENGGUNAKAN METODE BRANCH AND CUT OLEH : RISTA RIDA SINURAT 040803023 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Y = + x + x x + e, e N(0, ), Residual e=y -Yˆ

Y = + x + x x + e, e N(0, ), Residual e=y -Yˆ Yogyaarta, 26 Noember 206 ISSN : 979 9X eissn : 25 528X ANALISIS PSEUDOINVERS DAN APLIKASINYA PADA REGRESI LINEAR BERGANDA Kris Suryowati Program Studi Statistia, Faultas Sains erapan, Institut Sains dan

Lebih terperinci

BAB 2 TEORI PENUNJANG

BAB 2 TEORI PENUNJANG BAB EORI PENUNJANG.1 Konsep Dasar odel Predictive ontrol odel Predictive ontrol P atau sistem endali preditif termasu dalam onsep perancangan pengendali berbasis model proses, dimana model proses digunaan

Lebih terperinci

Estimasi Harga Saham Dengan Implementasi Metode Kalman Filter

Estimasi Harga Saham Dengan Implementasi Metode Kalman Filter Estimasi Harga Saham Dengan Implementasi Metode Kalman Filter eguh Herlambang 1, Denis Fidita 2, Puspandam Katias 2 1 Program Studi Sistem Informasi Universitas Nahdlatul Ulama Surabaya Unusa Kampus B

Lebih terperinci

PENENTUAN JENIS PRODUK KOSMETIK PILIHAN BERDASARKAN FAKTOR USIA DAN WARNA KULIT MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN

PENENTUAN JENIS PRODUK KOSMETIK PILIHAN BERDASARKAN FAKTOR USIA DAN WARNA KULIT MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN PENENTUAN JENIS PRODUK KOSMETIK PILIHAN BERDASARKAN FAKTOR USIA DAN WARNA KULIT MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN Amethis Otaorora 1, Bilqis Amaliah 2, Ahmad Saihu 3 Teni Informatia, Faultas Tenologi

Lebih terperinci

Kumpulan soal-soal level seleksi provinsi: solusi:

Kumpulan soal-soal level seleksi provinsi: solusi: Kumpulan soal-soal level selesi provinsi: 1. Sebuah bola A berjari-jari r menggelinding tanpa slip e bawah dari punca sebuah bola B berjarijari R. Anggap bola bawah tida bergera sama seali. Hitung ecepatan

Lebih terperinci

PENGENALAN WAJAH DENGAN METODE INTERPERSONAL DIFFERENCE BERBASIS GAUSSIAN MIXTURE MODEL DAN ANALISIS DISKRIMINAN

PENGENALAN WAJAH DENGAN METODE INTERPERSONAL DIFFERENCE BERBASIS GAUSSIAN MIXTURE MODEL DAN ANALISIS DISKRIMINAN Prosiding Seminar Nasional Manajemen Tenologi V Program Studi MMT-TS, Surabaya Agustus 008 PENGENALAN WAJAH DENGAN METODE NTERPERSONAL DFFERENCE BERBASS GAUSSAN MXTURE MODEL DAN ANALSS DSRMNAN Made a*

Lebih terperinci

mungkin muncul adalah GA, GG, AG atau AA dengan peluang masing-masing

mungkin muncul adalah GA, GG, AG atau AA dengan peluang masing-masing . DISTRIUSI INOMIL pabila sebuah oin mata uang yang memilii dua sisi bertulisan ambar () dan nga () dilempar satu ali, maa peluang untu mendapatan sisi ambar adalah,5 atau. pabila oin tersebut dilempar

Lebih terperinci

Pengaruh Proses Stemming Pada Kinerja Analisa Sentimen Pada Review Buku

Pengaruh Proses Stemming Pada Kinerja Analisa Sentimen Pada Review Buku Jurnal Hasil Penelitian LPPM Untag Surabaya Januari 2018, Vol. 03, No. 01, hal 55-59 jurnal.untag-sby.ac.id/index.php/jhp17 E-ISSN : 2502-8308 P-ISSN : 2579-7980 Pengaruh Proses Stemming Pada Kinerja Analisa

Lebih terperinci

RESTORASI CITRA MENGGUNAKAN SUPER RESOLUSI MAXIMUM LIKELIHOOD PADA PEMBESARAN CITRA

RESTORASI CITRA MENGGUNAKAN SUPER RESOLUSI MAXIMUM LIKELIHOOD PADA PEMBESARAN CITRA RESORASI CIRA MEGGUAKA SUPER RESOLUSI MAXIMUM LIKELIHOOD PADA PEMBESARA CIRA Bhimo Soenarjo Putro, Yusron Rijal 1) 2) S1 / Jurusan Sistem Informasi, SIKOM SURABAYA 2) Email: [email protected] Abstract:

Lebih terperinci

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII Keonvergenan Kesumawati Prodi Statistia FMIPA-UII June 23, 2015 Keonvergenan Pendahuluan Kalau sebelumnya, suu suu pada deret ta berujung berupa bilangan real maa ali ini ita embangan suu suunya dalam

Lebih terperinci

Pencitraan Tomografi Elektrik dengan Elektroda Planar di Permukaan

Pencitraan Tomografi Elektrik dengan Elektroda Planar di Permukaan Abstra Pencitraan omografi Eletri dengan Eletroda Planar di Permuaan D. Kurniadi, D.A Zein & A. Samsi KK Instrumentasi & Kontrol, Institut enologi Bandung Jl. Ganesa no. 10 Bandung Received date : 22 November2010

Lebih terperinci

APLIKASI METODE FUZZY MULTI CRITERIA DECISION MAKING (FMCDM) UNTUK OPTIMALISASI PENENTUAN LOKASI PROMOSI PRODUK

APLIKASI METODE FUZZY MULTI CRITERIA DECISION MAKING (FMCDM) UNTUK OPTIMALISASI PENENTUAN LOKASI PROMOSI PRODUK APLIKASI METODE FUZZY MULTI CRITERIA DECISION MAKING (FMCDM) UNTUK OPTIMALISASI PENENTUAN LOKASI PROMOSI PRODUK Novhirtamely Kahar, ST. 1, Nova Fitri, S.Kom. 2 1&2 Program Studi Teni Informatia, STMIK

Lebih terperinci

ANALISIS DISKRIMINAN KUADRATIK DALAM KLASIFIKASI STATUS KEBERHASILAN ABLASI KATETER

ANALISIS DISKRIMINAN KUADRATIK DALAM KLASIFIKASI STATUS KEBERHASILAN ABLASI KATETER ANALISIS DISKRIMINAN KUADRATIK DALAM KLASIFIKASI STATUS KEBERHASILAN ABLASI KATETER (Studi Kasus : pasien AVNRT di RS Pusat Jantung Nasional Harapan Kita) Fadhilah Ramadhanti DEPARTEMEN STATISTIKA FAKULTAS

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belaang Keadaan dunia usaha yang selalu berubah membutuhan langah-langah untu mengendalian egiatan usaha di suatu perusahaan. Perencanaan adalah salah satu langah yang diperluan

Lebih terperinci

Estimasi Konsentrasi Polutan Sungai Menggunakan Metode Reduksi Kalman Filter dengan Pendekatan Elemen Hingga

Estimasi Konsentrasi Polutan Sungai Menggunakan Metode Reduksi Kalman Filter dengan Pendekatan Elemen Hingga JURNAL SAINS DAN SENI POMITS ol. 2, No.1, (2013) 2337-3520 (2301-928X Print) 1 Estimasi Konsentrasi Polutan Sungai Menggunaan Metode Redusi Kalman Filter dengan Pendeatan Elemen Hingga Muyasaroh, Kamiran,

Lebih terperinci

Penerapan Sistem Persamaan Lanjar untuk Merancang Algoritma Kriptografi Klasik

Penerapan Sistem Persamaan Lanjar untuk Merancang Algoritma Kriptografi Klasik Penerapan Sistem Persamaan Lanjar untu Merancang Algoritma Kriptografi Klasi Hendra Hadhil Choiri (135 08 041) Program Studi Teni Informatia Seolah Teni Eletro dan Informatia Institut Tenologi Bandung,

Lebih terperinci

JARINGAN SARAF TIRUAN PROPAGASI BALIK UNTUK KLASIFIKASI DATA

JARINGAN SARAF TIRUAN PROPAGASI BALIK UNTUK KLASIFIKASI DATA JARINGAN SARAF TIRUAN PROPAGASI BALIK UNTUK KLASIFIKASI DATA Giri Dhaneswara 1) dan Veronica S. Moertini 2) Jurusan Ilmu Komputer, Universitas Katoli Parahyangan, Bandung Email: 1) [email protected],

Lebih terperinci

Metode klasifikasi Naïve Bayes. Team teaching

Metode klasifikasi Naïve Bayes. Team teaching Metode klasifikasi Naïve Bayes Team teaching Metode klasifikasi ini diturunkan dari penerapan teorema Bayes dengan asumsi independence (saling bebas), Naive Bayes Classifier adalah metode pengklasifikasian

Lebih terperinci

PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL. Sutriani Hidri. Ja faruddin. Syafruddin Side, ABSTRAK

PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL. Sutriani Hidri. Ja faruddin. Syafruddin Side, ABSTRAK PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL Syafruddin Side, Jurusan Matematia, FMIPA, Universitas Negeri Maassar email:[email protected] Info: Jurnal MSA Vol. 3

Lebih terperinci