SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL"

Transkripsi

1 SAL-SAL LATIHAN PRGRAM LINEAR UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik program linear. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual pada topik program linear. 1. UN 2017 Seorang penjahit membuat dua jenis pakaian. Pakaian jenis A memerlukan kain katun 1 m dan kain sutera 2 m, sedangkan pakaian jenis B memerlukan kain katun 2,5 m dan kain sutera 1,5 m. Bahan katun yang tersedia 70 m dan kain sutera 84 m. Pakaian jenis A dijual dengan laba Rp50.000,00/buah, sedangkan pakaian jenis B dijual dengan laba Rp60.000,00/buah. Agar penjahit memperoleh laba maksimum, banyak pakaian jenis A dan jenis B yang di terjual berturut-turut adalah. A. 20 dan 16 B. 26 dan 20 C. 30 dan 6 D. 16 dan 30 E. 30 dan UN 2017 Setiap hari seorang pengrajin tas memproduksi dua jenis tas. Modal untuk tas model I adalah Rp20.000,00 dengan keuntungan 40%. Modal untuk tas model II adalah Rp30.000,00 dengan keuntungan 30%. Jika modal yang tersedia setiap harinya adalah Rp ,00 dan paling banyak hanya dapat memproduksi 40 tas, keuntungan terbesar yang dapat dicapai pengrajin tas tersebut adalah. A. 30% B. 34% C. 36% D. 38% E. 40% 3. UN 2016 Seorang penjahit memiliki persediaan 20 m kain polos dan 20 m kain bergaris untuk membuat 2 jenis pakaian. Pakaian model 1 memerlukan 1 m kain polos dan 3 m kain bergaris. Pakaian model II memerlukan 2 m kain polos dan 1 m kain bergaris. Pakaian model 1 dijual dengan harga Rp ,00 per potong, dan pakaian model II dijual dengan harga Rp ,00 per potong. Penghasilan maksimum yang dapat diperoleh penjahit tersebut adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp ,00 4. UN 2015 Suatu perusahaan akan mengangkut barang-barang yang terdiri dari 480 kardus dan 352 peti dengan menyewa 2 jenis kendaraan yaitu mobil bak dan truk. Mobil bak dapat mengangkut paling banyak 40 kardus dan 16 petik, truk dapat mengangkut paling banyak 30 kardus dan 32 peti. Jika biaya sewa untuk mobil bak Rp ,00 dan truk Rp ,00 sekali jalan, biaya minimum untuk mengangkut barang-barang tersebut adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp ,00 5. UN 2014 Di Zedland ada dua media masa Koran yang sedang mencari orang untuk bekerja sebagai penjual koran. Iklan di bawah ini menunjukkan bagaimana mereka membayar gaji penjual koran. Husein Tampomas, Soal-soal Latihan Program Linear, Persiapan UN

2 Joko memutuskan untuk melamar menjadi penjual koran. Ia perlu memilih bekerja pada Media Zedland atau Harian Zedland. Grafik manakah di bawah ini yang menggambarkan bagaimana Koran membayar penjual-penjualnya? 6. UN 2013 Luas daerah parkir m 2. Luas rata-rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tamping maksimum hanya 200 kendaraan. Biaya parkir mobil kecil Rp1.000,00/jam dan mobil besar Rp2.000,00/jam. Jika dalam satu jam terisi penuh dan tidak ada kendaraan yang pergi dan datang, penghasilan maksimum tempat parkir adalah... A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp ,00 7. UN A Penjahit Hidah Pantes akan membuat pakaian wanita dan pria. Untuk membuat pakaian wanita diperlukan bahan bergaris 2 m dan bahan polos 1 m. Untuk membuat pakaian pria diperlukan bahan bergaris 1 m dan bahan polos 2 m. Penjahit hanya memiliki persediaan bahan bergaris dan bahan polos sebanyak 36 m dan 30 m. Jika pakaian wanita Husein Tampomas, Soal-soal Latihan Program Linear, Persiapan UN

3 dijual dengan harga Rp ,00 dan pakaian pria dengan harga Rp ,00, maka pendapatan maksimum yang didapat adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp ,00 8. UN B Anak usia balita dianjurkan dokter untuk mengkonsumsi kalsium dan zat besi sedikitnya 60 g dan 30 g. Sebuah kapsul mengandung 5 g kalsium dan 2 g zat besi, sedangkan sebuah tablet mengandung 2 g kalsium dan 2 g zat besi. Jika harga sebuah kapsul Rp1.000,00 dan harga sebuah tablet Rp800,00, maka biaya minimum yang harus dikeluarkan untuk memenuhi kebutuhan anak balita tersebut adalah. A. Rp12.000,00 C. Rp18.000,00 E. Rp36.000,00 B. Rp14.000,00 D. Rp24.000,00 9. UN C61 dan E Seorang pedagang sepeda ingin membeli 25 sepeda untuk persediaan. Ia ingin membeli sepeda gunung dengan harga Rp ,00 per buah dan sepeda balap dengan harga Rp ,00 per buah. Ia merencanakan tidak akan mengeluarkan uang lebih dari Rp ,00. Jika keuntungan sebuah sepeda gunung Rp ,00 dan sebuah sepeda balap Rp ,00, maka keuntungan maksimum yang diterima pedagang adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp , UN D Seorang ibu hendak membuat dua jenis kue. Kue jenis I memerlukan 40 gram tepung dan 30 gram gula. Kue jenis II memerlukan 20 gram tepung dan 10 gram gula. Ibu hanya memiliki persediaan tepung sebanyak 6 kg dan gula 4 kg. Jika kue jenis I dijual dengan harga Rp4.000,00 dan kue jenis II dijual dengan harga Rp1.600,00, maka pendapatan maksimum yang diperoleh ibu adalah. A. Rp30.400,00 C. Rp56.000,00 E. Rp72.000,00 B. Rp48.000,00 D. Rp59.200, UN A P 12 dan B P Seorang anak diharuskan minum dua jenis tablet setiap hari. Tablet jenis I mengandung 5 unit vitamin A dan 3 unit vitamin B. Tablet jenis II mengandung 10 unit vitamin A dan 1 unit vitamin B. Dalam 1 hari anak tersebut memerlukan 25 unit vitamin A dan 5 unit vitamin B. Jika harga tablet I Rp4000,00 per biji dan tablet II Rp8000,00 per biji, pengeluaran minimum untuk pembelian tablet per hari adalah. A. Rp12.000,00 C. Rp16.000,00 E. Rp20.000,00 B. Rp14.000,00 D. Rp18.000, UN A P Suatu perusahaan memproduksi barang dengan 2 model yang dikerjakan dengan dua mesin yaitu mesin A dan mesin B. Produk model I dikerjakan dengan mesin A selama 2 jam dan mesin B selama 1 jam. Produk model II dikerjakan dengan mesin A selama 1 jam dan mesin B selama 5 jam. Waktu kerja mesin A dan B berturut-turut 12 jam per hari dan 15 jam per hari. Keuntungan penjualan produk model I sebesar Rp40.000,00 per unit dan model II Rp10.000,00 per unit. Keuntungan maksimum yang dapat diperoleh perusahaan tersebut adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp , UN B P Husein Tampomas, Soal-soal Latihan Program Linear, Persiapan UN

4 Tempat parkir seluas 600 m 2 hanya mampu menampung bus dan mobil sebanyak 58 buah. Tiap mobil memerlukan tempat 6 m 2 dan bus 24 m 2. Biaya parkir tiap mobil Rp5.000,00 dan bus Rp7.500,00. Jika tempat parkir penuh, hasil dari biaya parkir paling banyak adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp , UN A P 12 dan B P Menjelang hari raya Idul Adha. Pak Mahmud hendak berjualan sapi dan kerbau. Harga seekor sapi dan kerbau di Jawa Tengah berturut-turut Rp ,00 dan Rp ,00. Modal yang ia miliki adalah Rp ,00. Pak Mahmud menjual sapi dan kerbau di Jakarta dengan harga berturut-turut Rp ,00 dan Rp ,00. Kandang yang ia miliki hanya dapat menampung tidak lebih dari 15 ekor. Agar mencapai keuntungan yang maksimum, maka banyak sapi dan kerbau yang harus dibeli Pak Mahmud adalah. A. 11 sapi dan 4 kerbau C. 13 sapi dan 2 kerbau E. 7 sapi dan 8 kerbau B. 4 sapi dan 11 kerbau D. 0 sapi dan 15 kerbau 15. UN A P 12 dan B P Daerah yang diarsir pada gambar merupakan himpunan penyelesaian suatu sistem pertidaksamaan linear. Nilai maksimum dari f x, y 7x 6y adalah. A. 88 B. 94 C. 102 D E UN A P 12 dan B P Seorang pembuat kue mempunyai 4 kg gula sdan 9 kg tepung. Untuk membuah sebuah kue jenis A dibutuhkan 20 gram gula dan 60 gram tepung, sedangkan untuk membuat kue jenis B dibutuhkan 20 gram gula dan 40 gram tepung. Jika kue A dijual dengan harga Rp 4.000,00/buah dan ke B dijual dengan harga Rp3.000,00/buah, maka pendapatan maksimum yang dapat diperoleh pembuat kue tersebut adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp , UN A P Luas daerah parkir cm 2. Luas rata-rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp1.000,00/jam dan mobil besar Rp2.000,00/jam. Jika dalam satu jam terisi penuh dan tidak ada kendaraan yang pergi dan datang, maka hasil maksimum tempat parkir itu adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp , UN B P Sebuah pabrik menggunakan bahan A, B, dan C untuk memproduksi 2 jenis barang, yaitu barang jenis I dan barang jenis II. Sebuah barang jenis I memerlukan 1 kg bahan A, 3 kg bahan B, dan 2 kg bahan C. Sedangkan barang jenis II memerlukan 3 kg bahan A, 4 kg bahan B, dan 1 kg bahan C. Bahan baku yang tersedia 480 kg bahan A, 720 kg bahan B, Husein Tampomas, Soal-soal Latihan Program Linear, Persiapan UN

5 dan 360 kg bahan C. Harga barang jenis I adalah Rp40.000,00 dan harga barang jenis II Rp60.000,00. Pendapatan maksimum yang diperoleh adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp , UN 2006 (KBK) Seorang pedagang menjual buah mangga dan pisang dengan menggunakan gerobak. Pedagang tersebut membeli mangga dengan harga Rp8.000,00/kg dan pisang Rp6.000,00/kg. Modal yang tersedia Rp ,00 dan gerobaknya hanya dapat memuat mangga dan pisang sebanyak 180 kg. Jika harga jual mangga Rp 9.200,00/kg dan pisang Rp7.000,00/kg, maka laba maksimum yang diperoleh adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp , UN 2006 (Non KBK) Seorang tukang roti mempunyai bahan A, B, dan C masing-masing sebanyak 160 kg, 110 kg, dan 150 kg. Roti I memerlukan 2 kg bahan A, 1 kg bahan B, dan 1 kg bahan C. Roti II memerlukan 1 kg bahan A, 2 kg bahan B, dan 3 kg bahan C. Sebuah roti I dijual dengan harga Rp ,00 dan sebuah roti II dijual dengan harga Rp50.000,00. Pendapatan maksimum yang dapat diperoleh tukang roti tersebut adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp , UN 2005 (KBK) Tanah seluas m 2 akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m 2 dan tipe B diperlukan 75 m 2. Jumlah rumah yang dibangun paling banyak 125 unit. Keuntungan rumah tipe A adalah Rp ,00/unit dan tipe B adalah Rp ,00/unit. Keuntungan maksimum yang dapat diperoleh dari penjualan rumah tersebut adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp , UN 2005 (Non KBK) Sebuah butik memiliki 4 m kain satin dan 5 m kain prada. Dari bahan tersebut akan dibuat dua baju pesta. Baju pesta I memerlukan 2 m kain satin dan 1 m kain prada, baju pesta II memerlukan 1 m kain satin dan 2 m kain prada. Jika harga jual baju pesta I sebesar Rp ,00 dan baju pesta II sebesar Rp ,00, hasil penjualan maksimum butik tersebut adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp , UN 2004 Dengan persedian kain polos 20 m dan kain bergaris 10 m, seorang penjahit akan membuat 2 model pakaian jadi. Model I memerlukan 1 m kain polos dan 1,5 m kain bergaris. Model II memerlukan 2 m kain polos dan 0,5 m kain bergaris. Bila pakaian tersebut dijual, setiap model I memperoleh untung Rp15.000,00 dan model II memperoleh untung Rp10.000,00. Laba maksimum yang diperoleh adalah. A. Rp ,00 C. Rp ,00 E. Rp ,00 B. Rp ,00 D. Rp ,00 Husein Tampomas, Soal-soal Latihan Program Linear, Persiapan UN

6 24. UAN x 2y 60 Nilai maksimum fungsi sasaran z 6x 8y dari sistem pertidaksamaan 2x 4y 48 x 0, y 0 adalah. A. 120 B. 118 C. 116 D. 114 E UAN 2002 Nilai minimum fungsi objektif x 3y yang memenuhi pertidaksamaan 3x 2y 12, x 2y 8, x y 8, x 0 adalah. A. 8 B. 9 C. 11 D. 18 E EBTANAS 2001 Pada daerah yang diarsir, fungsi objektif z 10x 5y mencapai nilai maksimum di titik... A. P B. Q C. R D. S E. T y 6 x 2y P 1 y 2x 2 R 2,6 Q S 4,3 T 4 3x 2y 18 x 27. EBTANAS 1998 Pada gambar di bawah, daerah yang merupakan himpunan penyeleseaian sistem 2x y 4 pertidaksamaan x y 3 adalah daerah. x 4y 4 A. I B. II C. III D. IV E. V EBTANAS 1997 Daerah yang diarsir pada gambar di bawah merupakan himpunan penyelesaian sistem pertidaksamaan y A. x 0, 6x y 12, 5x 4y 20 B. x 0, 6x y 12, 5x 4y 20 C. x 0, 6x y 12, 4x 5y 20 D. x 0, x 6y 12, 4x 5y 20 E. x 0, x 6y 12, 5x 4y II I III V IV 2 4 x Husein Tampomas, Soal-soal Latihan Program Linear, Persiapan UN

7 29. EBTANAS 1995 Pada gambar di bawah, daerah yang diarsir merupakan grafik himpunan penyelesaian sistem pertidaksamaan linear. Nilai maksimum dari bentuk objektif 5 x y dengan x, y C himpunan penyelesaian itu adalah. A. 21 B. 24 C. 26 D. 27 E. 30 2,0 30. EBTANAS 1994 Daerah yang diarsir merupakan himpunan penyelesaian suatu sistem pertidaksamaan linear. Sistem pertidaksamaan linear itu adalah.. 3,5 5 A. y 0, 3x y 6, 5x y 20, x y 2 B. y 0, 3x y 6, 5x y 20, x y 2 C. y 0, x 3y 6, x 5y 20, x y 2 D. y 0, x 3y 6, x 5y 20, x y 2 E. y 0, 3x y 6, 5x y 0, x y EBTANAS Daerah yang diarsir adalah daerah himpunan penyelesaian dari suatu sistem pertidaksamaan linear. Nilai yang optimum dari 2x 3y pada daerah himpunan penyelesaian itu adalah... A. 18 B. 28 C. 29 D. 31 E. 36 A. 16 B. 20 C. 23 D. 24 E EBTANAS 1987 Seorang wiraswasta membuat dua macam ember yang setiap harinya menghasilkan tidak lebih dari 18 buah. Harga bahan untuk satu ember jenis pertama Rp 500,00 dan untuk 0,2 1,5 3 1,3 4,4 5,1 C 7, B 6,2 1 A 3,1 32. EBTANAS 1989 Daerah yang diarsir pada grafik di samping merupakan himpunan penyelesaian suatu sistem pertidak-samaan. Nilai maksimum 5x 4y adalah 2x +y = 8 E 2,8 2x +3y = 12 D 5,7 Husein Tampomas, Soal-soal Latihan Program Linear, Persiapan UN

8 satu ember jenis kedua Rp 1.000,00. Ia tidak akan berbelanja lebih dari Rp ,00 setiap harinya. Jika ember jenis pertama dibuat sebanyak x buah dan jenis kedua sebanyak y buah, maka sistem pertidaksamaannya adalah. A. x y 18, x 2y 26, x 0, y 0 B. x y 18, x 2y 26, x 0, y 0 C. x y 18, x 2y 26, x 0 D. x 2y 26, x 2y 18, y 0 E. x y 26, x 0, y EBTANAS 1987 Daerah yang merupakan himpunan penyelesaian sistem pertidaksamaan 5x 3y 15, x 3y 6, x 0, y 0 pada gambar berikut ini adalah. A. ABC B. BCD C. BCE D. DBE E. ABD 35. EBTANAS 1986 Suatu pabrik roti memproduksi 120 kaleng roti setiap hari. Roti terdiri dari dua jenis, roti asin dan roti manis, setiap hari roti asin diproduksi paling sedikit 30 kaleng dan roti manis 50 kaleng. Susunlah model matematika soal ini, misalkan roti asin sebanyak x kaleng dan roti asin y kaleng. A. x y 120; x 30 ; y 50; x, y C B. x y 120; x 30 ; y 50; x, y C C. x y 120; x 30 ; y 50; x, y C D. x y 120; x 30 ; y 50; x, y C E. x y 120; x 30 ; y 50 ; x, y C D 0,5 A 0,2 B C 3,0 E 6,0 Husein Tampomas, Soal-soal Latihan Program Linear, Persiapan UN

SOAL-SOAL LATIHAN UN A35

SOAL-SOAL LATIHAN UN A35 SAL-SAL LATIHAN 1. UN A5 01 Penjahit Hidah Pantes akan membuat pakaian wanita dan pria. Untuk membuat pakaian wanita diperlukan bahan bergaris m dan bahan polos 1 m. Untuk membuat pakaian pria diperlukan

Lebih terperinci

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x

a. 16 b. 24 c. 30 d. 36 e Nilai maksimum fungsi sasaran Z = 6x + 8y dari system pertidaksamaan 4x + 2y 60, 2x 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp. 1.000,00/jam dan mobil besar Rp.

Lebih terperinci

Soal No. 2 Daerah yang diarsir pada gambar ialah himpunan penyelesaian suatu sistem pertidaksamaan linear.

Soal No. 2 Daerah yang diarsir pada gambar ialah himpunan penyelesaian suatu sistem pertidaksamaan linear. Soal No. 1 Luas daerah parkir 1.760 m 2. Luas rata-rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan. Biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar

Lebih terperinci

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1 PROGRAM LINEAR A. Persamaan Garis Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) a (0, a) 0 x 1 x 1 0 x 2 (b, 0) 0 b a. Persamaan garis yang bergradien m dan melalui titik (x 1, y 1 ) adalah: y

Lebih terperinci

Program Linear - IPA

Program Linear - IPA Program Linear - IPA Tahun 2005 1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak

Lebih terperinci

PERTIDAKSAMAAN LINEAR DUA VARIABEL

PERTIDAKSAMAAN LINEAR DUA VARIABEL PRGRAM LINEAR Intisari Teori A. PERTIDAKSAMAAN LINEAR DUA VARIABEL (PtLDV) Suatu pernyataan yang berbentuk a by c 0 (tanda ketidaksamaan dapat diganti dengan, >, atau < ) dengan a dan b tidak semuanya

Lebih terperinci

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m 1. Dalam permasalahan program linear dikenal dua istilah, yaitu : a. Fungsi Kendala/ pembatas, berupa pertidaksamaan pertidaksamaan linear ax by 0; ax by p; ax by 0; ax by 0 b. Fungsi/ bentuk objektif,

Lebih terperinci

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut.

Contoh : Gambarlah daerah x + y 0. Jika daerah tersebut dibatasi untuk nilai-nilai x 0, dan y 0, maka diperoleh gambar seperti berikut. Setelah mempelajari materi pada kompetensi dasar ini, kalian diharapkan dapat: menjelaskan pengertian program linier, menggambar grafik himpunan penyelesaian pertidaksamaan linier, dan menggambar grafik

Lebih terperinci

LATIHAN SOAL MENJELANG UJIAN SEMESTER GANJIL KELAS 12 ( IPA DAN IPS )

LATIHAN SOAL MENJELANG UJIAN SEMESTER GANJIL KELAS 12 ( IPA DAN IPS ) LATIHAN SOAL MENJELANG UJIAN SEMESTER GANJIL KELAS ( IPA DAN IPS ). Hasil dari ( + + ) d =... A. + + C B. + + C C. + + + C D. + + + C E. + + + C. Hasil pengintegralan dari ( + ) d adalah... A. ( + ) +

Lebih terperinci

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab II Program Linear 51 Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan kalian dapat 1. menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; 2. menentukan fungsi tujuan

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!

Model soal Ujian Matematika kelas XII AP- UPW - TB. Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e! Model soal Ujian Matematika kelas XII AP- UPW - TB Pilihlah salah satu jawaban yang paling benar dengan memberi tanda X pada jawaban a, b,c,d atau e!. Diketahui sistem pertidaksamaan x + 2y 0 ; 3x + 2y

Lebih terperinci

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx =

SOAL LATIHAN UAS 12 IPA SMT GANJIL. 1. Hasil dari. 2. Hasil dari = Hasil dari dx... dx = Hasil dari. 5. Hasil dari. dx = SOAL LATIHAN UAS IPA SMT GANJIL. Hasil dari. Hasil dari 7 ( ) ( ) d =.... Hasil dari d.... Hasil dari. Hasil dari 6. Hasil 6 6 9 6 d =... d =... d 9 = 7. Hasil 6 d = 8. Hasil dari cos sin d = 9. Hasil

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari Sistem Bilangan 0. UN-SMK-PERT-0-0 Bentuk sederhana dari ( ) =... 7 8 9 8 0. UN-SMK-TEK-0-0 Hasil perkalian dari (a) - (a) =... a a a a a 0. UN-SMK-PERT-0-0 Bentuk sederhana dari 0. UN-SMK-TEK-0-0 6 6.

Lebih terperinci

CONTOH SOAL UAN PROGRAM LINIER

CONTOH SOAL UAN PROGRAM LINIER 1. Luas daerah parkir 1.760 m 2. Luas rata rata untuk mobil kecil 4 m 2 dan mobil besar 20 m 2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam.

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR E. Kegiatan Belajar 2 PENERAPAN PROGRAM LINEAR 1. K A. Nilai Optimum Fungsi Obyektif Fungsi objektif merupakan fungsi yang menjelaskan tujuan (meminimumkan atau memaksimumkan)

Lebih terperinci

BAB II PROGRAM LINEAR

BAB II PROGRAM LINEAR BAB II PROGRAM LINEAR A RINGKASAN MATERI. Pengertian Program linear adalah suatu permasalahan dalam matematika dengan tujuan untuk mengoptimalkan fungsi obektif ang berbentuk linear dengan kendala/batasan

Lebih terperinci

10 Soal dan Pembahasan Permasalahan Program Linear

10 Soal dan Pembahasan Permasalahan Program Linear 10 Soal dan Pembahasan Permasalahan Program Linear 1. BAYU FURNITURE memproduksi 2 jenis produk yaitu meja dan kursi yang harus diproses melalui perakitan dan finishing. Proses perakitan memiliki 60 jam

Lebih terperinci

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani

Lebih terperinci

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS UJI KOMPETENSI 1.1 1. PT Lasin adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas 12.000 meter persegi berencana

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) I. Identitas Mata Pelajaran: 1. Nama Sekolah :SMA 6 YOGYAKARTA 2. Kelas : XII 3. Semester : 1 4. Program : IPA 5. Mata Pelajaran : Program Linier 6. Waktu : : 8 JP

Lebih terperinci

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,-

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,- ISBN : 978-979-068-858- (No. jil lengkap) ISBN : 978-979-068-863-6 PUSAT PERBUKUAN Departemen Pendidikan Nasional Harga Eceran Tertinggi: Rp0.0,- i Khazanah Matematika 3 untuk Kelas XII SMA dan MA Program

Lebih terperinci

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel PROGRAM LINIER A. Pengertian Program Linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

B. Fungsi Sasaran dan Kendala dalam Program Linier

B. Fungsi Sasaran dan Kendala dalam Program Linier Peta Konsep Jurnal PetaKonsep Daftar Hadir MateriB SoalLatihan2 Materi Umum PROGRAM LINIER Kelas XI, Semester 3 B. Fungsi Sasaran dan Kendala dalam Program Linier Sistem Pertidaksamaan Linier Fungsi Sasaran

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

17. SOAL-SOAL PROGRAM LINEAR

17. SOAL-SOAL PROGRAM LINEAR 17. SOAL-SOAL PROGRAM LINEAR EBTANAS2000 1. Himpunan penelesaian sistem pertidaksamaan 5x + 10 2x + 8 2 x = 2 titik (2,0 titk potong dengan sumbu jika x = 0 = 10 titik (0,10 daerah 5x + 10 berada pada

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal :

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal : 1 SMA SANTA ANGELA PROGRAM LINEAR Standar kompetensi : Menyelesaikan masalah program linear Kompetensi Dasar : Menyelesaikan sistem pertidaksamaan linear dua variabel. Menyelesaikan masalah program linear.

Lebih terperinci

SOAL-SOAL LATIHAN FUNGSI KUADRAT UJIAN NASIONAL

SOAL-SOAL LATIHAN FUNGSI KUADRAT UJIAN NASIONAL SAL-SAL LATIHAN FUNGSI KUADRAT UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik fungsi kuadrat. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

SOAL-SOAL LATIHAN STATISTIKA UJIAN NASIONAL

SOAL-SOAL LATIHAN STATISTIKA UJIAN NASIONAL SOAL-SOAL LATIHAN STATISTIKA UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topic () Penyajian Data dalam Bentuk Tabel, Diagram, dan Grafik, (2) UKuran Pemusatan, Letak, dan Penyebaran

Lebih terperinci

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8 2. Program Linier a. Defenisi Program linier adalah metode untuk mendapatkan penyelesaian optimum dari suatu fungsi sasaran yang mengandung kendala atau batasan yang dapat dibuat dalam bentuk sistem pertidaksamaan

Lebih terperinci

Prediksi US Mat Wajib log16 log9 =

Prediksi US Mat Wajib log16 log9 = Bentuk Eksponen dan Logaritma Bentuk sederhana dari =.... + + Bentuk sederhana dari =.... 3 2 2 2 + 3 2 3 + 2 2 1 2 2 3 2 Nilai dari + log16 log9 =.... Persamaan dan Pertidaksamaan Nilai Mutlak jika >

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 2009 Program Linear Matriks GY A Y O M AT E M A T AK A R Shadiq, M.App.Sc. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL

Lebih terperinci

SOAL-SOAL LATIHAN. 2. UN A35 dan E Nilai dari 1 37 D C B E. 3. UN A Hasil dari. x 4x. 4. UN A35 dan D

SOAL-SOAL LATIHAN. 2. UN A35 dan E Nilai dari 1 37 D C B E. 3. UN A Hasil dari. x 4x. 4. UN A35 dan D . UN A dan E8 Nilai dari d.... UN A dan E8. UN A Hasil dari SOAL-SOAL LATIHAN C. C C. UN A dan D d... D. C. C D. C E. E. C Luas daerah yang dibatasi oleh kurva y dan y adalah 9 satuan luas C. satuan luas

Lebih terperinci

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas : PROGRAM LINEAR Bukti : + = a + b = a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas 10 Matematika pertidaksamaan-linear-dua-variabel-soal Doc. Name: K13AR10MATWJB0401 Version : 2015-04 halaman 1 01. Daerah yang diarsir pada gambar di bawah ini memenuhi sistem pertidaksamaan...

Lebih terperinci

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian.

PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian. PROGRAM LINIER ). Pengertian program linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Siswa Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. Kompetensi Inti SMK kelas XI : RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan : SMK Negeri 1 Klaten Mata Pelajaran : Matematika Kelas/Semester : XI/3 Topik : Program Linier Waktu : 10 45 menit

Lebih terperinci

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN 29-21 MATEMATIKA XII BAHASA Hari / tanggal :... Desember 29 Waktu : 12 menit Pilih salah satu jawaban ang benar dengan memberi tanda silang

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

SOLUSI SOAL-SOAL LATIHAN NASKAH D

SOLUSI SOAL-SOAL LATIHAN NASKAH D URAIAN SLUSI SAL-SAL LATIHAN NASKAH D 1. Tentukan sistem pertidaksamaan linear dua variabel (SPtLDV) dari daerah penyelesaian (DP) berikut ini., 7, 4 1,0 dan 0, xy PtLDV: xy, dan 7, 4 4 y x 7 4y 24 2x

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA KELOMPOK NON-TEKNIK

PREDIKSI SOAL UAN MATEMATIKA KELOMPOK NON-TEKNIK PREDIKSI SOAL UAN MATEMATIKA KELOMPOK NON-TEKNIK 1. Perhatikan gambar berikut ini! y 5 R 5 6 x Daerah R pada gambar di atas ini merupakan daerah penyelesain dari suatu sistem pertidaksamaan. Nilai minimum

Lebih terperinci

w r/ I. Pilihlah Salah Satu Jawaban yang Paling Tepat.

w r/ I. Pilihlah Salah Satu Jawaban yang Paling Tepat. V ilan...han 100 satu rsahaan i srtas adalah l'uk I. Pilihlah Salah Satu Jawaban yang Paling Tepat. 1. Himpunan penyelesaian sistem pertidaksamaan 4x * y > 8, x r y < 5, 2x + 9y > 18, r ) 0, y 2 0 adalah....

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Guru Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

SOLUSI SOAL-SOAL LATIHAN NASKAH F

SOLUSI SOAL-SOAL LATIHAN NASKAH F URAIAN SLUSI SAL-SAL LATIHAN NASKAH F 1. Tentukan sistem pertidaksamaan linear dua variabel (SPtLDV) dari daerah penyelesaian (DP) berikut ini., 5,,0 dan 0, 2 2xy 8 PtLDV: x2y, dan 5, y x 5 y x x y 9 PtLDV:

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 00/009. BAB VI Logika Matematika p q Konjungsi Bernilai salah jika ada yang salah (jika salah satu dari p dan q salah atau kedua-duanya

Lebih terperinci

SOAL-SOAL LATIHAN SISTEM PERSAMAAN (SPL) DAN SITEM PERTIDAKSAMAAN LINEAR (SPtL) UJIAN NASIONAL

SOAL-SOAL LATIHAN SISTEM PERSAMAAN (SPL) DAN SITEM PERTIDAKSAMAAN LINEAR (SPtL) UJIAN NASIONAL SOAL-SOAL LATIHAN SISTEM PERSAMAAN (SPL) DAN SITEM PERTIDAKSAMAAN LINEAR (SPtL) UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topik sistem persamaan dan sistem pertidaksamaan linear.

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah... UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari 6 A. a b B. 6 6 a b 6 a 8 b 6 9 a b 6 a E. b 8. Bentuk sederhana dari

Lebih terperinci

Soal Linear Programming. By: Rita Wiryasaputra, ST., M. Cs.

Soal Linear Programming. By: Rita Wiryasaputra, ST., M. Cs. Soal Linear Programming By: Rita Wiryasaputra, ST., M. Cs. Soal 1 Sebuah perusahaan mebel akan membuat meja dan kursi. Setiap meja membutuhkan 5 m 2 kayu jati dan 2 m 2 kayu pinus, serta membutuhkan waktu

Lebih terperinci

KISI-KISI PENULISAN SOAL

KISI-KISI PENULISAN SOAL JENIS SEKOLAH : SMA MATA PELAJARAN : Matematika Wajib KURIKULUM : 013 ALOKASI WAKTU : 10 Menit JUMLAH SOAL : 35 BENTUK TES : Pilihan Ganda dan Essay PENYUSUN : Hardiyanto KISI-KISI PENULISAN SOAL No Urut

Lebih terperinci

SOAL-SOAL LATIHAN PERSAMAAN KUADRAT UJIAN NASIONAL

SOAL-SOAL LATIHAN PERSAMAAN KUADRAT UJIAN NASIONAL . UN 7 Persamaan kuadrat SOAL-SOAL LATIHAN PERSAMAAN KUADRAT UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topik persamaan kuadrat. Peserta didik memilki kemampuan mengaplikan konsep

Lebih terperinci

DAFTAR ISI. Soal Per Indikator UN 2014 Prog. IPA

DAFTAR ISI. Soal Per Indikator UN 2014 Prog. IPA Soal Per Indikator UN Prog. IPA DAFTAR ISI Daftar Isi... ii. Menentukan penarikan kesimpulan dari beberapa premis..... Menentukan ingkaran atau kesetaraan dari pernyataan majemuk atau pernyataan berkuantor....

Lebih terperinci

SMK Non Teknik Mata Pelajaran : Matematika

SMK Non Teknik Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Kejuruan SMK Non Teknik Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN)

Lebih terperinci

Mengubah kalimat verbal menjadi model matematika

Mengubah kalimat verbal menjadi model matematika LEMBAR KEGIATAN SISWA 3 Materi : Mengubah kalimat verbal menjadi model matematika Kelas Kelompok : : Nama Anggota : Kalian telah mempelajari cara membuat kalimat matematika, membuat grafik dari kalimat

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah... UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari A. B. 6 a b 6 6 a b 6 a C. 8 D. b 6 a 9 b 6 a E. 8 b Solusi: [E] a b 0

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR A. Pendahuluan Dalam kehidupan sehari-hari sering dijumpai aplikasi program linear, seperti pembangunan perumahan atau apartemen, pemakaian obat-obatan dalam penyembuhan pasien,

Lebih terperinci

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel PROGRAM LINIER SOAL LATIHAN 01 A. Sistem Pertidaksamaan Linier Dua Variabel 01. Lukislah daerah penyelesaian sistem pertidaksamaan : 3x + y 6 3x + 5y 15 02. Lukislah daerah penyelesaian sistem pertidaksamaan

Lebih terperinci

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 08 Sesi N MENCARI MAKSIMUM DAN MINIMUM FUNGSI Kita sudah belajar bagaimana menggambar daerah dari batas pertidaksamaan ang diketahui atau pun sebalikna. Suatu

Lebih terperinci

1. Bentuk sederhana dari adalah. a. 3 b. 3 3 c. 4 3 d. 5 3 e adalah. a b c d e.

1. Bentuk sederhana dari adalah. a. 3 b. 3 3 c. 4 3 d. 5 3 e adalah. a b c d e. 1. Bentuk sederhana dari 2 8 75 + 12 a. 3 b. 3 3 c. 3 d. 5 3 e. 15 3 2. Bentuk sederhana dari a. 2 6 b. 2 6 2 c. 2 6 d. 6 8 e. 6 8 3. Bentuk sederhana dari.... 2 a. b 8 b. c 8 c. a 16 d. b 16 e. a 10 b

Lebih terperinci

PROGRAM LINEAR. Dasar Matematis

PROGRAM LINEAR. Dasar Matematis PROGRAM LINEAR Dasar Matematis PROGRAM LINIER adalah suatu teknik optimalisasi dimana variabel-variabelnya linier. Metode ini dipakai pada saat kita dihadapkan pada beberapa pilihan dengan batasan-batasan

Lebih terperinci

PROGRAM LINEAR. Fattaku Rohman, S.Pd. Kelas XII SMA Titian Teras Jambi

PROGRAM LINEAR. Fattaku Rohman, S.Pd. Kelas XII SMA Titian Teras Jambi PROGRAM LINEAR Fattaku Rohman, S.Pd Kelas XII SMA Titian Teras Jambi Apersepsi Standar Kompetensi & Kompetensi Dasar Materi Uji Kompetensi Apersepsi Setiap orang atau perusahaan pasti menginginkan keuntungan

Lebih terperinci

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear

Explore. Your Potency From Now. Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution. Pengertian Program Linear Modul Belajar Kompetensi Program Linear Oleh Syaiful Hamzah Nasution Explore. Your Potency From Now. Pengertian Program Linear Fungsi Objektif dan Kendala pada Program Linear Model Matematika dan Nilai

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPS / KEAGAMAAN TAHUN PELAJARAN 2008/2009 OAL DAN PEMAHAAN UJIAN NAIONAL MA/MA IP / KEAGAMAAN TAHUN PELAJARAN 008/009. Nilai kebenaran yang tepat untuk pernyataan ( p q ) ~ p, pada tabel di bawah adalah... p q ( p q ) ~ p A. C. E.. D. p q Konjungsi

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x

Lebih terperinci

SOAL LATIHAN UN MATEMATIKA IPS 00. Negasi dari pernyataan Matematika tidak mengasyikkan dan membosankan adalah. Matematika mengasyikkan atau membosankan Matematika mengasyikkan atau tidak membosankan Matematika

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS 1 Penusun Editor : Rifan Nadhifi, S.Si. ; Imam Indra Gunawan, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. A. Sistem Pertidaksamaan Linear Pertidaksamaan linear

Lebih terperinci

SOAL-SOAL TURUNAN FUNGSI

SOAL-SOAL TURUNAN FUNGSI SOAL-SOAL TURUNAN FUNGSI Peserta didik memilki kemampuan memahami konsep pada topik turunan fungsi aljabar. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual pada topik

Lebih terperinci

SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL

SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL . UN 0 SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topik peluang suatu kejadian. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah

Lebih terperinci

TO MGMP MATEMATIKA BAHASA PAKET A HAL 1

TO MGMP MATEMATIKA BAHASA PAKET A HAL 1 MATEMATIKA SMA BAHASA PAKET A 1. Bentuk sederhana dari( 4x 8 y 3 16x 6 y 5) 1 =. A. ( y 2x )2 B. ( 2x y )2 C. ( x 2y )2 D. ( 1 2xy )2 E. (2xy) 2 2. Hasil dari 5 2 5+2 =. A. 4 5 + 9 B. 4 5 C. 9 4 5 D. 9

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012 SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 0. Negasi dari semua siswa rajin belajar untuk menghadapi UN, adalah... A. tidak semua siswa rajin belajar untuk menghadapi UN B. semua siswa

Lebih terperinci

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif

Program Linear B A B. A. Sistem Pertidaksamaan Linear Dua Variabel. B. Model Matematika. C. Nilai Optimum Suatu Fungsi Objektif Program Linear Program Linear B A B 2 A. Sistem Pertidaksamaan Linear Dua Variabel B. Model Matematika C. Nilai Optimum Suatu Fungsi Objektif Sumber: http://blontankpoer.blogsome.com Dalam dunia usaha,

Lebih terperinci

SOLUSI soal-soal latihan NASKAH A

SOLUSI soal-soal latihan NASKAH A URAIAN SLUSI soal-soal latihan NASKAH A 1. Tentukan sistem pertidaksamaan linear dua variabel (SPtLDV) dari daerah penyelesaian (DP) berikut ini., 8,,0 dan 0, xy PtLDV: xy 0, dan, y x 0 0 y8 x x y 8 PtLDV:

Lebih terperinci

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY SOAL PENJAJAKAN UN MATEMATIKA 0 PROVINSI DIY. Suatu proyek akan selesai dalam waktu 0 hari oleh 0 orang pekerja. Tambahan pekerja yang dibutuhkan agar proyek tersebut selesai dalam waktu 90 hari adalah.

Lebih terperinci

3. Diberikan sistem persamaan linier: . Nilai dari x 4y dari sistem. persamaan tersebut adalah... A. 6 B. 5 C. 2 D. -2 E adalah...

3. Diberikan sistem persamaan linier: . Nilai dari x 4y dari sistem. persamaan tersebut adalah... A. 6 B. 5 C. 2 D. -2 E adalah... . Sebuah perkebunan seluas 7 Ha memperkejakan 0 orang untuk memetik buah dalam waktu 8 jam. Jika pihak perkebunan ingin mempercepat pemetikan menjadi 7 jam, maka diperlukan tambahan tenaga sebanyak....

Lebih terperinci

SOLUSI. Solusi: Solusi: [E] Solusi: [C] Himpunan penyelesaiannya adalah 3. 1 Husein Tampomas, Solusi TO UN Matematika IPA-A Provinsi Jawa Barat, 2016

SOLUSI. Solusi: Solusi: [E] Solusi: [C] Himpunan penyelesaiannya adalah 3. 1 Husein Tampomas, Solusi TO UN Matematika IPA-A Provinsi Jawa Barat, 2016 SOLUSI Solusi: 6 5x x Himpunan penyelesaiannya adalah Solusi: [E] log w log, 4 0,8h log50 log,4 0,8h 0,8h log 50 log, 4, 6990 0, 80, 88,88 h,6585,66 0,8 Solusi: [C] g o f a g f a g a a 5 a a 5 a a 5 a

Lebih terperinci

NASKAH G. 1. Tentukan sistem pertidaksamaan linear dua variabel (SPtLDV) dari daerah penyelesaian (DP) berikut ini. Y

NASKAH G. 1. Tentukan sistem pertidaksamaan linear dua variabel (SPtLDV) dari daerah penyelesaian (DP) berikut ini. Y URAIAN slusi SAL-SAL LATIHAN NASKAH G 1. Tentukan sistem pertidaksamaan linear dua variabel (SPtLDV) dari daerah penyelesaian (DP) berikut ini.,,,0 dan 0, xy PtLDV: x y 0, dan, y x 0 0 y1 x xy 1 PtLDV:

Lebih terperinci

Matematika Ebtanas IPS Tahun 1996

Matematika Ebtanas IPS Tahun 1996 Matematika Ebtanas IPS Tahun 6 EBTANAS-IPS-6-0 Koordinattitik balik grafik y = adalah (, ) (, ) (, ) (, 0) (, ) EBTANAS-IPS-6-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru

Lebih terperinci

BAB III. PROGRAM LINEAR

BAB III. PROGRAM LINEAR BAB III. PROGRAM LINEAR Salah satu pokok bahasan dalam mata pelajaran matematika kelas III IPA semester gasal, menurut Kurikulum 2004 (KBK) SMA / MA, memuat : Kompetensi dasar : Siswa menggunakan dan menghargai

Lebih terperinci

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR LEMBAR AKTIVITAS SISWA PROGRAM LINEAR c) Subtitusikan titik (0,0) kedalam pertidaksamaan. Nama Siswa : Jika hasil benar, maka penyelesaiaannya adalah daerah Kelas : yang memuat titik tersebut. Jika hasil

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II A KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK PARIWISATA PAKET II A KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN - SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK PARIWISATA PAKET II A MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K P A R

Lebih terperinci

PAKET 3. Paket : 3. Jumlah Soal : 40 soal Kompetensi : 1. Program Linear 3. Vektor 2. Matriks 4. Logika Compile By : Syaiful Hamzah Nasution

PAKET 3. Paket : 3. Jumlah Soal : 40 soal Kompetensi : 1. Program Linear 3. Vektor 2. Matriks 4. Logika Compile By : Syaiful Hamzah Nasution PAKET 3 Jumlah Soal : 40 soal Kompetensi : 1. Program Linear 3. Vektor 2. Matriks 4. Logika Compile By : Syaiful Hamzah Nasution No Soal Jawaban 1 Nilai maksimum f(x, y) = 2x + 3y yang memenuhi system

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN PAKET Pilihan Ganda: Pilihlah satu jawaban yang paling tepat.. Ingkaran dari pernyataan Mathman tidak belajar atau dia dapat mengerjakan soal UN matematika

Lebih terperinci

SOAL-SOAL LATIHAN TRANSFORMASI GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN TRANSFORMASI GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN TRANSFORMASI GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topik transformasi geometri. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam

Lebih terperinci

UN SMA IPS 2008 Matematika

UN SMA IPS 2008 Matematika UN SMA IPS 008 Matematika Kode Soal P Doc. Name: UNSMAIPS008MATP Doc. Version : 0-0 halaman 0. Negasi dari pernyataan: Permintaan terhadap sebuah produk tinggi dan harga naik. Adalah. Permintaan terhadap

Lebih terperinci

SOAL LATIHAN PERSIAPAN UN

SOAL LATIHAN PERSIAPAN UN SOAL LATIHAN PERSIAPAN UN Kelompok : IPS / Keagamaan Penyusun : Syaiful Hamzah Nasution, S.Si, S.Pd KOMPETENSI : PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT 1. Penyelesaian pertidaksamaan (x + 3)(x 1) 0 adalah

Lebih terperinci

SOAL TRY OUT UN MATEMATIKA 2013 PROGRAM IPS. Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!

SOAL TRY OUT UN MATEMATIKA 2013 PROGRAM IPS. Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar! SOAL TRY OUT UN MATEMATIKA 0 PROGRAM IPS Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Ingkaran dari pernyataan Diana lulus ujian nasional dan kuliah di luar negeri

Lebih terperinci

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas Matematika Persiapan UTS Doc. Name: KARMATWJB0UTS Version: 04-0 halaman 0. Nilai maksimum dari 0 + 8 untuk dan y yang memenuhi + y 0, + y 48, 0 0 dan 0 y 48 adalah. (A) 408 (B) 456 (C)

Lebih terperinci

UN SMA 2017 Matematika IPA

UN SMA 2017 Matematika IPA UN SMA 07 Matematika IPA Soal UN SMA 07 - Matematika IPA Doc. Name: UNSMA07MATIPA Version: 07-0 Halaman 5-8 5 4 0. Hasil dari - 8 8.4 5 7 7 8 8 8 7 0. Bentuk sederhana dari ( 5 + ) ( - 5 ) - ( 5 +4 ) 4

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci